Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90412Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 李建國 | zh_TW |
| dc.contributor.advisor | Chien-Kuo Lee | en |
| dc.contributor.author | 李婕愉 | zh_TW |
| dc.contributor.author | Chieh-Yu Lee | en |
| dc.date.accessioned | 2023-09-28T16:16:56Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-09-28 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-10 | - |
| dc.identifier.citation | Abou El Hassan, M., K. Huang, Z. Xu, T. Yu, and R. Bremner. 2018. 'Frequent interferon regulatory factor 1 (IRF1) binding at remote elements without histone modification', J Biol Chem, 293: 10353-62.
Akkaya, M., K. Kwak, and S. K. Pierce. 2020. 'B cell memory: building two walls of protection against pathogens', Nat Rev Immunol, 20: 229-38. Avalle, L., S. Pensa, G. Regis, F. Novelli, and V. Poli. 2012. 'STAT1 and STAT3 in tumorigenesis: A matter of balance', Jakstat, 1: 65-72. Cao, R., L. Wang, H. Wang, L. Xia, H. Erdjument-Bromage, P. Tempst, R. S. Jones, and Y. Zhang. 2002. 'Role of histone H3 lysine 27 methylation in Polycomb-group silencing', Science, 298: 1039-43. Carotta, S., S. N. Willis, J. Hasbold, M. Inouye, S. H. Pang, D. Emslie, A. Light, M. Chopin, W. Shi, H. Wang, H. C. Morse, 3rd, D. M. Tarlinton, L. M. Corcoran, P. D. Hodgkin, and S. L. Nutt. 2014. 'The transcription factors IRF8 and PU.1 negatively regulate plasma cell differentiation', J Exp Med, 211: 2169-81. Chen, K., J. Liu, S. Liu, M. Xia, X. Zhang, D. Han, Y. Jiang, C. Wang, and X. Cao. 2017. 'Methyltransferase SETD2-Mediated Methylation of STAT1 Is Critical for Interferon Antiviral Activity', Cell, 170: 492-506.e14. Chen, T. T., M. H. Tsai, J. T. Kung, K. I. Lin, T. Decker, and C. K. Lee. 2016. 'STAT1 regulates marginal zone B cell differentiation in response to inflammation and infection with blood-borne bacteria', J Exp Med, 213: 3025-39. Chin, Y. E., M. Kitagawa, K. Kuida, R. A. Flavell, and X. Y. Fu. 1997. 'Activation of the STAT signaling pathway can cause expression of caspase 1 and apoptosis', Mol Cell Biol, 17: 5328-37. Chodisetti, S. B., A. J. Fike, P. P. Domeier, S. L. Schell, T. E. Mockus, N. M. Choi, C. Corradetti, B. Hou, H. M. Atkins, R. Caricchio, T. Decker, A. E. Lukacher, N. Olsen, and Z. S. M. Rahman. 2020. 'Serine Phosphorylation of the STAT1 Transactivation Domain Promotes Autoreactive B Cell and Systemic Autoimmunity Development', J Immunol, 204: 2641-50. Decker, Thomas, and Pavel Kovarik. 2000. 'Serine phosphorylation of STATs', Oncogene, 19: 2628-37. Deng, X. M., S. X. Yan, and W. Wei. 2015. 'IL-21 acts as a promising therapeutic target in systemic lupus erythematosus by regulating plasma cell differentiation', Cell. Mol. Immunol., 12: 31-9. Diehl, S. A., H. Schmidlin, M. Nagasawa, S. D. van Haren, M. J. Kwakkenbos, E. Yasuda, T. Beaumont, F. A. Scheeren, and H. Spits. 2008. 'STAT3-mediated up-regulation of BLIMP1 Is coordinated with BCL6 down-regulation to control human plasma cell differentiation', J Immunol, 180: 4805-15. Domeier, P. P., S. B. Chodisetti, C. Soni, S. L. Schell, M. J. Elias, E. B. Wong, T. K. Cooper, D. Kitamura, and Z. S. Rahman. 2016. 'IFN-γ receptor and STAT1 signaling in B cells are central to spontaneous germinal center formation and autoimmunity', J Exp Med, 213: 715-32. Durbin, J. E., R. Hackenmiller, M. C. Simon, and D. E. Levy. 1996. 'Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease', Cell, 84: 443-50. Grasseau, A., M. Boudigou, L. Le Pottier, N. Chriti, D. Cornec, J. O. Pers, Y. Renaudineau, and S. Hillion. 2020. 'Innate B Cells: the Archetype of Protective Immune Cells', Clin Rev Allergy Immunol, 58: 92-106. Gunawan, M., N. Venkatesan, J. T. Loh, J. F. Wong, H. Berger, W. H. Neo, L. Y. Li, M. K. La Win, Y. H. Yau, T. Guo, P. C. See, S. Yamazaki, K. C. Chin, A. R. Gingras, S. G. Shochat, L. G. Ng, S. K. Sze, F. Ginhoux, and I. H. Su. 2015. 'The methyltransferase Ezh2 controls cell adhesion and migration through direct methylation of the extranuclear regulatory protein talin', Nat Immunol, 16: 505-16. Guo, M., M. J. Price, D. G. Patterson, B. G. Barwick, R. R. Haines, A. K. Kania, J. E. Bradley, T. D. Randall, J. M. Boss, and C. D. Scharer. 2018. 'EZH2 Represses the B Cell Transcriptional Program and Regulates Antibody-Secreting Cell Metabolism and Antibody Production', J Immunol, 200: 1039-52. Gururajan, M., J. Jacob, and B. Pulendran. 2007. 'Toll-like receptor expression and responsiveness of distinct murine splenic and mucosal B-cell subsets', PLoS One, 2: e863. Hsu, C. C., S. M. Meeker, S. Escobar, T. L. Brabb, J. Paik, H. Park, B. M. Iritani, and L. Maggio-Price. 2018. 'Murine norovirus inhibits B cell development in the bone marrow of STAT1-deficient mice', Virol., 515: 123-33. Kim, E., M. Kim, D. H. Woo, Y. Shin, J. Shin, N. Chang, Y. T. Oh, H. Kim, J. Rheey, I. Nakano, C. Lee, K. M. Joo, J. N. Rich, D. H. Nam, and J. Lee. 2013. 'Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells', Cancer Cell, 23: 839-52. Kovarik, Pavel, Dagmar Stoiber, Patrick A. Eyers, Rossella Menghini, Armin Neininger, Matthias Gaestel, Philip Cohen, and Thomas Decker. 1999. 'Stress-induced phosphorylation of STAT1 at Ser727 requires p38 mitogen-activated protein kinase whereas IFN-γ uses a different signaling pathway', Proc Natl Acad Sci U S A, 96: 13956-61. Kroetz, D. N., R. M. Allen, M. A. Schaller, C. Cavallaro, T. Ito, and S. L. Kunkel. 2015. 'Type I Interferon Induced Epigenetic Regulation of Macrophages Suppresses Innate and Adaptive Immunity in Acute Respiratory Viral Infection', PLoS Pathog, 11: e1005338. Kuzmichev, A., K. Nishioka, H. Erdjument-Bromage, P. Tempst, and D. Reinberg. 2002. 'Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein', Genes Dev, 16: 2893-905. Leonard, W. J., J. X. Lin, and J. J. O'Shea. 2019. 'The γ(c) Family of Cytokines: Basic Biology to Therapeutic Ramifications', Immunity, 50: 832-50. Levy, D. E., and J. E. Darnell, Jr. 2002. 'Stats: transcriptional control and biological impact', Nat Rev Mol Cell Biol, 3: 651-62. Li, Jing, Jiaxin Liang, Lili Wang, Eugenia Broude, Igor Roninson, and Mengqian Chen. 2020. 'Abstract 89: Role of CDK8 and CDK19 in STAT1 phosphorylation at serine 727', Cancer Res., 80: 89-89. Luu, K., C. J. Greenhill, A. Majoros, T. Decker, B. J. Jenkins, and A. Mansell. 2014. 'STAT1 plays a role in TLR signal transduction and inflammatory responses', Immunol Cell Biol, 92: 761-9. MacLennan, I. C., A. Gulbranson-Judge, K. M. Toellner, M. Casamayor-Palleja, E. Chan, D. M. Sze, S. A. Luther, and H. A. Orbea. 1997. 'The changing preference of T and B cells for partners as T-dependent antibody responses develop', Immunol Rev, 156: 53-66. Majoros, A., E. Platanitis, E. Kernbauer-Hölzl, F. Rosebrock, M. Müller, and T. Decker. 2017. 'Canonical and Non-Canonical Aspects of JAK-STAT Signaling: Lessons from Interferons for Cytokine Responses', Front Immunol, 8: 29. Martin, F., A. M. Oliver, and J. F. Kearney. 2001. 'Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens', Immunity, 14: 617-29. Michalska, A., K. Blaszczyk, J. Wesoly, and H. A. R. Bluyssen. 2018. 'A Positive Feedback Amplifier Circuit That Regulates Interferon (IFN)-Stimulated Gene Expression and Controls Type I and Type II IFN Responses', Front Immunol, 9: 1135. Nojima, Takuya, Kei Haniuda, Tatsuya Moutai, Moeko Matsudaira, Sho Mizokawa, Ikuo Shiratori, Takachika Azuma, and Daisuke Kitamura. 2011. 'In-vitro derived germinal centre B cells differentially generate memory B or plasma cells in vivo', Nat. Commun., 2: 465. Nolz, J. C., T. S. Gomez, and D. D. Billadeau. 2005. 'The Ezh2 methyltransferase complex: actin up in the cytosol', Trends Cell Biol, 15: 514-7. Nutt, S. L., N. Taubenheim, J. Hasbold, L. M. Corcoran, and P. D. Hodgkin. 2011. 'The genetic network controlling plasma cell differentiation', Semin Immunol, 23: 341-9. Ochiai, K., M. Maienschein-Cline, G. Simonetti, J. Chen, R. Rosenthal, R. Brink, A. S. Chong, U. Klein, A. R. Dinner, H. Singh, and R. Sciammas. 2013. 'Transcriptional regulation of germinal center B and plasma cell fates by dynamical control of IRF4', Immunity, 38: 918-29. Oike, Takatsugu, Yuiko Sato, Tami Kobayashi, Kana Miyamoto, Satoshi Nakamura, Yosuke Kaneko, Shu Kobayashi, Kengo Harato, Hideyuki Saya, Morio Matsumoto, Masaya Nakamura, Yasuo Niki, and Takeshi Miyamoto. 2017. 'Stat3 as a potential therapeutic target for rheumatoid arthritis', Sci. Rep., 7: 10965. Ramsauer, K., M. Farlik, G. Zupkovitz, C. Seiser, A. Kröger, H. Hauser, and T. Decker. 2007. 'Distinct modes of action applied by transcription factors STAT1 and IRF1 to initiate transcription of the IFN-gamma-inducible gbp2 gene', Proc Natl Acad Sci U S A, 104: 2849-54. Randall, R. E., and S. Goodbourn. 2008. 'Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures', J Gen Virol, 89: 1-47. Sadler, Anthony J., and Bryan R. G. Williams. 2008. 'Interferon-inducible antiviral effectors', Nat. Rev. Immunol, 8: 559-68. Sadzak, I., M. Schiff, I. Gattermeier, R. Glinitzer, I. Sauer, A. Saalmüller, E. Yang, B. Schaljo, and P. Kovarik. 2008. 'Recruitment of Stat1 to chromatin is required for interferon-induced serine phosphorylation of Stat1 transactivation domain', Proc Natl Acad Sci U S A, 105: 8944-9. Sara, P, R Gabriella, B Daniela, N Francesco, and Poli Valeria. 2000. 'STAT1 and STAT3 in tumorigenesis: two sides of the same coin', Madame Curie Bioscience Database. Scheeren, F. A., M. Naspetti, S. Diehl, R. Schotte, M. Nagasawa, E. Wijnands, R. Gimeno, F. A. Vyth-Dreese, B. Blom, and H. Spits. 2005. 'STAT5 regulates the self-renewal capacity and differentiation of human memory B cells and controls Bcl-6 expression', Nat Immunol, 6: 303-13. Schliehe, C., E. K. Flynn, B. Vilagos, U. Richson, S. Swaminanthan, B. Bosnjak, L. Bauer, R. K. Kandasamy, I. M. Griesshammer, L. Kosack, F. Schmitz, V. Litvak, J. Sissons, A. Lercher, A. Bhattacharya, K. Khamina, A. L. Trivett, L. Tessarollo, I. Mesteri, A. Hladik, D. Merkler, S. Kubicek, S. Knapp, M. M. Epstein, D. E. Symer, A. Aderem, and A. Bergthaler. 2015. 'The methyltransferase Setdb2 mediates virus-induced susceptibility to bacterial superinfection', Nat Immunol, 16: 67-74. Shaffer, A. L., M. Shapiro-Shelef, N. N. Iwakoshi, A. H. Lee, S. B. Qian, H. Zhao, X. Yu, L. Yang, B. K. Tan, A. Rosenwald, E. M. Hurt, E. Petroulakis, N. Sonenberg, J. W. Yewdell, K. Calame, L. H. Glimcher, and L. M. Staudt. 2004. 'XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation', Immunity, 21: 81-93. Shaffer, A. L., X. Yu, Y. He, J. Boldrick, E. P. Chan, and L. M. Staudt. 2000. 'BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control', Immunity, 13: 199-212. Shapiro-Shelef, M., and K. Calame. 2005. 'Regulation of plasma-cell development', Nat Rev Immunol, 5: 230-42. Shen, X., Y. Liu, Y. J. Hsu, Y. Fujiwara, J. Kim, X. Mao, G. C. Yuan, and S. H. Orkin. 2008. 'EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency', Mol Cell, 32: 491-502. Stein, Kathryn E. 1992. 'Thymus-independent and thymus-dependent responses to polysaccharide antigens', J. Infect. Dis., 165: S49-S52. Stephanou, A., T. M. Scarabelli, B. K. Brar, Y. Nakanishi, M. Matsumura, R. A. Knight, and D. S. Latchman. 2001. 'Induction of apoptosis and Fas receptor/Fas ligand expression by ischemia/reperfusion in cardiac myocytes requires serine 727 of the STAT-1 transcription factor but not tyrosine 701', J Biol Chem, 276: 28340-7. Takeda, K., T. Tanaka, W. Shi, M. Matsumoto, M. Minami, S. Kashiwamura, K. Nakanishi, N. Yoshida, T. Kishimoto, and S. Akira. 1996. 'Essential role of Stat6 in IL-4 signalling', Nature, 380: 627-30. Varinou, L., K. Ramsauer, M. Karaghiosoff, T. Kolbe, K. Pfeffer, M. Müller, and T. Decker. 2003. 'Phosphorylation of the Stat1 transactivation domain is required for full-fledged IFN-gamma-dependent innate immunity', Immunity, 19: 793-802. Vos, Q., A. Lees, Z. Q. Wu, C. M. Snapper, and J. J. Mond. 2000. 'B-cell activation by T-cell-independent type 2 antigens as an integral part of the humoral immune response to pathogenic microorganisms', Immunol Rev, 176: 154-70. Wen, Z., Z. Zhong, and J. E. Darnell, Jr. 1995. 'Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation', Cell, 82: 241-50. Xu, W., and J. J. Zhang. 2005. 'Stat1-dependent synergistic activation of T-bet for IgG2a production during early stage of B cell activation', J Immunol, 175: 7419-24. Yamashita, H., J. Xu, R. A. Erwin, W. L. Farrar, R. A. Kirken, and H. Rui. 1998. 'Differential control of the phosphorylation state of proline-juxtaposed serine residues Ser725 of Stat5a and Ser730 of Stat5b in prolactin-sensitive cells', J Biol Chem, 273: 30218-24. Yin, Y., X. Yang, S. Wu, X. Ding, H. Zhu, X. Long, Y. Wang, S. Zhai, Y. Chen, N. Che, J. Chen, and X. Wang. 2022a. 'Jmjd1c demethylates STAT3 to restrain plasma cell differentiation and rheumatoid arthritis', Nat Immunol, 23: 1342-54. Yin, Yuye, Xinyi Yang, Shusheng Wu, Xinyu Ding, Huamin Zhu, Xuehui Long, Yuliang Wang, Sulan Zhai, Yun Chen, Nan Che, Jingjing Chen, and Xiaoming Wang. 2022b. 'Jmjd1c demethylates STAT3 to restrain plasma cell differentiation and rheumatoid arthritis', Nat. Immunol, 23: 1342-54. Zhang, Yiguo, Yong-Yeon Cho, Brandon L. Petersen, Feng Zhu, and Zigang Dong. 2004. 'Evidence of STAT1 phosphorylation modulated by MAPKs, MEK1 and MSK1', Carcinog., 25: 1165-75. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90412 | - |
| dc.description.abstract | B細胞是參與適應性免疫反應的一個重要成員,它的活化及分化受到轉錄因子網絡的緊密調控。雖然STAT3和STAT5的角色在調控B細胞過程中的作用已經被研究許多,STAT1的功能仍然不清楚。在我們的研究中,我們對於STAT1的後轉譯修飾(Post-translational modification, PTM),包括磷酸化和組蛋白甲基化以及乙醯化進行探討。胸腺非依賴性(T-independent, TI)以及胸腺依賴性(T-dependent, TD)的刺激都能誘導STAT1絲胺酸 (STAT1-pS727) 和酪胺酸 (STAT1-pY701) 的磷酸化。功能上,STAT1-pS727能夠正向調節B細胞的活化,生發中心 (Germinal center, GC) B細胞的形成,漿细胞的分化和免疫球蛋白的產生。而在B細胞中過量表達STAT1能夠增加TI或TD誘導的漿细胞形成以及抗體的產生,且這些作用在Y701F或S727A突變時會被部分阻斷,表示這兩個STAT1磷酸化位點在控制B細胞分化中都有正向調控的作用。另一方面,TI和TD刺激還能使表觀遺傳學H3K4和H3K27有顯著變化。此外,STAT1-pS727在濾泡型B細胞(follicular B cell, FO B)和邊緣區B細胞(Marginal zone B cell, MZ B)中能夠在脂多醣(lipopolysaccharide, LPS)刺激下調控H3K4me1和H3K27me3的表現。通過在B細胞中進行CUT&Tag (Cleavage under targets and tagmentation)實驗,我們發現經由 LPS刺激後,STAT1-pS727能夠結合上一些組蛋白甲基轉移酶(lysine methyltransferase, KMTs)和去甲基化酶(lysine demethylase, KDMs)的啟動子 (promoter) 的位置,包括Kmt5b,Kmt2d,Kdm5a和Kdm4c。幾個已知會調節B細胞分化的轉錄因子也發現會被STAT-pS727所結合,包括Prdm1,Irf4,Irf8,Xbp1和Bcl6。此外,STAT1-pS727的突變能夠降低LPS刺激時這些基因的H3K4甲基化。而FO B在受到LPS刺激後的H3K27me3的表現也顯著減少。為了研究H3K27甲基化的作用,我們給予B細胞Valemetostat,一種EZH1/2雙重抑制劑,已知可以產生H3K27me3和STAT3甲基化。有趣的是,這種抑制劑在LPS刺激下降低了B細胞中STAT1-pS727的表達。我們的研究結果顯示STAT1-pS727能夠透過表觀遺傳學,包括可能調節表觀遺傳修飾因子(epigenetic modifier)的表達或功能來調節B細胞對於刺激的反應,同時也提出甲基化和 STAT1-pS727之間在調節B細胞反應中具有潛在的關聯性。 | zh_TW |
| dc.description.abstract | B cells are an important arm of humoral immunity, in which a network of transcription factors tightly regulates their activation and differentiation. While the role of STAT3 and STAT5 in this process is well-characterized, the functions of STAT1 remain largely unclear. Here, we investigated the effect of post-translational modifications (PTMs) of STAT1, including phosphorylation and histone methylation/acetylation. Not only T-independent (TI) but also T-dependent (TD) stimulation induced both STAT1 serine and tyrosine phosphorylation. STAT1 serine phosphorylation positively regulated B cell activation, GC B cell formation, plasma cell (PC) differentiation and immunoglobulin (Ig) production. Overexpression of WT STAT1 in primary B cells increased TI- or TD-induced PC formation and Ig production, which were partially blocked by either Y701F or S727A mutation, suggesting a positive role of both STAT1 phosphorylation sites in controlling B cell differentiation. Both TI and TD stimulation also induced significant epigenetic changes on H3K4 and H3K27. In addition, STAT1-pS727 positively regulated the level of H3K4me1 and H3K27me3 in FO B and MZ B cells in response to LPS stimulation. By performing CUT&Tag, an improved ChIP-seq in B cells, we found several histone methyltransferases (KMTs) and demethylases (KDMs), including Kmt5b, Kmt2d, Kdm5a, and Kdm4c, to be downstream of STAT1-pS727. Several known transcription factors (TFs) regulating B cell differentiation were also found to be STAT-pS727 targets, including Prdm1, Irf4, Irf8, Xbp1 and Bcl6. Moreover, STAT1-pS727 mutation decreased H3K4 methylation of these genes upon LPS-stimulation. In addition, total H3K27me3 was reduced in FO B following LPS stimulation. To assess the role of H3K27 methylation, we treated B cells with Valemetostat, a dual inhibitor of EZH1/2 and a methyltransferase known to mediate H3K27me3 and STAT3 methylation. Interestingly, the inhibitor reduced STAT1-pS727 in LPS-stimulated B cells. Together, our findings demonstrate a crucial role of STAT1-pS727 in regulating diverse B cell functions and highlight its impact on modulating the epigenetic landscapes, probably through regulating the expression or function of epigenetic modifiers. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-28T16:16:56Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-28T16:16:56Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iv Abbreviations vi Table of contents viii Chapter 1 Introduction 1 1.1 TD and TI B cell response 1 1.2 Follicular B and marginal zone B lymphocytes 2 1.3 The transcriptional network that controls plasma cell differentiation 2 1.4 STAT proteins and PC differentiation 3 1.5 Type I interferon and STAT1 signaling 4 1.6 Serine phosphorylation of STATs 5 1.7 The role of STAT1 in B-cell function 7 1.8 The dual roles of epigenetic modifiers 8 1.9 STAT1 in regulating epigenetic landscapes 8 1.10 Rationale and specific aims 9 Chapter 2 Materials and Methods 11 2.1 Mice 11 2.2 B cell isolation and cell sorting 11 2.3 Antibody Staining for Flow cytometry 12 2.4 CFSE cell proliferation assay 12 2.5 Detection of apoptotic cells 12 2.6 Retrovirus packaging and transduction of primary B cells 13 2.7 Immunoblot analysis 14 2.8 Enzyme-Linked Immunosorbent Assay (ELISA) 14 2.9 Quantitative RT-QPCR 15 2.10 40LB 3T3 feeder system 15 2.11 Intracellular Staining 16 2.12 Cleavage Under Targets and Tagmentation (CUT&Tag) 17 2.13 Statistical analysis 18 2.14 Primer sequences of RT-qPCR 18 2.15 Antibodies 19 Chapter 3 Results 21 3.1 TD and TI stimulation in B cells activates STAT1 by phosphorylation at S727 and Y701 21 3.2 STAT1-pS727 positively regulates TD and TI activation of FO and MZ B cells in vitro 21 3.3 STAT1-pS727 does not affect TI B cell proliferation and apoptosis but positively regulates MZ B cell differentiation and antibody production 23 3.4 STAT1 signaling positively regulates both TI and TD plasma cell formation, partially dependent on phosphorylation of S727 and Y701 24 3.5 STAT1-pS727 positively regulates GC B cell formation 26 3.6 STAT1-pS727 positively regulates B cell activation, differentiation and Ab production upon LPS stimulation in vivo 27 3.7 TD stimulation induces different kinetic changes of epigenetic marks in B cells 28 3.8 STAT1 binds and regulates the expression of various histone lysine methyltransferase (KMTs) and demethylases (KDMs) and several transcription factors that are critical for B cell differentiation 29 3.9 TI stimulation induces different kinetic changes of epigenetic marks in B cells 30 3.10 The epigenetic changes of MZ B are greater than those of FO B cells in response to LPS 31 3.11 STAT1-pS727 positively regulates basal and LPS-induced epigenetic marks on H3K4me1 and H3K27me3 32 3.12 STAT1-pS727 positively regulates H3K4 methylation of several KMTs, KDMs and B cell transcription factors upon LPS-stimulation 33 3.13 The inhibition of EZH1/2, a H3K27me3 methyltransferase suppresses STAT1-pS727 34 Chapter 4 Discussion 36 4.1 TD and TI stimulation induce STAT1 phosphorylation in B cells 36 4.2 The role of STAT1-pS727 in B cell activation, proliferation, and apoptosis 37 4.3 The role of STAT1 phosphorylation in GC B cell formation, PC differentiation and Ig production 38 4.4 The potential roles of epigenetics in controlling a greater response of MZ B than FO B cells 39 4.5 The interactions of STAT1 and epigenetic modifiers 40 4.6 The interplay between STAT1-pS727 and EZH1/2 in B cells 40 Concluding remarks 42 Chapter 5 Figures 43 Chapter 6 References 82 | - |
| dc.language.iso | en | - |
| dc.subject | 表觀遺傳調控 | zh_TW |
| dc.subject | B細胞 | zh_TW |
| dc.subject | STAT1 | zh_TW |
| dc.subject | 磷酸化 | zh_TW |
| dc.subject | 胸腺非依賴性 | zh_TW |
| dc.subject | 胸腺依賴性 | zh_TW |
| dc.subject | T-independent | en |
| dc.subject | STAT1 | en |
| dc.subject | phosphorylation | en |
| dc.subject | B cells | en |
| dc.subject | epigenetic regulation | en |
| dc.subject | T-dependent | en |
| dc.title | STAT1的轉譯後修飾調節B細胞的活化及分化 | zh_TW |
| dc.title | Regulation of B-cell Activation and Differentiation by Post-translational Modification of STAT1 | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林國儀;呂春敏 | zh_TW |
| dc.contributor.oralexamcommittee | Kuo-I Lin;Chuen-Miin Leu | en |
| dc.subject.keyword | B細胞,STAT1,磷酸化,胸腺非依賴性,胸腺依賴性,表觀遺傳調控, | zh_TW |
| dc.subject.keyword | B cells,STAT1,phosphorylation,T-independent,T-dependent,epigenetic regulation, | en |
| dc.relation.page | 87 | - |
| dc.identifier.doi | 10.6342/NTU202304033 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-10 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 免疫學研究所 | - |
| dc.date.embargo-lift | 2028-08-01 | - |
| Appears in Collections: | 免疫學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-111-2.pdf Until 2028-08-01 | 13.45 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
