Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90443
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林亮音zh_TW
dc.contributor.advisorLiangIn Linen
dc.contributor.author何錦海zh_TW
dc.contributor.authorKam Hoi HOen
dc.date.accessioned2023-10-02T16:14:27Z-
dc.date.available2023-11-10-
dc.date.copyright2023-10-02-
dc.date.issued2023-
dc.date.submitted2023-08-11-
dc.identifier.citation1. Estey, E., and Döhner, H. (2006). Acute myeloid leukaemia. The Lancet 368, 1894–1907. 10.1016/S0140-6736(06)69780-8.
2. Ferrara, F., and Schiffer, C.A. (2013). Acute myeloid leukaemia in adults. The Lancet 381, 484–495. 10.1016/S0140-6736(12)61727-9.
3. Voso, M.T., De Bellis, E., and Ottone, T. (2021). Diagnosis and Classification of AML: WHO 2016. In Acute Myeloid Leukemia Hematologic Malignancies., C. Röllig and G. J. Ossenkoppele, eds. (Springer International Publishing), pp. 23–54. 10.1007/978-3-030-72676-8_2.
4. Sillar, J.R., Germon, Z.P., De Iuliis, G.N., and Dun, M.D. (2019). The Role of Reactive Oxygen Species in Acute Myeloid Leukaemia. Int J Mol Sci 20, 6003. 10.3390/ijms20236003.
5. Chen, K.T.J., Gilabert-Oriol, R., Bally, M.B., and Leung, A.W.Y. (2019). Recent Treatment Advances and the Role of Nanotechnology, Combination Products, and Immunotherapy in Changing the Therapeutic Landscape of Acute Myeloid Leukemia. Pharm Res 36, 125. 10.1007/s11095-019-2654-z.
6. Surveillance Research Program, National Cancer Institute. SEER*Explorer: An interactive website for SEER cancer statistics. https://seer.cancer.gov/statistics-network/explorer/.
7. Health Promotion Administration Ministry Of Health And Welfare Taiwan (2022). Cancer registry annual report, 2020, Taiwan.
8. Shah, A., Andersson, T.M.-L., Rachet, B., Björkholm, M., and Lambert, P.C. (2013). Survival and cure of acute myeloid leukaemia in England, 1971-2006: a population–based study. Brit J Haematol 162, 509–516. 10.1111/bjh.12425.
9. Hou, H.-A., and Tien, H.-F. (2020). Genomic landscape in acute myeloid leukemia and its implications in risk classification and targeted therapies. J BIOMED SCI 27, 81. 10.1186/s12929-020-00674-7.
10. Papaemmanuil, E., Gerstung, M., Bullinger, L., Gaidzik, V.I., Paschka, P., Roberts, N.D., Potter, N.E., Heuser, M., Thol, F., Bolli, N., et al. (2016). Genomic Classification and Prognosis in Acute Myeloid Leukemia. N Engl J Med 374, 2209–2221. 10.1056/NEJMoa1516192.
11. Khoury, J.D., Solary, E., Abla, O., Akkari, Y., Alaggio, R., Apperley, J.F., Bejar, R., Berti, E., Busque, L., Chan, J.K.C., et al. (2022). The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 36, 1703–1719. 10.1038/s41375-022-01613-1.
12. Hawkins, E.D., and Russell, S.M. (2008). Upsides and downsides to polarity and asymmetric cell division in leukemia. Oncogene 27, 7003–7017. 10.1038/onc.2008.350.
13. Short, N.J., Rytting, M.E., and Cortes, J.E. (2018). Acute myeloid leukaemia. The Lancet 392, 593–606. 10.1016/S0140-6736(18)31041-9.
14. Zjablovskaja, P., and Florian, M.C. (2019). Acute Myeloid Leukemia: Aging and Epigenetics. Cancers 12, 103. 10.3390/cancers12010103.
15. Lagunas-Rangel, F.A., Chávez-Valencia, V., Gómez-Guijosa, M.Á., and Cortes-Penagos, C. (2017). Acute Myeloid Leukemia—Genetic Alterations and Their Clinical Prognosis. Int J Hematol Oncol Stem Cell Res 11, 328–339.
16. Molica, M., and Perrone, S. (2022). Molecular targets for the treatment of AML in the forthcoming 5th World Health Organization Classification of Haematolymphoid Tumours. Expert Review of Hematology 15, 973–986. 10.1080/17474086.2022.2140137.
17. Arber, D.A., Orazi, A., Hasserjian, R.P., Borowitz, M.J., Calvo, K.R., Kvasnicka, H.-M., Wang, S.A., Bagg, A., Barbui, T., Branford, S., et al. (2022). International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood 140, 1200–1228. 10.1182/blood.2022015850.
18. Saultz, J.N., and Garzon, R. (2016). Acute Myeloid Leukemia: A Concise Review. J Clin Med 5, 33. 10.3390/jcm5030033.
19. Pollyea, D.A., Amaya, M., Strati, P., and Konopleva, M.Y. (2019). Venetoclax for AML: changing the treatment paradigm. Blood Adv 3, 4326–4335. 10.1182/bloodadvances.2019000937.
20. National Comprehensive Cancer Network (NCCN) (2022). NCCN Guidelines for Patients: Acute Myeloid Leukemia (The National Comprehensive Cancer Network).
21. National Comprehensive Cancer Network (NCCN) (2022). NCCN Clinical Practice Guidelines in Oncology. Acute Myeloid Leukemia (National Comprehensive Cancer Network).
22. Döhner, H., Wei, A.H., Appelbaum, F.R., Craddock, C., DiNardo, C.D., Dombret, H., Ebert, B.L., Fenaux, P., Godley, L.A., Hasserjian, R.P., et al. (2022). Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 140, 1345–1377. 10.1182/blood.2022016867.
23. Itzykson, R., Cerrano, M., and Esteve, J. (2021). Prognostic Factors in AML. In Acute Myeloid Leukemia Hematologic Malignancies., C. Röllig and G. J. Ossenkoppele, eds. (Springer International Publishing), pp. 127–175. 10.1007/978-3-030-72676-8_7.
24. Perillo, B., Di Donato, M., Pezone, A., Di Zazzo, E., Giovannelli, P., Galasso, G., Castoria, G., and Migliaccio, A. (2020). ROS in cancer therapy: the bright side of the moon. Exp Mol Med 52, 192–203. 10.1038/s12276-020-0384-2.
25. Liou, G.-Y., and Storz, P. (2010). Reactive oxygen species in cancer. Free Radic Res 44, 10.3109/10715761003667554. 10.3109/10715761003667554.
26. Trachootham, D., Alexandre, J., and Huang, P. (2009). Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8, 579–591. 10.1038/nrd2803.
27. Juan, C.A., Pérez de la Lastra, J.M., Plou, F.J., and Pérez-Lebeña, E. (2021). The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int J Mol Sci 22, 4642. 10.3390/ijms22094642.
28. Mirończuk-Chodakowska, I., Witkowska, A.M., and Zujko, M.E. (2018). Endogenous non-enzymatic antioxidants in the human body. Adv Med Sci 63, 68–78. 10.1016/j.advms.2017.05.005.
29. Arfin, S., Jha, N.K., Jha, S.K., Kesari, K.K., Ruokolainen, J., Roychoudhury, S., Rathi, B., and Kumar, D. (2021). Oxidative Stress in Cancer Cell Metabolism. Antioxidants 10, 642. 10.3390/antiox10050642.
30. Trombetti, S., Cesaro, E., Catapano, R., Sessa, R., Lo Bianco, A., Izzo, P., and Grosso, M. (2021). Oxidative Stress and ROS-Mediated Signaling in Leukemia: Novel Promising Perspectives to Eradicate Chemoresistant Cells in Myeloid Leukemia. Int J Mol Sci 22, 2470. 10.3390/ijms22052470.
31. Holmgren, A. (2000). Antioxidant Function of Thioredoxin and Glutaredoxin Systems. Antioxidants & Redox Signaling 2, 811–820. 10.1089/ars.2000.2.4-811.
32. Sen, C.K. (2000). Part VI • Chapter 15 - Biological thiols and redox regulation of cellular signal transduction pathways. In Handbook of Oxidants and Antioxidants in Exercise, C. K. Sen, L. Packer, and O. O. P. Hänninen, eds. (Elsevier Science B.V.), pp. 375–401. 10.1016/B978-044482650-3/50015-8.
33. Otasevic, V., and Korac, B. (2016). Amino Acids: Metabolism. In Encyclopedia of Food and Health, B. Caballero, P. M. Finglas, and F. Toldrá, eds. (Academic Press), pp. 149–155. 10.1016/B978-0-12-384947-2.00028-3.
34. Ulrich, K., and Jakob, U. (2019). The role of thiols in antioxidant systems. Free Radical Bio Med 140, 14–27. 10.1016/j.freeradbiomed.2019.05.035.
35. Kükürt, A., Gelen, V., Başer, Ö.F., Deveci, H.A., Karapehlivan, M., Kükürt, A., Gelen, V., Başer, Ö.F., Deveci, H.A., and Karapehlivan, M. (2021). Thiols: Role in Oxidative Stress-Related Disorders. In Accenting Lipid Peroxidation (IntechOpen). 10.5772/intechopen.96682.
36. Erel, O., and Neselioglu, S. (2014). A novel and automated assay for thiol/disulphide homeostasis. Clin Biochem 47, 326–332. 10.1016/j.clinbiochem.2014.09.026.
37. Rudyk, O., and Eaton, P. (2014). Biochemical methods for monitoring protein thiol redox states in biological systems. Redox Biol 2, 803–813. 10.1016/j.redox.2014.06.005.
38. Tong, L., Chuang, C.-C., Wu, S., and Zuo, L. (2015). Reactive oxygen species in redox cancer therapy. Cancer Lett 367, 18–25. 10.1016/j.canlet.2015.07.008.
39. Irwin, M.E., Rivera-Del Valle, N., and Chandra, J. (2013). Redox Control of Leukemia: From Molecular Mechanisms to Therapeutic Opportunities. Antioxid Redox Signal 18, 1349–1383. 10.1089/ars.2011.4258.
40. Bjelakovic, G., Nikolova, D., Gluud, L.L., Simonetti, R.G., and Gluud, C. (2007). Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 297, 842–857. 10.1001/jama.297.8.842.
41. Alexandre, J., Batteux, F., Nicco, C., Chéreau, C., Laurent, A., Guillevin, L., Weill, B., and Goldwasser, F. (2006). Accumulation of hydrogen peroxide is an early and crucial step for paclitaxel-induced cancer cell death both in vitro and in vivo. Int J Cancer 119, 41–48. 10.1002/ijc.21685.
42. Hetz, C., and Papa, F.R. (2018). The Unfolded Protein Response and Cell Fate Control. Molecular Cell 69, 169–181. 10.1016/j.molcel.2017.06.017.
43. Hetz, C., Martinon, F., Rodriguez, D., and Glimcher, L.H. (2011). The Unfolded Protein Response: Integrating Stress Signals Through the Stress Sensor IRE1α. Physiol Rev 91, 1219–1243. 10.1152/physrev.00001.2011.
44. Galluzzi, L., Diotallevi, A., and Magnani, M. (2017). Endoplasmic reticulum stress and unfolded protein response in infection by intracellular parasites. Future Sci OA 3, FSO198. 10.4155/fsoa-2017-0020.
45. Tabas, I., and Ron, D. (2011). Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13, 184–190. 10.1038/ncb0311-184.
46. Adomavicius, T., Guaita, M., Zhou, Y., Jennings, M.D., Latif, Z., Roseman, A.M., and Pavitt, G.D. (2019). The structural basis of translational control by eIF2 phosphorylation. Nat Commun 10, 2136. 10.1038/s41467-019-10167-3.
47. Hu, H., Tian, M., Ding, C., and Yu, S. (2019). The C/EBP Homologous Protein (CHOP) Transcription Factor Functions in Endoplasmic Reticulum Stress-Induced Apoptosis and Microbial Infection. Front Immunol 9, 3083. 10.3389/fimmu.2018.03083.
48. Sousa, A.D. (2020). Disulfiram 1 st. (Springer).
49. Lu, Y., Pan, Q., Gao, W., Pu, Y., Luo, K., He, B., and Gu, Z. (2022). Leveraging disulfiram to treat cancer: Mechanisms of action, delivery strategies, and treatment regimens. Biomaterials 281, 121335. 10.1016/j.biomaterials.2021.121335.
50. Meraz-Torres, F., Plöger, S., Garbe, C., Niessner, H., and Sinnberg, T. (2020). Disulfiram as a Therapeutic Agent for Metastatic Malignant Melanoma—Old Myth or New Logos? Cancers 12, 3538. 10.3390/cancers12123538.
51. Viola-Rhenals, M., Patel, K.R., Jaimes-Santamaria, L., Wu, G., Liu, J., and Dou, Q.P. (2018). Recent Advances in Antabuse (Disulfiram): The Importance of its Metal-binding Ability to its Anticancer Activity. Curr Med Chem 25, 506–524. 10.2174/0929867324666171023161121.
52. Lu, C., Li, X., Ren, Y., and Zhang, X. (2021). Disulfiram: a novel repurposed drug for cancer therapy. Cancer Chemother Pharmacol 87, 159–172. 10.1007/s00280-020-04216-8.
53. Schirmer, H.K., and Scott, W.W. (1966). Disulfiram and tumor inhibition. Trans Am Assoc Genitourin Surg 58, 63–66.
54. Li, H., Wang, J., Wu, C., Wang, L., Chen, Z.-S., and Cui, W. (2020). The combination of disulfiram and copper for cancer treatment. Drug Discov Today 25, 1099–1108. 10.1016/j.drudis.2020.04.003.
55. Lewison, E.F. (1976). Spontaneous regression of breast cancer. Natl Cancer Inst Monogr 44, 23–26.
56. Yip, N.C., Fombon, I.S., Liu, P., Brown, S., Kannappan, V., Armesilla, A.L., Xu, B., Cassidy, J., Darling, J.L., and Wang, W. (2011). Disulfiram modulated ROS–MAPK and NFκB pathways and targeted breast cancer cells with cancer stem cell-like properties. Br J Cancer 104, 1564–1574. 10.1038/bjc.2011.126.
57. Allensworth, J.L., Evans, M.K., Bertucci, F., Aldrich, A.J., Festa, R.A., Finetti, P., Ueno, N.T., Safi, R., McDonnell, D.P., Thiele, D.J., et al. (2015). Disulfiram (DSF) acts as a copper ionophore to induce copper‐dependent oxidative stress and mediate anti‐tumor efficacy in inflammatory breast cancer. Mol Oncol 9, 1155–1168. 10.1016/j.molonc.2015.02.007.
58. Li, Y., Chen, F., Chen, J., Chan, S., He, Y., Liu, W., and Zhang, G. (2020). Disulfiram/Copper Induces Antitumor Activity against Both Nasopharyngeal Cancer Cells and Cancer-Associated Fibroblasts through ROS/MAPK and Ferroptosis Pathways. Cancers 12, 138. 10.3390/cancers12010138.
59. Cen, D., Brayton, D., Shahandeh, B., Meyskens, Frank L., and Farmer, P.J. (2004). Disulfiram facilitates intracellular Cu uptake and induces apoptosis in human melanoma cells. J. Med. Chem. 47, 6914–6920. 10.1021/jm049568z.
60. Ren, X., Li, Y., Zhou, Y., Hu, W., Yang, C., Jing, Q., Zhou, C., Wang, X., Hu, J., Wang, L., et al. (2021). Overcoming the compensatory elevation of NRF2 renders hepatocellular carcinoma cells more vulnerable to disulfiram/copper-induced ferroptosis. Redox Biol 46, 102122. 10.1016/j.redox.2021.102122.
61. Skrott, Z., Mistrik, M., Andersen, K.K., Friis, S., Majera, D., Gursky, J., Ozdian, T., Bartkova, J., Turi, Z., Moudry, P., et al. (2017). Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature 552, 194–199. 10.1038/nature25016.
62. Zha, J., Chen, F., Dong, H., Shi, P., Yao, Y., Zhang, Y., Li, R., Wang, S., Li, P., Wang, W., et al. (2014). Disulfiram targeting lymphoid malignant cell lines via ROS-JNK activation as well as Nrf2 and NF-kB pathway inhibition. Journal of Translational Medicine 12, 163. 10.1186/1479-5876-12-163.
63. Pan, M., Zheng, Q., Yu, Y., Ai, H., Xie, Y., Zeng, X., Wang, C., Liu, L., and Zhao, M. (2021). Seesaw conformations of Npl4 in the human p97 complex and the inhibitory mechanism of a disulfiram derivative. Nat Commun 12, 121. 10.1038/s41467-020-20359-x.
64. Morrison, B.W., Doudican, N.A., Patel, K.R., and Orlow, S.J. (2010). Disulfiram induces copper-dependent stimulation of reactive oxygen species and activation of the extrinsic apoptotic pathway in melanoma. Melanoma Res 20, 11–20. 10.1097/CMR.0b013e328334131d.
65. Liu, P., Brown, S., Goktug, T., Channathodiyil, P., Kannappan, V., Hugnot, J.-P., Guichet, P.-O., Bian, X., Armesilla, A.L., Darling, J.L., et al. (2012). Cytotoxic effect of disulfiram/copper on human glioblastoma cell lines and ALDH-positive cancer-stem-like cells. Br J Cancer 107, 1488–1497. 10.1038/bjc.2012.442.
66. Papaioannou, M., Mylonas, I., Kast, R.E., and Brüning, A. (2013). Disulfiram/copper causes redox-related proteotoxicity and concomitant heat shock response in ovarian cancer cells that is augmented by auranofin-mediated thioredoxin inhibition. Oncoscience 1, 21–29.
67. Li, Y., Wang, L.-H., Zhang, H.-T., Wang, Y.-T., Liu, S., Zhou, W.-L., Yuan, X.-Z., Li, T.-Y., Wu, C.-F., and Yang, J.-Y. (2018). Disulfiram combined with copper inhibits metastasis and epithelial–mesenchymal transition in hepatocellular carcinoma through the NF-κB and TGF-β pathways. J Cell Mol Med 22, 439–451. 10.1111/jcmm.13334.
68. Li, Z., Xie, X., Tan, G., Xie, F., Liu, N., Li, W., and Sun, X. (2021). Disulfiram Synergizes with SRC Inhibitors to Suppress the Growth of Pancreatic Ductal Adenocarcinoma Cells in Vitro and in Vivo. Biological and Pharmaceutical Bulletin 44, 1323–1331. 10.1248/bpb.b21-00353.
69. Conticello, C., Martinetti, D., Adamo, L., Buccheri, S., Giuffrida, R., Parrinello, N., Lombardo, L., Anastasi, G., Amato, G., Cavalli, M., et al. (2012). Disulfiram, an old drug with new potential therapeutic uses for human hematological malignancies. Int J Cancer 131, 2197–2203. 10.1002/ijc.27482.
70. Hu, Y., Qian, Y., Wei, J., Jin, T., Kong, X., Cao, H., and Ding, K. (2021). The Disulfiram/Copper Complex Induces Autophagic Cell Death in Colorectal Cancer by Targeting ULK1. Frontiers in Pharmacology 12, 752825. 10.3389/fphar.2021.752825.
71. Robinson, T., Pai, M., Liu, J., Vizeacoumar, F., Sun, T., Egan, S., Datti, A., Huang, J., and Zacksenhaus, E. (2013). High-throughput screen identifies disulfiram as a potential therapeutic for triple-negative breast cancer cells: Interaction with IQ motif-containing factors. Cell Cycle 12, 3013–3024. 10.4161/cc.26063.
72. Iljin, K., Ketola, K., Vainio, P., Halonen, P., Kohonen, P., Fey, V., Grafström, R.C., Perälä, M., and Kallioniemi, O. (2009). High-Throughput Cell-Based Screening of 4910 Known Drugs and Drug-like Small Molecules Identifies Disulfiram as an Inhibitor of Prostate Cancer Cell Growth. Clin Cancer Res 15, 6070–6078. 10.1158/1078-0432.CCR-09-1035.
73. Yuan, X., Duan, Y., Luo, C., Li, L., Yang, M., Liu, T., Cao, Z., Huang, W., Bu, X., Yue, X., et al. (2023). Disulfiram enhances cisplatin cytotoxicity by forming a novel platinum chelate Pt(DDTC)3+. Biochem Pharmacol 211, 115498. 10.1016/j.bcp.2023.115498.
74. Liu, P., Wang, Z., Brown, S., Kannappan, V., Tawari, P.E., Jiang, W., Irache, J.M., Tang, J.Z., Armesilla, A.L., Darling, J.L., et al. (2014). Liposome encapsulated Disulfiram inhibits NFκB pathway and targets breast cancer stem cells in vitro and in vivo. Oncotarget 5, 7471–7485. 10.18632/oncotarget.2166.
75. Hassani, S., Ghaffari, P., Chahardouli, B., Alimoghaddam, K., Ghavamzadeh, A., Alizadeh, S., and Ghaffari, S.H. (2018). Disulfiram/copper causes ROS levels alteration, cell cycle inhibition, and apoptosis in acute myeloid leukaemia cell lines with modulation in the expression of related genes. Biomed Pharmacother 99, 561–569. 10.1016/j.biopha.2018.01.109.
76. Liu, P., Kumar, I.S., Brown, S., Kannappan, V., Tawari, P.E., Tang, J.Z., Jiang, W., Armesilla, A.L., Darling, J.L., and Wang, W. (2013). Disulfiram targets cancer stem-like cells and reverses resistance and cross-resistance in acquired paclitaxel-resistant triple-negative breast cancer cells. Br J Cancer 109, 1876–1885. 10.1038/bjc.2013.534.
77. Zhang, X., Hu, P., Ding, S.-Y., Sun, T., Liu, L., Han, S., DeLeo, A.B., Sadagopan, A., Guo, W., and Wang, X. (2019). Induction of autophagy-dependent apoptosis in cancer cells through activation of ER stress: an uncovered anti-cancer mechanism by anti-alcoholism drug disulfiram. Am J Cancer Res 9, 1266–1281.
78. Schmidtova, S., Kalavska, K., Gercakova, K., Cierna, Z., Miklikova, S., Smolkova, B., Buocikova, V., Miskovska, V., Durinikova, E., Burikova, M., et al. (2019). Disulfiram Overcomes Cisplatin Resistance in Human Embryonal Carcinoma Cells. Cancers 11, 1224. 10.3390/cancers11091224.
79. Farooq, M.A., Aquib, M., Khan, D.H., Hussain, Z., Ahsan, A., Baig, M.M.F.A., Wande, D.P., Ahmad, M.M., Ahsan, H.M., Jiajie, J., et al. (2019). Recent advances in the delivery of disulfiram: a critical analysis of promising approaches to improve its pharmacokinetic profile and anticancer efficacy. DARU J Pharm Sci 27, 853–862. 10.1007/s40199-019-00308-w.
80. Xu, B., Wang, S., Li, R., Chen, K., He, L., Deng, M., Kannappan, V., Zha, J., Dong, H., and Wang, W. (2017). Disulfiram/copper selectively eradicates AML leukemia stem cells in vitro and in vivo by simultaneous induction of ROS-JNK and inhibition of NF-κB and Nrf2. Cell Death Dis 8, e2797–e2797. 10.1038/cddis.2017.176.
81. Deng, M., Jiang, Z., Li, Y., Zhou, Y., Li, J., Wang, X., Yao, Y., Wang, W., Li, P., and Xu, B. (2016). Effective elimination of adult B-lineage acute lymphoblastic leukemia by disulfiram/copper complex in vitro and in vivo in patient-derived xenograft models. Oncotarget 7, 82200–82212. 10.18632/oncotarget.9413.
82. Chen, D., Cui, Q.C., Yang, H., and Dou, Q.P. (2006). Disulfiram, a Clinically Used Anti-Alcoholism Drug and Copper-Binding Agent, Induces Apoptotic Cell Death in Breast Cancer Cultures and Xenografts via Inhibition of the Proteasome Activity. Cancer Res 66, 10425–10433. 10.1158/0008-5472.CAN-06-2126.
83. Cvek, B. (2012). Nonprofit drugs as the salvation of the world’s healthcare systems: the case of Antabuse (disulfiram). Drug Discov Today 17, 409–412. 10.1016/j.drudis.2011.12.010.
84. Wang, Z., Tan, J., McConville, C., Kannappan, V., Tawari, P.E., Brown, J., Ding, J., Armesilla, A.L., Irache, J.M., Mei, Q.-B., et al. (2017). Poly lactic-co-glycolic acid controlled delivery of disulfiram to target liver cancer stem-like cells. Nanomedicine: NBM 13, 641–657. 10.1016/j.nano.2016.08.001.
85. Kannappan, V., Ali, M., Small, B., Rajendran, G., Elzhenni, S., Taj, H., Wang, W., and Dou, Q.P. (2021). Recent Advances in Repurposing Disulfiram and Disulfiram Derivatives as Copper-Dependent Anticancer Agents. Front Mol Biosci 8, 741316. 10.3389/fmolb.2021.741316.
86. Johansson, B. (1992). A review of the pharmacokinetics and pharmacodynamics of disulfiram and its metabolites. Acta Psychiatrica Scandinavica 86, 15–26. 10.1111/j.1600-0447.1992.tb03310.x.
87. Cvek, B. (2011). Targeting Malignancies with Disulfiram (Antabuse): Multidrug Resistance, Angiogenesis, and Proteasome. Curr Cancer Drug Tar 11, 332–337. 10.2174/156800911794519806.
88. Brien, J.F., and Loomis, C.W. (1983). Disposition and Pharmacokinetics of Disulfiram and Calcium Carbimide (Calcium Cyanamide). Drug Metab Rev 14, 113–126. 10.3109/03602538308991384.
89. Faiman, M.D., Jensen, J.C., and Lacoursiere, R.B. (1984). Elimination kinetics of disulfiram in alcoholics after single and repeated doses. Clin Pharmacol Ther 36, 520–526. 10.1038/clpt.1984.213.
90. Benkő, B.-M., Lamprou, D.A., Sebestyén, A., Zelkó, R., and Sebe, I. (2023). Clinical, pharmacological, and formulation evaluation of disulfiram in the treatment of glioblastoma - a systematic literature review. Expert Opinion on Drug Delivery 20, 541–557. 10.1080/17425247.2023.2190581.
91. Skrott, Z., Majera, D., Gursky, J., Buchtova, T., Hajduch, M., Mistrik, M., and Bartek, J. (2019). Disulfiram’s anti-cancer activity reflects targeting NPL4, not inhibition of aldehyde dehydrogenase. Oncogene 38, 6711–6722. 10.1038/s41388-019-0915-2.
92. Falls-Hubert, K.C., Butler, A.L., Gui, K., Anderson, M., Li, M., Stolwijk, J.M., Rodman, S.N., Solst, S.R., Tomanek-Chalkley, A., Searby, C.C., et al. (2020). Disulfiram causes selective hypoxic cancer cell toxicity and radio-chemo-sensitization via redox cycling of copper. Free Radical Bio Med 150, 1–11. 10.1016/j.freeradbiomed.2020.01.186.
93. Ding, N., and Zhu, Q. (2018). Disulfiram combats cancer via crippling valosin-containing protein/p97 segregase adaptor NPL4. Transl Cancer Res 7. 10.21037/tcr.2018.03.33.
94. Meyer, H., and Weihl, C.C. (2014). The VCP/p97 system at a glance: connecting cellular function to disease pathogenesis. J Cell Sci 127, 3877–3883. 10.1242/jcs.093831.
95. Bykov, V.J.N., Issaeva, N., Shilov, A., Hultcrantz, M., Pugacheva, E., Chumakov, P., Bergman, J., Wiman, K.G., and Selivanova, G. (2002). Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 8, 282–288. 10.1038/nm0302-282.
96. Perdrix, A., Najem, A., Saussez, S., Awada, A., Journe, F., Ghanem, G., and Krayem, M. (2017). PRIMA-1 and PRIMA-1Met (APR-246): From Mutant/Wild Type p53 Reactivation to Unexpected Mechanisms Underlying Their Potent Anti-Tumor Effect in Combinatorial Therapies. Cancers 9, 172. 10.3390/cancers9120172.
97. Bykov, V.J.N., Zhang, Q., Zhang, M., Ceder, S., Abrahmsen, L., and Wiman, K.G. (2016). Targeting of Mutant p53 and the Cellular Redox Balance by APR-246 as a Strategy for Efficient Cancer Therapy. Front Oncol 6, 21. 10.3389/fonc.2016.00021.
98. Bykov, V.J.N., Zache, N., Stridh, H., Westman, J., Bergman, J., Selivanova, G., and Wiman, K.G. (2005). PRIMA-1MET synergizes with cisplatin to induce tumor cell apoptosis. Oncogene 24, 3484–3491. 10.1038/sj.onc.1208419.
99. Jaskova, Z., Pavlova, S., Malcikova, J., Brychtova, Y., and Trbusek, M. (2020). PRIMA-1MET cytotoxic effect correlates with p53 protein reduction in TP53-mutated chronic lymphocytic leukemia cells. Leukemia Res 89, 106288. 10.1016/j.leukres.2019.106288.
100. Zhu, G., Pan, C., Bei, J.-X., Li, B., Liang, C., Xu, Y., and Fu, X. (2020). Mutant p53 in Cancer Progression and Targeted Therapies. Front Oncol 10, 595187. 10.3389/fonc.2020.595187.
101. Leroy, B., Anderson, M., and Soussi, T. (2014). TP53 Mutations in Human Cancer: Database Reassessment and Prospects for the Next Decade. Human Mutation 35, 672–688. 10.1002/humu.22552.
102. Olivier, M., Hollstein, M., and Hainaut, P. (2010). TP53 Mutations in Human Cancers: Origins, Consequences, and Clinical Use. Cold Spring Harb Perspect Biol 2, a001008. 10.1101/cshperspect.a001008.
103. Menichini, P., Monti, P., Speciale, A., Cutrona, G., Matis, S., Fais, F., Taiana, E., Neri, A., Bomben, R., Gentile, M., et al. (2021). Antitumor Effects of PRIMA-1 and PRIMA-1Met (APR246) in Hematological Malignancies: Still a Mutant P53-Dependent Affair? Cells 10, 98. 10.3390/cells10010098.
104. Lambert, J.M.R., Gorzov, P., Veprintsev, D.B., Söderqvist, M., Segerbäck, D., Bergman, J., Fersht, A.R., Hainaut, P., Wiman, K.G., and Bykov, V.J.N. (2009). PRIMA-1 Reactivates Mutant p53 by Covalent Binding to the Core Domain. Cancer Cell 15, 376–388. 10.1016/j.ccr.2009.03.003.
105. Zhang, Q., Bykov, V.J.N., Wiman, K.G., and Zawacka-Pankau, J. (2018). APR-246 reactivates mutant p53 by targeting cysteines 124 and 277. Cell Death Dis 9, 1–12. 10.1038/s41419-018-0463-7.
106. Lambert, J.M.R., Moshfegh, A., Hainaut, P., Wiman, K.G., and Bykov, V.J.N. (2010). Mutant p53 reactivation by PRIMA-1MET induces multiple signaling pathways converging on apoptosis. Oncogene 29, 1329–1338. 10.1038/onc.2009.425.
107. Wassman, C.D., Baronio, R., Demir, Ö., Wallentine, B.D., Chen, C.-K., Hall, L.V., Salehi, F., Lin, D.-W., Chung, B.P., Wesley Hatfield, G., et al. (2013). Computational identification of a transiently open L1/S3 pocket for reactivation of mutant p53. Nat Commun 4, 1407. 10.1038/ncomms2361.
108. Saha, M.N., Jiang, H., Yang, Y., Reece, D., and Chang, H. (2013). PRIMA-1Met/APR-246 Displays High Antitumor Activity in Multiple Myeloma By Induction of p73 and Noxa. Mol Cancer Ther 12, 2331–2341. 10.1158/1535-7163.MCT-12-1166.
109. Deben, C., Lardon, F., Wouters, A., Op de Beeck, K., Van den Bossche, J., Jacobs, J., Van Der Steen, N., Peeters, M., Rolfo, C., Deschoolmeester, V., et al. (2016). APR-246 (PRIMA-1MET) strongly synergizes with AZD2281 (olaparib) induced PARP inhibition to induce apoptosis in non-small cell lung cancer cell lines. Cancer Lett 375, 313–322. 10.1016/j.canlet.2016.03.017.
110. Mohell, N., Alfredsson, J., Fransson, Å., Uustalu, M., Byström, S., Gullbo, J., Hallberg, A., Bykov, V.J.N., Björklund, U., and Wiman, K.G. (2015). APR-246 overcomes resistance to cisplatin and doxorubicin in ovarian cancer cells. Cell Death Dis 6, e1794–e1794. 10.1038/cddis.2015.143.
111. Liang, Y., Besch-Williford, C., Benakanakere, I., Thorpe, P.E., and Hyder, S.M. (2011). Targeting mutant p53 protein and the tumor vasculature: an effective combination therapy for advanced breast tumors. Breast Cancer Res Tr 125, 407–420. 10.1007/s10549-010-0851-x.
112. Nahi, H., Merup, M., Lehmann, S., Bengtzen, S., Möllgård, L., Selivanova, G., Wiman, K.G., and Paul, C. (2006). PRIMA-1 induces apoptosis in acute myeloid leukaemia cells with p53 gene deletion. Brit J Haematol 132, 230–236. 10.1111/j.1365-2141.2005.05851.x.
113. Messina, R.L., Sanfilippo, M., Vella, V., Pandini, G., Vigneri, P., Nicolosi, M.L., Gianì, F., Vigneri, R., and Frasca, F. (2012). Reactivation of p53 mutants by p53 reactivation and induction of massive apoptosis in thyroid cancer cells. Int J Cancer 130, 2259–2270. 10.1002/ijc.26228.
114. Zache, N., Lambert, J.M.R., Wiman, K.G., and Bykov, V.J.N. (2008). PRIMA-1MET Inhibits Growth of Mouse Tumors Carrying Mutant p53. Cell Oncol 30, 411–418. 10.3233/CLO-2008-0440.
115. Nahi, H., Lehmann, S., Mollgard, L., Bengtzen, S., Selivanova, G., Wiman, K.G., Paul, C., and Merup, M. (2004). Effects of PRIMA-1 on chronic lymphocytic leukaemia cells with and without hemizygous p53 deletion. Brit J Haematol 127, 285–291. 10.1111/j.1365-2141.2004.05210.x.
116. Shi, H., Lambert, J.M.R., Hautefeuille, A., Bykov, V.J.N., Wiman, K.G., Hainaut, P., and de Fromentel, C.C. (2008). In vitro and in vivo cytotoxic effects of PRIMA-1 on hepatocellular carcinoma cells expressing mutant p53ser249. Carcinogenesis 29, 1428–1434. 10.1093/carcin/bgm266.
117. Zheng, A., Castren, K., Säily, M., Savolainen, E.-R., Koistinen, P., and Vähäkangas, K. (1999). p53 status of newly established acute myeloid leukaemia cell lines. Br J Cancer 79, 407–415. 10.1038/sj.bjc.6690064.
118. Aguilar-Santelises, M., Magnusson, K.P., Wiman, K.G., Mellstedt, H., and Jondal, M. (1994). Progressive B-cell chronic lymphocytic leukaemia frequently exhibits aberrant p53 expression. Int J Cancer 58, 474–479. 10.1002/ijc.2910580403.
119. Rieber, M., and Strasberg-Rieber, M. (2012). Hypoxia, Mn-SOD and H2O2 regulate p53 reactivation and PRIMA-1 toxicity irrespective of p53 status in human breast cancer cells. Biochem Pharmacol 84, 1563–1570. 10.1016/j.bcp.2012.09.003.
120. Rökaeus, N., Shen, J., Eckhardt, I., Bykov, V.J.N., Wiman, K.G., and Wilhelm, M.T. (2010). PRIMA-1MET/APR-246 targets mutant forms of p53 family members p63 and p73. Oncogene 29, 6442–6451. 10.1038/onc.2010.382.
121. Magrini, R., Russo, D., Ottaggio, L., Fronza, G., Inga, A., and Menichini, P. (2008). PRIMA-1 synergizes with adriamycin to induce cell death in non-small cell lung cancer cells. J Cell Biochem 104, 2363–2373. 10.1002/jcb.21794.
122. Roh, J.-L., Kang, S.K., Minn, I., Califano, J.A., Sidransky, D., and Koch, W.M. (2011). p53-Reactivating small molecules induce apoptosis and enhance chemotherapeutic cytotoxicity in head and neck squamous cell carcinoma. Oral Oncology 47, 8–15. 10.1016/j.oraloncology.2010.10.011.
123. Maslah, N., Salomao, N., Drevon, L., Verger, E., Partouche, N., Ly, P., Aubin, P., Naoui, N., Schlageter, M.-H., Bally, C., et al. (2020). Synergistic effects of PRIMA-1Met (APR-246) and 5-azacitidine in TP53-mutated myelodysplastic syndromes and acute myeloid leukemia. Haematologica 105, 1539–1551. 10.3324/haematol.2019.218453.
124. Bykov, V.J.N., Issaeva, N., Selivanova, G., and Wiman, K.G. (2002). Mutant p53-dependent growth suppression distinguishes PRIMA-1 from known anticancer drugs: a statistical analysis of information in the National Cancer Institute database. Carcinogenesis 23, 2011–2018. 10.1093/carcin/23.12.2011.
125. Tessoulin, B., Descamps, G., Moreau, P., Maïga, S., Lodé, L., Godon, C., Marionneau-Lambot, S., Oullier, T., Le Gouill, S., Amiot, M., et al. (2014). PRIMA-1Met induces myeloma cell death independent of p53 by impairing the GSH/ROS balance. Blood 124, 1626–1636. 10.1182/blood-2014-01-548800.
126. Peng, X., Zhang, M.-Q.-Z., Conserva, F., Hosny, G., Selivanova, G., Bykov, V.J.N., Arnér, E.S.J., and Wiman, K.G. (2013). APR-246/PRIMA-1MET inhibits thioredoxin reductase 1 and converts the enzyme to a dedicated NADPH oxidase. Cell Death Dis 4, e881–e881. 10.1038/cddis.2013.417.
127. Liu, D.S., Duong, C.P., Haupt, S., Montgomery, K.G., House, C.M., Azar, W.J., Pearson, H.B., Fisher, O.M., Read, M., Guerra, G.R., et al. (2017). Inhibiting the system xC−/glutathione axis selectively targets cancers with mutant-p53 accumulation. Nat Commun 8, 14844. 10.1038/ncomms14844.
128. Ali, D., Mohammad, D.K., Mujahed, H., Jonson-Videsäter, K., Nore, B., Paul, C., and Lehmann, S. (2016). Anti-leukaemic effects induced by APR-246 are dependent on induction of oxidative stress and the NFE2L2/HMOX1 axis that can be targeted by PI3K and mTOR inhibitors in acute myeloid leukaemia cells. Brit J Haematol 174, 117–126. 10.1111/bjh.14036.
129. Ceder, S., Eriksson, S.E., Liang, Y.Y., Cheteh, E.H., Zhang, S.M., Fujihara, K.M., Bianchi, J., Bykov, V.J.N., Abrahmsen, L., Clemons, N.J., et al. (2021). Mutant p53-reactivating compound APR-246 synergizes with asparaginase in inducing growth suppression in acute lymphoblastic leukemia cells. Cell Death Dis 12, 1–10. 10.1038/s41419-021-03988-y.
130. Yoshikawa, N., Kajiyama, H., Nakamura, K., Utsumi, F., Niimi, K., Mitsui, H., Sekiya, R., Suzuki, S., Shibata, K., Callen, D., et al. (2016). PRIMA-1MET induces apoptosis through accumulation of intracellular reactive oxygen species irrespective of p53 status and chemo-sensitivity in epithelial ovarian cancer cells. Oncology Reports 35, 2543–2552. 10.3892/or.2016.4653.
131. Haffo, L., Lu, J., Bykov, V.J.N., Martin, S.S., Ren, X., Coppo, L., Wiman, K.G., and Holmgren, A. (2018). Inhibition of the glutaredoxin and thioredoxin systems and ribonucleotide reductase by mutant p53-targeting compound APR-246. Sci Rep 8, 12671. 10.1038/s41598-018-31048-7.
132. Ceder, S., Eriksson, S.E., Cheteh, E.H., Dawar, S., Corrales Benitez, M., Bykov, V.J.N., Fujihara, K.M., Grandin, M., Li, X., Ramm, S., et al. (2021). A thiol-bound drug reservoir enhances APR-246-induced mutant p53 tumor cell death. EMBO Mol Med 13, e10852. 10.15252/emmm.201910852.
133. Teoh, P.J., Bi, C., Sintosebastian, C., Tay, L.S., Fonseca, R., and Chng, W.J. (2016). PRIMA-1 targets the vulnerability of multiple myeloma of deregulated protein homeostasis through the perturbation of ER stress via p73 demethylation. Oncotarget 7, 61806–61819. 10.18632/oncotarget.11241.
134. Lehmann, S., Bykov, V.J.N., Ali, D., Andrén, O., Cherif, H., Tidefelt, U., Uggla, B., Yachnin, J., Juliusson, G., Moshfegh, A., et al. (2012). Targeting p53 in Vivo: A First-in-Human Study With p53-Targeting Compound APR-246 in Refractory Hematologic Malignancies and Prostate Cancer. JCO 30, 3633–3639. 10.1200/JCO.2011.40.7783.
135. Sallman, D.A., DeZern, A.E., Garcia-Manero, G., Steensma, D.P., Roboz, G.J., Sekeres, M.A., Cluzeau, T., Sweet, K.L., McLemore, A., McGraw, K.L., et al. (2021). Eprenetapopt (APR-246) and Azacitidine in TP53-Mutant Myelodysplastic Syndromes. JCO 39, 1584–1594. 10.1200/JCO.20.02341.
136. Cluzeau, T., Sebert, M., Rahmé, R., Cuzzubbo, S., Lehmann-Che, J., Madelaine, I., Peterlin, P., Bève, B., Attalah, H., Chermat, F., et al. (2021). Eprenetapopt Plus Azacitidine in TP53-Mutated Myelodysplastic Syndromes and Acute Myeloid Leukemia: A Phase II Study by the Groupe Francophone des Myélodysplasies (GFM). JCO 39, 1575–1583. 10.1200/JCO.20.02342.
137. Mishra, A., Tamari, R., DeZern, A.E., Byrne, M.T., Gooptu, M., Chen, Y.-B., Deeg, H.J., Sallman, D., Gallacher, P., Wennborg, A., et al. (2022). Eprenetapopt Plus Azacitidine After Allogeneic Hematopoietic Stem-Cell Transplantation for TP53-Mutant Acute Myeloid Leukemia and Myelodysplastic Syndromes. JCO 40, 3985–3993. 10.1200/JCO.22.00181.
138. Aprea Therapeutics (2020). Aprea Therapeutics Announces Results of Primary Endpoint from Phase 3 Trial of Eprenetapopt in TP53 Mutant Myelodysplastic Syndromes (MDS). https://ir.aprea.com/news-releases/news-release-details/aprea-therapeutics-announces-results-primary-endpoint-phase-3/.
139. Camardo, J. (2003). The Rapamune era of immunosuppression 2003: the journey from the laboratory to clinical transplantation. Transpl P 35, S18–S24. 10.1016/S0041-1345(03)00356-7.
140. Garber, K. (2001). Rapamycin’s Resurrection: A New Way to Target the Cancer Cell Cycle. J Natl Cancer I 93, 1517–1519. 10.1093/jnci/93.20.1517.
141. Nirmal, A.S., Vijay, A., Mishra, R., Venkitakrishnan, R., Augustine, J., Ramachandran, D., and Cleetus, M. (2022). Sirolimus Therapy for Lymphangioleiomyomatosis – Two Cases with Contrasting Outcomes. Pulmon 24, 71. 10.4103/pulmon.pulmon_2_22.
142. Travis, W.D., Brambilla, E., Nicholson, A.G., Yatabe, Y., Austin, J.H.M., Beasley, M.B., Chirieac, Lucian.R., Dacic, S., Duhig, E., Flieder, D.B., et al. (2015). The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification. J Thorac Oncol 10, 1243–1260. 10.1097/JTO.0000000000000630.
143. Research, C. for D.E. and (2021). FDA D.I.S.C.O. Burst Edition: FDA approval of Fyarro (sirolimus protein-bound particles for injectable suspension (albumin-bound)) for locally advanced unresectable or metastatic malignant perivascular epithelioid cell tumor. FDA. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-disco-burst-edition-fda-approval-fyarro-sirolimus-protein-bound-particles-injectable-suspension.
144. Sehgal, S.N. (2003). Sirolimus: its discovery, biological properties, and mechanism of action. Transpl P 35, S7–S14. 10.1016/S0041-1345(03)00211-2.
145. Zheng, Y., and Jiang, Y. (2015). mTOR Inhibitors at a Glance. Mol Cell Pharmacol 7, 15–20.
146. Sabatini, D.M. (2017). Twenty-five years of mTOR: Uncovering the link from nutrients to growth. PNAS 114, 11818–11825. 10.1073/pnas.1716173114.
147. Ballou, L.M., and Lin, R.Z. (2008). Rapamycin and mTOR kinase inhibitors. J Chem Biol 1, 27–36. 10.1007/s12154-008-0003-5.
148. Zou, Z., Tao, T., Li, H., and Zhu, X. (2020). mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges. Cell & Bioscience 10, 31. 10.1186/s13578-020-00396-1.
149. Ali, E.S., Mitra, K., Akter, S., Ramproshad, S., Mondal, B., Khan, I.N., Islam, M.T., Sharifi-Rad, J., Calina, D., and Cho, W.C. (2022). Recent advances and limitations of mTOR inhibitors in the treatment of cancer. Cancer Cell Int 22, 284. 10.1186/s12935-022-02706-8.
150. Li, J., Kim, S.G., and Blenis, J. (2014). Rapamycin: one drug, many effects. Cell Metab 19, 373–379. 10.1016/j.cmet.2014.01.001.
151. Wang, D., and Eisen, H.J. (2022). Mechanistic Target of Rapamycin (mTOR) Inhibitors. In Pharmacology of Immunosuppression Handbook of Experimental Pharmacology., H. J. Eisen, ed. (Springer International Publishing), pp. 53–72. 10.1007/164_2021_553.
152. Feng, Y., Chen, X., Cassady, K., Zou, Z., Yang, S., Wang, Z., and Zhang, X. (2021). The Role of mTOR Inhibitors in Hematologic Disease: From Bench to Bedside. Front Oncol 10, 611690. 10.3389/fonc.2020.611690.
153. Perl, A.E., Kasner, M.T., Tsai, D.E., Vogl, D.T., Loren, A.W., Schuster, S.J., Porter, D.L., Stadtmauer, E.A., Goldstein, S.C., Frey, N.V., et al. (2009). A Phase I Study of the Mammalian Target of Rapamycin Inhibitor Sirolimus and MEC Chemotherapy in Relapsed and Refractory Acute Myelogenous Leukemia. Clin Cancer Res 15, 6732–6739. 10.1158/1078-0432.CCR-09-0842.
154. Kasner, M.T., Mick, R., Jeschke, G.R., Carabasi, M., Filicko-O’Hara, J., Flomenberg, N., Frey, N.V., Hexner, E.O., Luger, S.M., Loren, A.W., et al. (2018). Sirolimus enhances remission induction in patients with high risk acute myeloid leukemia and mTORC1 target inhibition. Invest New Drugs 36, 657–666. 10.1007/s10637-018-0585-x.
155. Litzow, M.R., Wang, X.V., Carroll, M.P., Karp, J.E., Ketterling, R.P., Zhang, Y., Kaufmann, S.H., Lazarus, H.M., Luger, S.M., Paietta, E.M., et al. (2019). A Randomized Trial of Three Novel Regimens for Recurrent Acute Myeloid Leukemia Demonstrates the Continuing Challenge of Treating this Difficult Disease. Am J Hematol 94, 111–117. 10.1002/ajh.25333.
156. Wyeth Pharmaceuticals (2007). Drug label-Rapamune® (sirolimus) Oral Solution and Tablets (Wyeth Pharmaceuticals Inc.).
157. Mahalati, K., and Kahan, B.D. (2001). Clinical Pharmacokinetics of Sirolimus. Clin Pharmacokinet 40, 573–585. 10.2165/00003088-200140080-00002.
158. Kundrapu, S., and Noguez, J. (2018). Chapter Six - Laboratory Assessment of Anemia. In Advances in Clinical Chemistry, G. S. Makowski, ed. (Elsevier), pp. 197–225. 10.1016/bs.acc.2017.10.006.
159. La, P., Fernando, A.P., Wang, Z., Salahudeen, A., Yang, G., Lin, Q., Wright, C.J., and Dennery, P.A. (2009). Zinc Protoporphyrin Regulates Cyclin D1 Expression Independent of Heme Oxygenase Inhibition. J Biol Chem 284, 36302–36311. 10.1074/jbc.M109.031641.
160. Labbé, R.F. (1992). Clinical Utility of Zinc Protoporphyrin. Clin Chem 38, 2167–2168. 10.1093/clinchem/38.11.2167.
161. Rabinowitz, P.M., and Conti, L.A. eds. (2010). 8 - Toxic Exposures. In Human-Animal Medicine (W.B. Saunders), pp. 50–104. 10.1016/B978-1-4160-6837-2.00008-7.
162. Derazne, E., Kahan, E., Rybski, M., Shain, R., and Ashkenazi, R. (1996). Monitoring blood lead levels in workers overexposed to occupational lead: An analysis of Israeli data. American Journal of Industrial Medicine 29, 187–193. 10.1002/(SICI)1097-0274(199602)29:2<187::AID-AJIM9>3.0.CO;2-P.
163. Occupational Safety and Health Administration (2009). Medical exams and blood testing for zinc protoporphyrin (ZPP) under OSHA’s Lead Standards. https://www.osha.gov/laws-regs/standardinterpretations/2009-12-04.
164. Salerno, L., Floresta, G., Ciaffaglione, V., Gentile, D., Margani, F., Turnaturi, R., Rescifina, A., and Pittalà, V. (2019). Progress in the development of selective heme oxygenase-1 inhibitors and their potential therapeutic application. Eur J Med Chem 167, 439–453. 10.1016/j.ejmech.2019.02.027.
165. Chiang, S.-K., Chen, S.-E., and Chang, L.-C. (2019). A Dual Role of Heme Oxygenase-1 in Cancer Cells. Int J Mol Sci 20, 39. 10.3390/ijms20010039.
166. Hayashi, S., Omata, Y., Sakamoto, H., Higashimoto, Y., Hara, T., Sagara, Y., and Noguchi, M. (2004). Characterization of rat heme oxygenase-3 gene. Implication of processed pseudogenes derived from heme oxygenase-2 gene. Gene 336, 241–250. 10.1016/j.gene.2004.04.002.
167. Alam, J., and Cook, J.L. (2007). How Many Transcription Factors Does It Take to Turn On the Heme Oxygenase-1 Gene? Am J Respir Cell Mol Biol 36, 166–174. 10.1165/rcmb.2006-0340TR.
168. Yadav, B., and Greish, K. Selective inhibition of hemeoxygenase-1 as a novel therapeutic target for anticancer treatment. J Nanomed Nanotechnol S4, 1–8. 10.4172/2157-7439.S4-005.
169. Yachie, A., Niida, Y., Wada, T., Igarashi, N., Kaneda, H., Toma, T., Ohta, K., Kasahara, Y., and Koizumi, S. (1999). Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest 103, 129–135. 10.1172/JCI4165.
170. Poss, K.D., and Tonegawa, S. (1997). Reduced stress defense in heme oxygenase 1-deficient cells. Proc Natl Acad Sci U S A 94, 10925–10930. 10.1073/pnas.94.20.10925.
171. Chang, L.-C., Chiang, S.-K., Chen, S.-E., Yu, Y.-L., Chou, R.-H., and Chang, W.-C. (2018). Heme oxygenase-1 mediates BAY 11–7085 induced ferroptosis. Cancer Lett 416, 124–137. 10.1016/j.canlet.2017.12.025.
172. Immenschuh, S., and Ramadori, G. (2000). Gene regulation of heme oxygenase-1 as a therapeutic target. Biochem Pharmacol 60, 1121–1128. 10.1016/S0006-2952(00)00443-3.
173. Ryter, S.W., Alam, J., and Choi, A.M.K. (2006). Heme Oxygenase-1/Carbon Monoxide: From Basic Science to Therapeutic Applications. Physiol Rev 86, 583–650. 10.1152/physrev.00011.2005.
174. Dunn, L.L., Midwinter, R.G., Ni, J., Hamid, H.A., Parish, C.R., and Stocker, R. (2014). New Insights into Intracellular Locations and Functions of Heme Oxygenase-1. Antioxid Redox Signal 20, 1723–1742. 10.1089/ars.2013.5675.
175. Consoli, V., Sorrenti, V., Grosso, S., and Vanella, L. (2021). Heme Oxygenase-1 Signaling and Redox Homeostasis in Physiopathological Conditions. Biomolecules 11, 589. 10.3390/biom11040589.
176. Stocker, R., Yamamoto, Y., McDonagh, A.F., Glazer, A.N., and Ames, B.N. (1987). Bilirubin is an antioxidant of possible physiological importance. Science 235, 1043–1046. 10.1126/science.3029864.
177. Hopkins, P.N., Wu, L.L., Hunt, S.C., James, B.C., Vincent, G.M., and Williams, R.R. (1996). Higher Serum Bilirubin Is Associated With Decreased Risk for Early Familial Coronary Artery Disease. Arterioscler Thromb Vasc Biol 16, 250–255. 10.1161/01.ATV.16.2.250.
178. Clark, J.E., Foresti, R., Sarathchandra, P., Kaur, H., Green, C.J., and Motterlini, R. (2000). Heme oxygenase-1-derived bilirubin ameliorates postischemic myocardial dysfunction. Am J Physiol Heart Circ Physiol 278, H643–H651. 10.1152/ajpheart.2000.278.2.H643.
179. Motterlini, R., and Otterbein, L.E. (2010). The therapeutic potential of carbon monoxide. Nat Rev Drug Discov 9, 728–743. 10.1038/nrd3228.
180. Slebos, D.-J., Ryter, S.W., and Choi, A.M. (2003). Heme oxygenase-1 and carbon monoxide in pulmonary medicine. Respir Res 4, 7. 10.1186/1465-9921-4-7.
181. Otterbein, L.E., Bach, F.H., Alam, J., Soares, M., Tao Lu, H., Wysk, M., Davis, R.J., Flavell, R.A., and Choi, A.M.K. (2000). Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 6, 422–428. 10.1038/74680.
182. Petrache, I., Otterbein, L.E., Alam, J., Wiegand, G.W., and Choi, A.M.K. (2000). Heme oxygenase-1 inhibits TNF-α-induced apoptosis in cultured fibroblasts. Am J Physiol Lung Cell Mol Physiol 278, L312–L319. 10.1152/ajplung.2000.278.2.L312.
183. Hori, R., Kashiba, M., Toma, T., Yachie, A., Goda, N., Makino, N., Soejima, A., Nagasawa, T., Nakabayashi, K., and Suematsu, M. (2002). Gene Transfection of H25A Mutant Heme Oxygenase-1 Protects Cells against Hydroperoxide-induced Cytotoxicity. J Biol Chem 277, 10712–10718. 10.1074/jbc.M107749200.
184. Collinson, E.J., Wimmer-Kleikamp, S., Gerega, S.K., Yang, Y.H., Parish, C.R., Dawes, I.W., and Stocker, R. (2011). The yeast homolog of heme oxygenase-1 affords cellular antioxidant protection via the transcriptional regulation of known antioxidant genes. J Biol Chem 286, 2205–2214. 10.1074/jbc.M110.187062.
185. Hara, E., Takahashi, K., Tominaga, T., Kumabe, T., Kayama, T., Suzuki, H., Fujita, H., Yoshimoto, T., Shirato, K., and Shibahara, S. (1996). Expression of heme oxygenase and inducible nitric oxide synthase mRNA in human brain tumors. Biochem Biophys Res Commun 224, 153–158. 10.1006/bbrc.1996.0999.
186. Tsuji, M.H., Yanagawa, T., Iwasa, S., Tabuchi, K., Onizawa, K., Bannai, S., Toyooka, H., and Yoshida, H. (1999). Heme oxygenase-1 expression in oral squamous cell carcinoma as involved in lymph node metastasis. Cancer Lett 138, 53–59. 10.1016/s0304-3835(98)00372-3.
187. Maines, M.D., and Abrahamsson, P.A. (1996). Expression of heme oxygenase-1 (HSP32) in human prostate: normal, hyperplastic, and tumor tissue distribution. Urology 47, 727–733. 10.1016/s0090-4295(96)00010-6.
188. Goodman, A.I., Choudhury, M., da Silva, J.L., Schwartzman, M.L., and Abraham, N.G. (1997). Overexpression of the heme oxygenase gene in renal cell carcinoma. Proc Soc Exp Biol Med 214, 54–61. 10.3181/00379727-214-44069.
189. Hill, M., Pereira, V., Chauveau, C., Zagani, R., Remy, S., Tesson, L., Mazal, D., Ubillos, L., Brion, R., Asghar, K., et al. (2005). Heme oxygenase-1 inhibits rat and human breast cancer cell proliferation: mutual cross inhibition with indoleamine 2,3-dioxygenase. FASEB J 19, 1957–1968. 10.1096/fj.05-3875com.
190. Na, H.-K., and Surh, Y.-J. (2014). Oncogenic potential of Nrf2 and its principal target protein heme oxygenase-1. Free Radic Biol Med 67, 353–365. 10.1016/j.freeradbiomed.2013.10.819.
191. Konorev, E.A., Kotamraju, S., Zhao, H., Kalivendi, S., Joseph, J., and Kalyanaraman, B. (2002). Paradoxical effects of metalloporphyrins on doxorubicin-induced apoptosis: scavenging of reactive oxygen species versus induction of heme oxygenase-1. Free Radical Bio Med 33, 988–997. 10.1016/S0891-5849(02)00989-9.
192. Agarwal, A., Balla, J., Alam, J., Croatt, A.J., and Nath, K.A. (1995). Induction of heme oxygenase in toxic renal injury: a protective role in cisplatin nephrotoxicity in the rat. Kidney Int 48, 1298–1307. 10.1038/ki.1995.414.
193. Mayerhofer, M., Florian, S., Krauth, M.-T., Aichberger, K.J., Bilban, M., Marculescu, R., Printz, D., Fritsch, G., Wagner, O., Selzer, E., et al. (2004). Identification of heme oxygenase-1 as a novel BCR/ABL-dependent survival factor in chronic myeloid leukemia. Cancer Res 64, 3148–3154. 10.1158/0008-5472.can-03-1200.
194. Kim, H.-R., Kim, S., Kim, E.-J., Park, J.-H., Yang, S.-H., Jeong, E.-T., Park, C., Youn, M.-J., So, H.-S., and Park, R. (2008). Suppression of Nrf2-driven heme oxygenase-1 enhances the chemosensitivity of lung cancer A549 cells toward cisplatin. Lung Cancer 60, 47–56. 10.1016/j.lungcan.2007.09.021.
195. Miyazaki, T., Kirino, Y., Takeno, M., Samukawa, S., Hama, M., Tanaka, M., Yamaji, S., Ueda, A., Tomita, N., Fujita, H., et al. (2010). Expression of heme oxygenase-1 in human leukemic cells and its regulation by transcriptional repressor Bach1. Cancer Science 101, 1409–1416. 10.1111/j.1349-7006.2010.01550.x.
196. Fang, J., Sawa, T., Akaike, T., Greish, K., and Maeda, H. (2004). Enhancement of chemotherapeutic response of tumor cells by a heme oxygenase inhibitor, pegylated zinc protoporphyrin. Int J Cancer 109, 1–8. 10.1002/ijc.11644.
197. Doncheva, N.T., Morris, J.H., Gorodkin, J., and Jensen, L.J. (2019). Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. J Proteome Res 18, 623–632. 10.1021/acs.jproteome.8b00702.
198. Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K.P., et al. (2015). STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43, D447–D452. 10.1093/nar/gku1003.
199. Chin, C.-H., Chen, S.-H., Wu, H.-H., Ho, C.-W., Ko, M.-T., and Lin, C.-Y. (2014). cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 8, S11. 10.1186/1752-0509-8-S4-S11.
200. Bader, G.D., and Hogue, C.W. (2003). An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4, 2. 10.1186/1471-2105-4-2.
201. Yu, H., Kim, P.M., Sprecher, E., Trifonov, V., and Gerstein, M. (2007). The Importance of Bottlenecks in Protein Networks: Correlation with Gene Essentiality and Expression Dynamics. PLoS Comput Biol 3, e59. 10.1371/journal.pcbi.0030059.
202. Davis, A.P., Grondin, C.J., Johnson, R.J., Sciaky, D., Wiegers, J., Wiegers, T.C., and Mattingly, C.J. (2021). Comparative Toxicogenomics Database (CTD): update 2021. Nucleic Acids Res 49, D1138–D1143. 10.1093/nar/gkaa891.
203. Napolitano, F., Carrella, D., Mandriani, B., Pisonero-Vaquero, S., Sirci, F., Medina, D.L., Brunetti-Pierri, N., and di Bernardo, D. (2018). gene2drug: a computational tool for pathway-based rational drug repositioning. Bioinformatics 34, 1498–1505. 10.1093/bioinformatics/btx800.
204. Szklarczyk, D., Santos, A., von Mering, C., Jensen, L.J., Bork, P., and Kuhn, M. (2016). STITCH 5: augmenting protein–chemical interaction networks with tissue and affinity data. Nucleic Acids Res 44, D380–D384. 10.1093/nar/gkv1277.
205. Tawari, P.E., Wang, Z., Najlah, M., Tsang, C.W., Kannappan, V., Liu, P., McConville, C., He, B., Armesilla, A.L., and Wang, W. (2015). The cytotoxic mechanisms of disulfiram and copper(II) in cancer cells. Toxicol. Res. 4, 1439–1442. 10.1039/C5TX00210A.
206. Xu, B., Shi, P., Fombon, I.S., Zhang, Y., Huang, F., Wang, W., and Zhou, S. (2011). Disulfiram/copper complex activated JNK/c-jun pathway and sensitized cytotoxicity of doxorubicin in doxorubicin resistant leukemia HL60 cells. Blood Cells Mol Dis 47, 264–269. 10.1016/j.bcmd.2011.08.004.
207. McMillin, G.A., Travis, J.J., and Hunt, J.W. (2009). Direct Measurement of Free Copper in Serum or Plasma Ultrafiltrate. Am J Clin Pathol 131, 160–165. 10.1309/AJCP7Z9KBFINVGYF.
208. Fallahi-Sichani, M., Honarnejad, S., Heiser, L.M., Gray, J.W., and Sorger, P.K. (2013). Metrics other than potency reveal systematic variation in responses to cancer drugs. Nat Chem Biol 9, 708–714. 10.1038/nchembio.1337.
209. Jang, I.S., Neto, E.C., Guinney, J., Friend, S.H., and Margolin, A.A. (2014). Systematic assessment of analytical methods for drug sensitivity prediction from cancer cell line data. Pac Symp Biocomput, 63–74.
210. Arigony, A.L.V., de Oliveira, I.M., Machado, M., Bordin, D.L., Bergter, L., Prá, D., and Pêgas Henriques, J.A. (2013). The Influence of Micronutrients in Cell Culture: A Reflection on Viability and Genomic Stability. Biomed Res Int 2013, e597282. 10.1155/2013/597282.
211. Salem, K., McCormick, M.L., Wendlandt, E., Zhan, F., and Goel, A. (2015). Copper–zinc superoxide dismutase-mediated redox regulation of bortezomib resistance in multiple myeloma. Redox Biol 4, 23–33. 10.1016/j.redox.2014.11.002.
212. Yang, W., Xie, J., Hou, R., Chen, X., Xu, Z., Tan, Y., Ren, F., Zhang, Y., Xu, J., Chang, J., et al. (2020). Disulfiram/cytarabine eradicates a subset of acute myeloid leukemia stem cells with high aldehyde dehydrogenase expression. Leukemia Res 92, 106351. 10.1016/j.leukres.2020.106351.
213. Vera-Ramirez, L., and Hunter, K.W. (2017). Tumor cell dormancy as an adaptive cell stress response mechanism. F1000Res 6, 2134. 10.12688/f1000research.12174.1.
214. Vera-Ramirez, L., Vodnala, S.K., Nini, R., Hunter, K.W., and Green, J.E. (2018). Autophagy promotes the survival of dormant breast cancer cells and metastatic tumour recurrence. Nat Commun 9, 1944. 10.1038/s41467-018-04070-6.
215. Ruiz, L.M., Libedinsky, A., and Elorza, A.A. (2021). Role of Copper on Mitochondrial Function and Metabolism. Front Mol Biosci 8, 711227. 10.3389/fmolb.2021.711227.
216. Kardos, J., Héja, L., Simon, Á., Jablonkai, I., Kovács, R., and Jemnitz, K. (2018). Copper signalling: causes and consequences. Cell Commun Signal 16, 71. 10.1186/s12964-018-0277-3.
217. Kaplan, J.H., and Maryon, E.B. (2016). How Mammalian Cells Acquire Copper: An Essential but Potentially Toxic Metal. Biophys J 110, 7–13. 10.1016/j.bpj.2015.11.025.
218. Zargarian, S., Shlomovitz, I., Erlich, Z., Hourizadeh, A., Ofir-Birin, Y., Croker, B.A., Regev-Rudzki, N., Edry-Botzer, L., and Gerlic, M. (2017). Phosphatidylserine externalization, “necroptotic bodies” release, and phagocytosis during necroptosis. PLOS Biology 15, e2002711. 10.1371/journal.pbio.2002711.
219. Wang, S., Liu, Y., Zhang, L., and Sun, Z. (2022). Methods for monitoring cancer cell pyroptosis. Cancer Biol Med 19, 398–414. 10.20892/j.issn.2095-3941.2021.0504.
220. Shlomovitz, I., Speir, M., and Gerlic, M. (2019). Flipping the dogma – phosphatidylserine in non-apoptotic cell death. Cell Commun Signal 17, 139. 10.1186/s12964-019-0437-0.
221. Efimova, I., Catanzaro, E., Van der Meeren, L., Turubanova, V.D., Hammad, H., Mishchenko, T.A., Vedunova, M.V., Fimognari, C., Bachert, C., Coppieters, F., et al. (2020). Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. J Immunother Cancer 8, e001369. 10.1136/jitc-2020-001369.
222. Prokhorova, E.A., Kopeina, G.S., Lavrik, I.N., and Zhivotovsky, B. (2018). Apoptosis regulation by subcellular relocation of caspases. Sci Rep 8, 12199. 10.1038/s41598-018-30652-x.
223. Chaitanya, G.V., Alexander, J.S., and Babu, P.P. (2010). PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal 8, 31. 10.1186/1478-811X-8-31.
224. Gottlieb, E., Armour, S.M., Harris, M.H., and Thompson, C.B. (2003). Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ 10, 709–717. 10.1038/sj.cdd.4401231.
225. Redza-Dutordoir, M., and Averill-Bates, D.A. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. BBA-Mol Cell Res 1863, 2977–2992. 10.1016/j.bbamcr.2016.09.012.
226. Tardito, S., Bassanetti, I., Bignardi, C., Elviri, L., Tegoni, M., Mucchino, C., Bussolati, O., Franchi-Gazzola, R., and Marchiò, L. (2011). Copper Binding Agents Acting as Copper Ionophores Lead to Caspase Inhibition and Paraptotic Cell Death in Human Cancer Cells. J. Am. Chem. Soc. 133, 6235–6242. 10.1021/ja109413c.
227. Qiu, C., Zhang, X., Huang, B., Wang, S., Zhou, W., Li, C., Li, X., Wang, J., and Yang, N. (2020). Disulfiram, a Ferroptosis Inducer, Triggers Lysosomal Membrane Permeabilization by Up-Regulating ROS in Glioblastoma. Onco Targets Ther 13, 10631–10640. 10.2147/OTT.S272312.
228. Murphy, M.P., Bayir, H., Belousov, V., Chang, C.J., Davies, K.J.A., Davies, M.J., Dick, T.P., Finkel, T., Forman, H.J., Janssen-Heininger, Y., et al. (2022). Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat Metab 4, 651–662. 10.1038/s42255-022-00591-z.
229. Falls-Hubert, K.C., Butler, A.L., Gui, K., Anderson, M., Li, M., Stolwijk, J.M., Rodman, S.N., Solst, S.R., Tomanek-Chalkley, A., Searby, C.C., et al. (2020). Disulfiram causes selective hypoxic cancer cell toxicity and radio-chemo-sensitization via redox cycling of copper. Free Radical Bio Med 150, 1–11. 10.1016/j.freeradbiomed.2020.01.186.
230. Monteiro, L. de B., Davanzo, G.G., de Aguiar, C.F., and Moraes-Vieira, P.M.M. (2020). Using flow cytometry for mitochondrial assays. MethodsX 7, 100938. 10.1016/j.mex.2020.100938.
231. Warfel, N.A., Sainz, A.G., Song, J.H., and Kraft, A.S. (2016). PIM kinase inhibitors kill hypoxic tumor cells by reducing Nrf2 signaling and increasing reactive oxygen species. Mol Cancer Ther 15, 1637–1647. 10.1158/1535-7163.MCT-15-1018.
232. Chauhan, S.S., Toth, R.K., Jensen, C.C., Casillas, A.L., Kashatus, D.F., and Warfel, N.A. (2020). PIM kinases alter mitochondrial dynamics and chemosensitivity in lung cancer. Oncogene 39, 2597–2611. 10.1038/s41388-020-1168-9.
233. Ianevski, A., Giri, A.K., and Aittokallio, T. (2020). SynergyFinder 2.0: visual analytics of multi-drug combination synergies. Nucleic Acids Res 48, W488–W493. 10.1093/nar/gkaa216.
234. Sazonova, E.V., Chesnokov, M.S., Zhivotovsky, B., and Kopeina, G.S. (2022). Drug toxicity assessment: cell proliferation versus cell death. Cell Death Discov. 8, 1–11. 10.1038/s41420-022-01207-x.
235. Yang, Z., Guo, F., Albers, A.E., Sehouli, J., and Kaufmann, A.M. (2019). Disulfiram modulates ROS accumulation and overcomes synergistically cisplatin resistance in breast cancer cell lines. Biomed Pharmacother 113, 108727. 10.1016/j.biopha.2019.108727.
236. Xia, J., Benner, M.J., and Hancock, R.E.W. (2014). NetworkAnalyst--integrative approaches for protein-protein interaction network analysis and visual exploration. Nucleic Acids Res 42, W167-174. 10.1093/nar/gku443.
237. Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A.H., Tanaseichuk, O., Benner, C., and Chanda, S.K. (2019). Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10, 1523. 10.1038/s41467-019-09234-6.
238. Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28, 27–30. 10.1093/nar/28.1.27.
239. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al. (2000). Gene Ontology: tool for the unification of biology. Nat Genet 25, 25–29. 10.1038/75556.
240. Weidner, C., Steinfath, M., Opitz, E., Oelgeschläger, M., and Schönfelder, G. (2016). Defining the optimal animal model for translational research using gene set enrichment analysis. EMBO Mol Med 8, 831–838. 10.15252/emmm.201506025.
241. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102, 15545–15550. 10.1073/pnas.0506580102.
242. Liu, L., and Ruan, J. (2013). Network-based Pathway Enrichment Analysis. Proceedings (IEEE Int Conf Bioinformatics Biomed), 218–221. 10.1109/BIBM.2013.6732493.
243. Efron, B., and Tibshirani, R. (2007). On testing the significance of sets of genes. Ann Appl Stat 1, 107–129. 10.1214/07-AOAS101.
244. Maleki, F., Ovens, K., Hogan, D.J., and Kusalik, A.J. (2020). Gene Set Analysis: Challenges, Opportunities, and Future Research. Front Genet 11. 10.3389/fgene.2020.00654.
245. Hung, J.-H., Yang, T.-H., Hu, Z., Weng, Z., and DeLisi, C. (2012). Gene set enrichment analysis: performance evaluation and usage guidelines. Brief Bioinform 13, 281–291. 10.1093/bib/bbr049.
246. Tisato, F., Marzano, C., Porchia, M., Pellei, M., and Santini, C. (2010). Copper in diseases and treatments, and copper-based anticancer strategies. Med Res Rev 30, 708–749. 10.1002/med.20174.
247. Lelièvre, P., Sancey, L., Coll, J.-L., Deniaud, A., and Busser, B. (2020). The Multifaceted Roles of Copper in Cancer: A Trace Metal Element with Dysregulated Metabolism, but Also a Target or a Bullet for Therapy. Cancers 12, 3594. 10.3390/cancers12123594.
248. King, A.P., and Wilson, J.J. (2020). Endoplasmic reticulum stress: an arising target for metal-based anticancer agents. Chem. Soc. Rev. 49, 8113–8136. 10.1039/D0CS00259C.
249. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13, 2498–2504. 10.1101/gr.1239303.
250. Yu, H., Greenbaum, D., Lu, H.X., Zhu, X., and Gerstein, M. (2004). Genomic analysis of essentiality within protein networks. Trends Genet 20, 227–231. 10.1016/j.tig.2004.04.008.
251. Liu, Y., and Gu, W. (2022). p53 in ferroptosis regulation: the new weapon for the old guardian. Cell Death Differ 29, 895–910. 10.1038/s41418-022-00943-y.
252. Xiong, C., Ling, H., Hao, Q., and Zhou, X. (2023). Cuproptosis: p53-regulated metabolic cell death? Cell Death Differ, 1–9. 10.1038/s41418-023-01125-0.
253. Finn, N.A., and Kemp, M.L. (2012). Pro-oxidant and antioxidant effects of N-acetylcysteine regulate doxorubicin-induced NF-kappa B activity in leukemic cells. Mol Biosyst 8, 650–662. 10.1039/c1mb05315a.
254. Mlejnek, P., Dolezel, P., Kriegova, E., and Pastvova, N. (2021). N-acetylcysteine Can Induce Massive Oxidative Stress, Resulting in Cell Death with Apoptotic Features in Human Leukemia Cells. Int J Mol Sci 22, 12635. 10.3390/ijms222312635.
255. Yu, Y., Di Trapani, G., and Tonissen, K.F. (2022). Thioredoxin and Glutathione Systems. In Handbook of Oxidative Stress in Cancer: Mechanistic Aspects, S. Chakraborti, B. K. Ray, and S. Roychoudhury, eds. (Springer Nature), pp. 2407–2420. 10.1007/978-981-15-9411-3_143.
256. Morrison, J.P., Coleman, M.C., Aunan, E.S., Walsh, S.A., Spitz, D.R., and Kregel, K.C. (2005). Thiol supplementation in aged animals alters antioxidant enzyme activity after heat stress. J Appl Physiol 99, 2271–2277. 10.1152/japplphysiol.00412.2005.
257. Walter, R.B., Othus, M., Burnett, A.K., Löwenberg, B., Kantarjian, H.M., Ossenkoppele, G.J., Hills, R.K., Ravandi, F., Pabst, T., Evans, A., et al. (2015). Resistance prediction in AML: analysis of 4601 patients from MRC/NCRI, HOVON/SAKK, SWOG and MD Anderson Cancer Center. Leukemia 29, 312–320. 10.1038/leu.2014.242.
258. Kita, Y., Hamada, A., Saito, R., Teramoto, Y., Tanaka, R., Takano, K., Nakayama, K., Murakami, K., Matsumoto, K., Akamatsu, S., et al. (2019). Systematic chemical screening identifies disulfiram as a repurposed drug that enhances sensitivity to cisplatin in bladder cancer: a summary of preclinical studies. Br J Cancer 121, 1027–1038. 10.1038/s41416-019-0609-0.
259. Jiao, Y., Hannafon, B.N., and Ding, W.-Q. (2016). Disulfiram’s Anticancer Activity: Evidence and Mechanisms. Anticancer Agents Med Chem 16, 1378–1384. 10.2174/1871520615666160504095040.
260. Gong, Y.-N., Crawford, J.C., Heckmann, B.L., and Green, D.R. (2019). To the edge of cell death and back. FEBS J 286, 430–440. 10.1111/febs.14714.
261. Khalili, M., and Radosevich, J.A. (2018). Paraptosis. In Apoptosis and Beyond (John Wiley & Sons, Ltd), pp. 343–366. 10.1002/9781119432463.ch16.
262. Tsvetkov, P., Coy, S., Petrova, B., Dreishpoon, M., Verma, A., Abdusamad, M., Rossen, J., Joesch-Cohen, L., Humeidi, R., Spangler, R.D., et al. (2022). Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375, 1254–1261. 10.1126/science.abf0529.
263. Hu, G., Wu, Z., Uversky, V.N., and Kurgan, L. (2017). Functional Analysis of Human Hub Proteins and Their Interactors Involved in the Intrinsic Disorder-Enriched Interactions. Int J Mol Sci 18, 2761. 10.3390/ijms18122761.
264. Cheng, F., Desai, R.J., Handy, D.E., Wang, R., Schneeweiss, S., Barabási, A.-L., and Loscalzo, J. (2018). Network-based approach to prediction and population-based validation of in silico drug repurposing. Nat Commun 9, 2691. 10.1038/s41467-018-05116-5.
265. Cheng, F., Kovács, I.A., and Barabási, A.-L. (2019). Network-based prediction of drug combinations. Nat Commun 10, 1197. 10.1038/s41467-019-09186-x.
266. Lal, J.C., Mao, C., Zhou, Y., Gore-Panter, S.R., Rennison, J.H., Lovano, B.S., Castel, L., Shin, J., Gillinov, A.M., Smith, J.D., et al. (2022). Transcriptomics-based network medicine approach identifies metformin as a repurposable drug for atrial fibrillation. Cell Rep Med 3, 100749. 10.1016/j.xcrm.2022.100749.
267. Krayem, M., Journe, F., Wiedig, M., Morandini, R., Najem, A., Salès, F., van Kempen, L.C., Sibille, C., Awada, A., Marine, J.-C., et al. (2016). p53 Reactivation by PRIMA-1Met (APR-246) sensitises V600E/KBRAF melanoma to vemurafenib. Eur J Cancer 55, 98–110. 10.1016/j.ejca.2015.12.002.
268. Zimmerman, J.J., Lasseter, K.C., Lim, H.-K., Harper, D., Dilzer, S.C., Parker, V., and Matschke, K. (2005). Pharmacokinetics of sirolimus (rapamycin) in subjects with mild to moderate hepatic impairment. J Clin Pharmacol 45, 1368–1372. 10.1177/0091270005281350.
269. H, B., H, P., T, E., M, von H., J, S., and H, L. (1982). Clinical results and pharmacokinetics of high-dose cytosine arabinoside (HD ARA-C). Cancer 50. 10.1002/1097-0142(19821001)50:7<1248::aid-cncr2820500705>3.0.co;2-5.
270. Roberts, A.W., Davids, M.S., Pagel, J.M., Kahl, B.S., Puvvada, S.D., Gerecitano, J.F., Kipps, T.J., Anderson, M.A., Brown, J.R., Gressick, L., et al. (2016). Targeting BCL2 with Venetoclax in Relapsed Chronic Lymphocytic Leukemia. N Engl J Med 374, 311–322. 10.1056/NEJMoa1513257.
271. Lai, X., Sun, Y., Zhang, X., Wang, D., Wang, J., Wang, H., Zhao, Y., Liu, X., Xu, X., Song, H., et al. (2022). Honokiol Induces Ferroptosis by Upregulating HMOX1 in Acute Myeloid Leukemia Cells. Front Pharmacol 13. 10.3389/fphar.2022.897791.
272. Liu, S., Li, B., Xu, J., Hu, S., Zhan, N., Wang, H., Gao, C., Li, J., and Xu, X. (2020). SOD1 Promotes Cell Proliferation and Metastasis in Non-small Cell Lung Cancer via an miR-409-3p/SOD1/SETDB1 Epigenetic Regulatory Feedforward Loop. Front Cell Dev Biol 8, 213. 10.3389/fcell.2020.00213.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90443-
dc.description.abstract急性骨髓性白血病 (acute myeloid leukaemia, AML) 的主要治療挑戰是復發或難治性,有高達57%的患者在完全緩解後出現此情況。而Disulfiram (DSF) 雖然於臨床前試驗中,在癌症治療方面取得令人鼓舞的結果,但其後發現,它在臨床上的應用會受到其不穩定性而影響,導致在血液中無法形成足夠的濃度的diethyldithiocarbamate-copper complex (CuET)。而DSF之所以可以抗癌,就是依賴這一含銅(copper, Cu)代謝物。因此,在本篇論文中會嘗試找出合適的藥物與DSF/Cu進行合併,以增強其在低濃度下的細胞毒殺作用,並從而增加DSF的臨床價值。
首先,我們分別評估了低濃度和高濃度DSF/Cu對兩種AML細胞株 (OCI AML 3和HEL) 的影響。低濃度組的作用是模擬臨床上可達到的CuET水平,而高濃度組則用來比較。結果顯示低濃度組的細胞毒殺作用輕微或不確定,而高濃度則表現出強大的細胞毒殺作用。此外,我們發現DSF/Cu的細胞死亡機制比較複雜,會誘導不同類型的細胞死亡。因此,我們認為於這方面進行更探入的探討可能不會對找出合適的藥物有所幫助。所以我們轉移焦點,探討DSF/Cu的藥物一開始的作用機制,即產生氧化壓力。結果如預期,我們發現能夠對細胞產生足夠的氧化壓力是DSF/Cu可以導致細胞死亡至關重要的一個機制。
得知這個機制後和經實驗室一些轉錄組的數據分析,我們選出PIM447作為第一個合併的候選藥物。然而,結果顯示與DSF/Cu合併後,其細胞毒殺效果不佳,僅表現出細胞生長的抑制效應,而非導致細胞死亡。
為更清楚瞭解DSF/Cu的分子機制,我們對OCI AML 3細胞進行了RNA定序分析 (RNA sequencing, RNA-seq)。基因集豐富分析(GSEA)結果與目前的研究結果一致,上調的基因路徑包括氧化壓力的反應、金屬或銅有關的反應,以及蛋白質錯誤摺疊的反應。而下調的路徑包括DNA複製的路徑和粒線體功能的路徑。
為了找到合適的藥物合併,我們利用RNA-seq數據構建了蛋白質交互作用(protein-protein interaction, PPI)網路。並從中得出49個關鍵基因相信是與DSF/Cu所誘導的細胞死亡有關。通過檢索不同藥物數據庫,結果得出了三種候選藥物,rapamycin (sirolimus), zinc protoporphyrin (ZnPP),以及APR-246 (Eprenetapopt),適合與低濃度的DSF/Cu 合併。
在這三種候選藥物中,APR-246表現出較好的效果,在對細胞死亡和誘導粒線體ROS的產生的測試中都得出有協同效應。進一步的分析顯示,這兩個結果是可以通過影響硫醇/二硫化物(thiol/disulfide)的平衡和誘導未折疊蛋白反應(UPR)來連結,產生因果關係。
zh_TW
dc.description.abstractA major challenge in treating acute myeloid leukaemia (AML) is relapsed or refractory, which affects up to 57% of patients after complete remission (CR). Despite promising preclinical results in cancer therapy, the clinical application of disulfiram (DSF) was limited by its poor stability and the inability to form the diethyldithiocarbamate-copper complex (CuET), an ultimate anticancer copper-containing metabolite of DSF, at sufficient concentrations. Hence, combining DSF/Cu with an appropriate drug to enhance its cytotoxicity at low concentration may be a way to enhance the clinical value of DSF.
In this study, we examined the effects of both low and high concentrations of DSF/Cu on two AML cell lines (OCI AML 3 and HEL). The low concentration group (L group) simulated the clinically achievable levels of CuET, while the high concentration group (H group) serving as a direct comparison. The results demonstrated minimal or ambiguous cytotoxicity in the L group, while potent cytotoxic effects were observed in the H group. Furthermore, we revealed a complex cell death mechanism of DSF/Cu that is capable of inducing different types of cell death. Therefore, it prompted us to shift our focus to investigating the drug mechanism of DSF/Cu from the beginning, that is oxidative stress effects. As expected, we found that induction of an overwhelming oxidative stress is a critical mechanism to contribute to the cell death of DSF/Cu.
Based on this perspective and transcriptomic analysis, we firstly evaluated PIM447 as a candidate for combination. However, the results indicated suboptimal cytotoxic effects, with only a cytostatic effect rather than cell death.
To better understand the mechanism of DSF/Cu, RNA-sequencing (RNA-seq) was performed in OCI AML 3 cells. Gene set enrichment analysis (GSEA) results were consistent with current studies, the upregulated pathways including response to oxidative stress, response to metal or copper ions and protein misfolding response. Additionally, our GSEA results indicated that the DNA replication pathways and mitochondrial function pathways were downregulated.
To identify an appropriate druggable target for combination, a protein-protein interaction (PPI) network was constructed using the RNA-seq data. A total of 49 essential genes were identified from PPI network that presumably involved in DSF/Cu-induced cell death. By searching the drug database, three drug candidates were suggested for combination with low concentration of DSF/Cu, which are rapamycin (sirolimus) zinc protoporphyrin (ZnPP) and APR-246 (Eprenetapopt).
Among these candidates, APR-246 in combination with a low concentration of DSF/Cu exhibited the most pronounced effectiveness, demonstrating a synergistic effect on the induction of mitochondrial ROS and cell death. Further analysis revealed that these two effects were interconnected through the perturbation of thiol/disulfide homeostasis and the induction of unfolded protein response (UPR).
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-10-02T16:14:27Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-10-02T16:14:27Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iv
Table of content vi
List of figures xii
List of tables xv
List of supplementary figures xvi
List of appendices xviii
List of abbreviations xix
Chapter 1 Introduction 1
1.1 Acute myeloid leukemia (AML) 1
1.1.1 Overview of acute myeloid leukemia (AML) 1
1.1.2 Pathogenesis 2
1.1.3. Classification of AML: WHO 2022 3
1.1.4. Treatment 4
1.1.5. Prognosis 5
1.2 Reactive oxygen species (ROS) and cellular redox homeostasis 6
1.2.1 Reactive oxygen species (ROS) overview 6
1.2.2 Antioxidant defense 7
1.2.3 Biological role of thiol in antioxidant system 9
1.2.4 Oxidative stress and damage 11
1.2.5 ROS in cancer therapy 12
1.3 Endoplasmic reticulum stress (ER stress) and unfolded protein response (UPR) 13
1.4 Disulfiram (DSF) 17
1.4.1 Overview 17
1.4.2 Pharmacokinetics of DSF 19
1.4.3 Anti-cancer mechanisms of DSF: CuET 21
1.5 APR-246 (eprenetapopt / PRIMA-1MET) 23
1.5.1 Overview and the anti-cancer mechanism: mutant p53 reactivation 23
1.5.2 Anti-cancer mechanisms: p53 independent 25
1.5.3 Clinical trials 27
1.6 Rapamycin (sirolimus) 28
1.7 Zinc protoporphyrin (ZnPP) and heme oxygenase-1 (HO-1) 30
Chapter 2 Research purpose, objectives, experimental design 35
2.1 Research purpose 35
2.2 Research objectives 36
Chapter 3 Materials and methods 37
3.1 Material 37
3.1.1 Cell lines 37
3.1.2 Equipment 37
3.1.3 Chemicals 39
3.1.4 Small molecules 41
3.1.5 Antibody 41
3.1.6 Kit 42
3.1.7 Compound and reagent preparation 42
3.2 Method 45
3.2.1 Cell culture 45
3.2.2 MTS assay 45
3.2.3 Cell proliferation curve and cell death recovery test by trypan blue exclusion assay 46
3.2.3 Dead and viable cells by trypan blue exclusion assay 47
3.2.4 Annexin V-PI double staining 48
3.2.5 DCFDA staining 49
3.2.6 C11 Bodipy staining 50
3.2.7 TMRE staining 50
3.2.8 MitoSox staining 51
3.2.9 Cell lysate preparation 52
3.2.10 Protein quantification 53
3.2.11 Western blot 54
3.2.12 Free thiol determination 55
3.2.13 RNA extraction 56
3.2.14 Reverse transcription 57
3.2.15 Real time quantitative PCR (qPCR) 57
3.2.16 RNA-sequencing (RNA-seq) 58
3.2.17 Protein–protein interaction (PPI) network construction and module (sub-network) analysis 59
3.2.18 Identification of hub and bottleneck genes, and essential genes in the PPI network 60
3.2.19 Identification of potential drug candidates via bioinformatics databases 61
3.2.20 Statistical analysis 62
Chapter 4 Result 64
4.1 Cytotoxic effects of disulfiram (DSF) on AML cell lines 64
4.1.1 Copper may enhance the cytotoxic effect of disulfiram (DSF) on AML cell lines 64
4.1.2 “High concentration” of disulfiram with copper (DSF/Cu) can inhibit the cell proliferation and induce cell dead remarkably but is minimal or ambiguous in clinical achievable range 65
4.1.3 The treatment of disulfiram with copper (DSF/Cu) induces a complex cell death mechanism in addition to apoptosis 69
4.2 Oxidative stress effects of disulfiram with copper (DSF/Cu) on AML cell lines 73
4.2.1 The treatment of disulfiram with Cu (DSF/Cu) did not induce reactive oxygen species (ROS) accumulation in both AML cell lines at 6 hours 73
4.2.2 The treatment of disulfiram with Cu (DSF/Cu) did not increase lipid peroxidation level in both AML cell lines at 6 hours 75
4.2.3 The treatment of disulfiram with Cu (DSF/Cu) increased mitochondrial ROS levels in both AML cell lines at 24 hours 76
4.2.4. Oxidative stress is a critical mechanism of cell death in the high concentration group (H group) of disulfiram with Cu (DSF/Cu) 77
4.3 Combination effects of disulfiram with copper (DSF/Cu) and PIM447 78
4.3.1 PIM447 treatment can downregulate the antioxidant genes and antioxidant signaling pathways including Nrf2 pathways in AML cells according to RNA-seq data 79
4.3.2 The combination of PIM447 and the low concentration of disulfiram with copper (DSF/Cu) had at least an additive effect on sensitivity in both AML cell lines 80
4.3.3 Combination of PIM447 and disulfiram with copper (DSF/Cu) did not promote cell death in both AML cell lines 81
4.3.4. Combination of PIM447 and low concentration of disulfiram/copper (DSF/Cu) influenced the expression of antioxidant genes as expected, but the effect may not be sufficient 82
4.4 RNA-sequencing (RNA-seq) transcriptomic analysis after treatment with “high concentration” of disulfiram with Cu (DSF/Cu) in OCI AML 3 cells 83
4.4.1 Differential expression gene (DEGs) after treatment of “high concentration” of disulfiram with Cu (DSF/Cu) 84
4.4.2 Enrichment pathway analysis of the differential expression gene (DEGs) on Kyoto Encyclopedia of Genes and Genomes (KEGG) database 85
4.4.3 Enrichment analysis of the differential expression gene (DEGs) on Gene Ontology (GO) database 87
4.4.4 Gene set enrichment analysis (GSEA) for the six selected categories including oxidative stress response and Nrf2 signaling pathway 89
4.5 Identification of potential candidate for drug combination via bioinformatics analysis of the RNA-seq data 92
4.5.1 Construction of protein–protein interaction (PPI) network and analysis of the modules 93
4.5.2 Identification of essential genes from the PPI network and module 95
4.5.3 Identification of potential drug candidates for combination 95
4.6 Cytotoxic effects of the drug combinations on AML cell lines 98
4.6.1 Screening the cytotoxic effects of the drug combinations on AML cell lines at the clinical achievable concentration 98
4.6.2 Combination of low concentration group of disulfiram with Cu (DSF/Cu) and APR-246 showed syngenetic effects on cell deaths with almost no rebound after drug withdrawal 100
4.7 Oxidative stress effects of the combination of low concentration of disulfiram with Cu (DSF/Cu) and APR-246 on AML cell lines 103
4.7.1 Oxidative stress is associated with the cell death induced by the combination of low concentration of disulfiram with Cu (DSF/Cu) and APR-246 on AML cell lines 103
4.7.2 Combination of low concentration of disulfiram with Cu (DSF/Cu) and APR-246 increased mitochondrial ROS levels in both AML cell lines at 48 hours 104
4.8 Investigation of the mechanism underlying the synergistic effects on cell death 106
4.8.1 Combination of low concentration of disulfiram with Cu (DSF/Cu) and APR-246 disturb the thiol/disulfide homeostasis 106
4.8.2 Combination of low concentration of disulfiram with Cu (DSF/Cu) and APR-246 induced unfolded protein response (UPR) and the cleavage of PARP and caspase 3 108
Chapter 5 Discussion 111
Chapter 6 Conclusion 117
Chapter 7 References 118
Figure 146
Supplementary figure 193
Tables 217
Appendix 253
-
dc.language.isoen-
dc.title從轉錄體分析中發現具潛力的藥物能加強disulfiram對急性骨髓性白血病的抗癌效果並探討其機制zh_TW
dc.titleExploring a potential drug that can enhance the anti-cancer effects of disulfiram on AML cells and discuss the underlying mechanismen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee蘇剛毅;歐大諒;郭靜穎;胡忠怡zh_TW
dc.contributor.oralexamcommitteeKangYi Su;Da-Liang Ou;ChingYing Kuo;ChungYi Huen
dc.subject.keyword急性骨髓性白血病,癌症,生物資訊分析,蛋白質交互作用網路,氧化壓力,硫醇二硫化物穩態,藥物合併,zh_TW
dc.subject.keywordAcute myeloid leukaemia,Cancer,Bioinformatics analysis,Protein-protein interaction (PPI) network,Oxidative stress,Thiol-disulfide homeostasis,Drug combination,en
dc.relation.page262-
dc.identifier.doi10.6342/NTU202304118-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-11-
dc.contributor.author-college醫學院-
dc.contributor.author-dept醫學檢驗暨生物技術學系-
dc.date.embargo-lift2028-08-10-
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
15.36 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved