請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9041完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 傅立成 | |
| dc.contributor.author | Meng-Hsun Lin | en |
| dc.contributor.author | 林孟勳 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:07:25Z | - |
| dc.date.available | 2011-08-17 | |
| dc.date.available | 2021-05-20T20:07:25Z | - |
| dc.date.copyright | 2009-08-17 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-08 | |
| dc.identifier.citation | Reference
[1] A. Fournier and W. T. Reeves, 'A simple model of ocean waves,' in SIGGRAPH ’86(1986), 75–84 [2] J. C. Gonzato and B. L. Saぴec, 'On modeling and rendering ocean scenes,' J. of Visualization and Computer Animation 11(1) (2000) 27–37 [3] G. A. Mastin, P. A. Watterberg, and J. F. Mareda, 'Fourier synthesis of ocean scenes,' IEEE Computer Graphics and Applications 7, 3 (Mar.), 1987 16–23. [4] W. J. Pierson and L. Moskowitz, 'A proposed spectral form for fully developed wind seas based on the similarity theory of s.a. kilaigorodskii,' Journal of Geophysical Research, pages 5181–5190, 1964. [5] J. Tessendorf, 'Simulating ocean water,' In Siggraph Course Notes, Addison-Wesley. 1999. [6] S. Thon, J. M. DISCHLER, and D. Ghazanfarpour, 'Ocean waves synthesis using a spectrum-based turbulence function,' In Computer Graphics International Proceeding, 2000. [7] D. Hinsinger, F. Neyret, and M.P. Cani, 'Interactive animation of ocean waves,' In: SCA ’02: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation. (2002) 161–166 [8] K. Perlin, 'An image synthesizer,' In Computer Graphics (SIGGRAPH ’85 Proceedings), B. A. Barsky, Ed., vol. 19(3), 287–296. 1985. [9] D. F. Young, B. R. Munson, and T. H. Okiishi, 'Brief Introduction to Fluid Mechanics.' [10] N. Foster, and D. Metaxas, 'Realistic animation of liquids,' Graph. Mod. and Im. Proc. 58, 5, 471–483. 1996. [11] N. Foster, and D. Metaxas, 'Controlling fluid animation,' 178–188. 1997. [12] J. Stam, 'Stable fluids,' In SIGGRAPH ’99, 121–128. 1999. [13] F. Losasso, F. Gibou, and R. Fedkiw, 'Simulating water and smoke with an octree data structure,' In SIGGRAPH’04, 457–462. 2004. [14] G. Irving, E. Guendelman, F. Losasso, and R. Fedkiw, 'Efficient simulation of large bodies of water by coupling two and three dimensional techniques,' In ACM Trans. Graph. 25, 3, 805–811. 2006. [15] B. M. Klingner, B. E. Feldman, N. Chentanez, and J. F. O’brien, “Fluid animation with dynamic meshes,” In SIGGRAPH ’06. [16] L. B. Lucy, 'A numerical approach to the testing of the fission hypothesis,' The Astronomical Journal, vol. 82, pp. 1013-1024, 1977. [17] R. A. Gingold and J. J. Monaghan, 'Smoothed particle hydrodynamics-Theory and application to non-spherical stars,' Royal Astronomical Society, Monthly Notices, vol. 181, pp. 375-389, 1977. [18] G. Miller and A. Pearce, 'Globular dynamics: A connected particle system for animating viscous fluids,' Computers and Graphics, vol. 13, no. 3, pp. 305-309, 1989. [19] M. Desbrun and M. P. Cani. 'Smoothed particles: A new paradigm for animating highly deformable bodies,' In Computer Animation and Simulation '96 (Proceedings of EG Workshop on Animation and Simulation), pages 61–76, Springer-Verlag, Aug 1996. [20] D. Tonnesen. 'Dynamically Coupled Particle Systems for Geometric Modeling, Reconstruction, and Animation,' PhD thesis, University of Toronto, November 1998. [21] M. Muller, D. Charypar, and M. Gross, 'Particle-based fluid simulation for interactive applications,' in Proceedings of the ACM SIGGRAPH /Eurographics symposium on Computer animation. San Diego, California: Eurographics Association, 2003. [22] W. E. Lorensen, and H. E. Cline, 'Marching Cubes: A High Resolution 3D Surface Construction Algorithm,' Computer Graphics, Vol. 21, No. 3, pp. 163-169, July 1987. [23] S. Premože, T. Tasdizen, J. Bigler, A. Lefohn, and R. T. Whitaker, 'Particle-based simulation of fluids,' Computer Graphics Forum, vol. 22, pp. 401-411, 2003. [24] S. Clavet, P. Beaudoin, and P. Poulin, 'Particle-based viscoelastic fluid simulation,' In SCA 2005, 219–228. [25] P. Kipfer, and R. Westermann, 'Realistic and interactive simulation of rivers,' In Proceedings Graphics Interface 2006, 41–48. [26] K. S. M. Davidson and S. L.I., Turning and Course Keeping Qualities of Ships, SNAME Transaction 1946. [27] M. A. Abkowitz, Lectures on Ship Hydrodynamics-Steering and Manoeuvrability, Report Hy-5, Hydro-and Aerodynamic Laboratory, Lyngby, Denmark, 1964. [28] M. Hirano, Calculation Method of Ship Maneuvering Motion at Initial Design Phase, J. SOC. NAVAL ARCHIT. JAPAN, vol. 147, pp. 144-153, 1980. [29] S. Inoue, M. Hirano, K. Kijima, and J. Takashina, A Practical Calculation Method of Ship Maneuvering Motion, International Shipbuilding Progress, vol. 28, pp. 207-222, 1981. [30] T. I.Fossen, Marine Control System: Marine Cybernetics, 2002. [31] A. W. Browning, A mathematical model to simulate small boat behaviour, SIMULATION, vol. 56, p. 329, 1991. [32] Robert T. Hudspeth, Waves and Wave Forces on Coastal and Ocean Structures: World Scientific, 2006. [33] Blair Kinsman, Wind Waves: Their Generation and Propagation on the Ocean Surface: Prentice-Hall, 1965. [34] M. Pharr, GPU Gems 2: Programming Techniques, Tips and Tricks for Real-Time Graphics: Addison Wesley, 2005. [35] R. Fernando and M. J. Kilgard, The Cg Tutorial: Addison Wesley, 2005. [36] S.-C. Wang, 'System Design of VR-based Motion Simulatior for Wheeled Vehicle on Three Dimension Terrain Application.' vol. Master Taipei: National Taiwan University, 2004. [37] C.-D. Lee, 'Impulse-Based Dynamic Simulation of Articulated Rigid Bodies with Aerodynamics.' vol. Master Taipei: National Taiwan University, 2006. [38] C.-T. Chou, 'VR-based Motion Simulator for Ships on Real-time Rendered Dynamic Ocean.' vol. Master Taipei: National Taiwan University, 2007. [39] H.-C. Chen, 'Real-time Two-way Coupling of Ship Simulator with VR Application.' vol. Master Taipei: National Taiwan University, 2008. [40] D. J. Price, 'Magnetic Field in Astrophysics,' PhD Thesis, Institute of Astronomy, University of Cambridge, Oct. 2004. [41] J. J. Monaghan, 'Smoothed Particle Hydrodynamics,' Reports on Progress in Physics, vol. 68, pp. 1703-1759, 2005. [42] J. J. Monaghan, 'Smoothed Particle Hydrodynamics,' Annual Review of Astronomy and Astrophysics, vol. 30, pp. 543-574, 1992. [43] M. Desbrun and M.-P. Gascuel, 'Smoothed Particles: A New Paradigm for Animating Highly Deformable Bodies,' in Proceedings of the Eurographics Workshop on Computer Animation and Simulation '96, Aug 1996, pp. 61-76. [44] E. J. Tarbuck and F. K. Lutgens, 'Earth Science,' Prentice Hall, 2002 [45] D. Stora, P. O. Agliati, M. P. Cani, F. Neyret, and J. D. Gascuel, 'Animating lava flows.' in Graphics Interface, 203–210. 1999. [46] I. D. Rosenberg and K. Birdwell, 'Real-time particle isosurface extraction,' In SI3D ’08: Proceedings of the 2008 symposium on Interactive 3D graphics and games, ACM, New York, NY, USA, 35–43. 2008. [47] B. W. Williams, 'Fluid Surface Reconstruction from Particles,' Master’s thesis, The University Of British Columbia. 2008. [48] R. Malladi and J. A. Sethian, 'Level set methods for curvature flow, image enhancement, and shape recovery in medical images,' In Proc. of Conf. on Visualization and Mathematics, Springer-Verlag, 329–345. 1995. [49] M. Muller, S. Schirm and S. Duthaler, 'Screen space meshes,' In SCA ’07: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics Association, Aire-la-Ville, Switzerland, 9–15. 2007. [50] D. Terzopoulos, J. C. Platt, and A. H. Barr. 'Elastically deformable models,' Computer Graphics (Proc. SIGGRAPH), 21:205–214, 1987. [51] D. Terzopoulos and K. Fleischer. 'Deformable models,' Visual Computer, 4:306–331, 1988. [52] D. Terzopoulos and K. Fleischer. 'Modeling inelastic deformation: Viscoelasticity, plasticity, fracture,' In Computer Graphics(Proc. SIGGRAPH), volume 22, pages 269–278. ACM, August 1988. [53] A. Luciani, S. Jimenez, J. L. Florens, C. Cadoz, and O. Raoult. 'Computational physics: a modeler simulator for animated physical objects,' In Eurographics’91, Vienna, Austria, September 1991. [54] G. Miller. 'The motion dynamics of snakes and worms,' Computer Graphics, 22(4):169–177, Proceedings of SIGGRAPH’ 88 (Atlanta, Georgia). August 1988. [55] J. E. Chadwick, D. R. Haumann, and R. E. Parent. 'Layered construction for deformable animated characters,' Computer Graphics, 23(3):243–252, July 1989. [56] D. Terzopoulos, J. Platt, and K. Fleisher. 'Heating and melting deformable models (from goop to glop),' In Graphics Interface’89, pages 219–226, London, Ontario, June 1989. [57] T. K. James, 'The rendering equation,' in Proceedings of the 13th annual conference on Computer graphics and interactive techniques: ACM, 1986. [58] M. B. Cline, 'Rigid Body Simulation with Contact and Constraints,' The University of British Columbia, 2002. [59] S. R. Buss, 'Accurate and efficient simulation of rigid-body rotations,' Journal of Computational Physics, vol. 164, pp. 377-406, 2000. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9041 | - |
| dc.description.abstract | 摘要
本篇論文主要建構出基於粒子組成的海面波浪,這種波浪的特性是適合物理上與船體也就是剛體的互動模擬。我們的目標在於架構一個在虛擬實境中的即時動態模擬船舶駕駛系統,而我們提出了一些新的方法來達到這個目標。首先,為了模擬大自然中主要被風所吹動的海浪,我們試圖為風力的影響提出一個模型,而讓這風作用在粒子組成的海面上,自然地形成波浪的運動。同時波浪也會受到重力或是本身黏滯力的影響。我們對於流體的模擬主要是基於平滑粒子流體力學(SPH)方法,也會在論文中做相關的介紹。其次,我們必須繪製流體的表面,而我們介紹了一種使用軟性材質的網格來建構流體表面的新方法。接著我們計算跟處理剛體與流體、風力、海面間的互動碰撞來模擬船體的動態,如此可以獲得更真實的結果。最後,這個模擬系統可以整合到六自由度的史都華平台,而建構出一個虛擬實境中的船舶駕駛模擬器。 關鍵字: 虛擬實境、基於粒子組成的、海面波浪、風力、平滑粒子流體力(SPH)、流體表面、船舶模擬器 | zh_TW |
| dc.description.abstract | Abstract
This thesis focuses on the construction of particle-based ocean waves, which can be applied to interact with the boat in physical simulation. The goal is to construct a real-time physical dynamic system of boat motion simulator for virtual reality application. We introduce a new method to create ocean waves with particle-based fluid. First, in order to simulate wind-driven ocean surface, we use a wind force model to simulate the effect of actual wind, and let the force act on the particle-based fluid to create waves animation. Additionally, fluid dynamics of waves are also influenced with gravity force or viscous force. The particle-based fluid simulation is based on SPH (Smoothed Particle Hydrodynamics) method, which is introduced in this thesis. Second, we consider the issue of drawing fluid surface, and present a new method to construct the surface with physically simulated cloth. Then we can create the interaction between solid, fluid, force, and surface to simulate the dynamics of the boat, and we can get more realistic results. Finally, this simulation can also be integrated with the 6 degree-of-freedom motion platform to build a ship motion simulator. KeyWords: virtual reality, particle-based, ocean waves, wind, smoothed particle hydrodynamics (SPH), fluid surface, ship motion simulator | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:07:25Z (GMT). No. of bitstreams: 1 ntu-98-R96921007-1.pdf: 1783359 bytes, checksum: bf3173533ceb000e790044a0f0f9340c (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Table of Contents
誌謝 I 摘要 III Abstract IV Table of Contents V List of Figures VII Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Related Works 5 1.3 Thesis Organization 9 Chapter 2 Particle-Based Waves Simulation 10 2.1 Smoothed Particle Hydrodynamics (SPH) 14 2.2 Field Quantity of Particle Fluid 16 2.2.1 Density 17 2.2.2 Pressure 18 2.2.3 Viscosity 19 2.3 Wind-Driven Waves 20 Chapter 3 Ocean Surface Construction and Rendering 26 3.1 Marching Cubes 27 3.2 Fitting with Cloth 31 3.3 Ocean Surface Rendering 34 3.3.1 Reflection and Refraction 35 3.3.2 The Fresnel Effect 37 3.3.3 Shading for Ocean 39 Chapter 4 Ship Modeling and Dynamics 43 4.1 Preliminary Rigid Body Dynamics 43 4.1.1 Position and Orientation 43 4.1.2 The Velocity of Rigid Body 47 4.1.3 Equations of Motion 48 4.1.4 Forward Euler Integration 50 4.2 Solid-Fluid Interaction 51 4.3 The Ship Modeling 53 Chapter 5 Implementation 56 5.1 Ocean Waves Modeling 56 5.1.1 Particle-based Fluid 56 5.1.2 Wind Force Modeling 59 5.2 Ocean Surface Construction and Rendering 62 5.2.1 Marching Cubes 62 5.2.2 Fitting with Cloth 64 5.2.3 GPU Shading 66 5.3 The Ship Modeling and Dynamics 69 5.4 Integrated Simulation Loop 73 Chapter 6 Experimental Results 75 6.1 Ocean 75 6.2 Ship 78 6.3 System Integration with 6-DOF Motion Platform 80 Chapter 7 Conclusions 83 Reference 85 | |
| dc.language.iso | en | |
| dc.title | 應用虛擬實境平台於基於粒子組成的海面上之船舶模擬 | zh_TW |
| dc.title | Particle-based Ocean Waves for Ship Motion Simulator in VR Environment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 歐陽明,陳炳宇,郭振華,范欽雄 | |
| dc.subject.keyword | 虛擬實境,基於粒子組成的,海面波浪,風力,平滑粒子流體力(SPH),流體表面,船舶模擬器, | zh_TW |
| dc.subject.keyword | virtual reality,particle-based,ocean waves,wind,smoothed particle hydrodynamics (SPH),fluid surface,ship motion simulator, | en |
| dc.relation.page | 89 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2009-08-10 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf | 1.74 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
