Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90396Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳為堅 | zh_TW |
| dc.contributor.advisor | Wei J. Chen | en |
| dc.contributor.author | 施佳均 | zh_TW |
| dc.contributor.author | Chia-Jun Shih | en |
| dc.date.accessioned | 2023-09-28T16:12:26Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-09-28 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-07 | - |
| dc.identifier.citation | Adriana, M. M., Megan Hastings, H., David, M. K., Evan, H., Liam Cannon Thew, F., David, M. W., Maria, W., Evelyn, R., Cortney, A. T., Sequeira, P. A., Preston, M. C., Robert, C. T., Marquis, P. V., Blynn, G. B., Richard, M. M., Jack, D. B., Francis, S. Y. L., Alan, F. S., William, E. B., Huda, A., & Stanley J. Watson, Jr. (2022). Neurotransmission-Related Gene Expression in the Frontal Pole (Brodmann Area 10) is Altered in Subjects with Bipolar Disorder and Schizophrenia. medRxiv, 2022.2006.2003.22275600. doi:10.1101/2022.06.03.22275600
Alameda, L., Liu, Z., Sham, P. C., Aas, M., Trotta, G., Rodriguez, V., Di Forti, M., Stilo, S. A., Kandaswamy, R., Arango, C., Arrojo, M., Bernardo, M., Bobes, J., de Haan, L., Del-Ben, C. M., Gayer-Anderson, C., Sideli, L., Jones, P. B., Jongsma, H. E., . . . Wong, C. C. Y. (2023). Exploring the mediation of DNA methylation across the epigenome between childhood adversity and First Episode of Psychosis—findings from the EU-GEI study. Molecular Psychiatry. doi:10.1038/s41380-023-02044-9 Ambatipudi, S., Cuenin, C., Hernandez-Vargas, H., Ghantous, A., Calvez-Kelm, F. L., Kaaks, R., Barrdahl, M., Boeing, H., Aleksandrova, K., Trichopoulou, A., Lagiou, P., Naska, A., Palli, D., Krogh, V., Polidoro, S., Tumino, R., Panico, S., Bueno-de-Mesquita, B., Peeters, P. H., . . . Herceg, Z. (2016). Tobacco smoking-associated genome-wide DNA methylation changes in the EPIC study. Epigenomics, 8(5), 599-618. doi:10.2217/epi-2016-0001 Arechederra, M., Recalde, M., Gárate-Rascón, M., Fernández-Barrena, M. G., Ávila, M. A., & Berasain, C. (2021). Epigenetic Biomarkers for the Diagnosis and Treatment of Liver Disease. Cancers, 13(6), 1265. https://www.mdpi.com/2072-6694/13/6/1265 Aryee, M. J., Jaffe, A. E., Corrada-Bravo, H., Ladd-Acosta, C., Feinberg, A. P., Hansen, K. D., & Irizarry, R. A. (2014). Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics, 30(10), 1363-1369. doi:10.1093/bioinformatics/btu049 Balan, S., Yamada, K., Iwayama, Y., Hashimoto, T., Toyota, T., Shimamoto, C., Maekawa, M., Takagai, S., Wakuda, T., Kameno, Y., Kurita, D., Yamada, K., Kikuchi, M., Hashimoto, T., Kanahara, N., & Yoshikawa, T. (2017). Comprehensive association analysis of 27 genes from the GABAergic system in Japanese individuals affected with schizophrenia. Schizophrenia Research, 185, 33-40. doi:10.1016/j.schres.2017.01.003 Bignone, P. A., Lee, K. Y., Liu, Y., Emilion, G., Finch, J., Soosay, A. E. R., Charnock, F. M. L., Beck, S., Dunham, I., Mungall, A. J., & Ganesan, T. S. (2007). RPS6KA2, a putative tumour suppressor gene at 6q27 in sporadic epithelial ovarian cancer. Oncogene, 26(5), 683-700. doi:10.1038/sj.onc.1209827 Bishop, J. R., Zhang, L., & Lizano, P. (2022). Inflammation Subtypes and Translating Inflammation-Related Genetic Findings in Schizophrenia and Related Psychoses: A Perspective on Pathways for Treatment Stratification and Novel Therapies. Harv Rev Psychiatry, 30(1), 59-70. doi:10.1097/hrp.0000000000000321 Boczek, T., Mackiewicz, J., Sobolczyk, M., Wawrzyniak, J., Lisek, M., Ferenc, B., Guo, F., & Zylinska, L. (2021). The Role of G Protein-Coupled Receptors (GPCRs) and Calcium Signaling in Schizophrenia. Focus on GPCRs Activated by Neurotransmitters and Chemokines. Cells, 10(5). doi:10.3390/cells10051228 Bojesen, K. B., Ebdrup, B. H., Jessen, K., Sigvard, A., Tangmose, K., Edden, R. A. E., Larsson, H. B. W., Rostrup, E., Broberg, B. V., & Glenthøj, B. Y. (2020). Treatment response after 6 and 26 weeks is related to baseline glutamate and GABA levels in antipsychotic-naïve patients with psychosis. Psychol Med, 50(13), 2182-2193. doi:10.1017/s0033291719002277 Boks, M. P., Derks, E. M., Weisenberger, D. J., Strengman, E., Janson, E., Sommer, I. E., Kahn, R. S., & Ophoff, R. A. (2009). The Relationship of DNA Methylation with Age, Gender and Genotype in Twins and Healthy Controls. PloS one, 4(8), e6767. doi:10.1371/journal.pone.0006767 Bommarito, P. A., & Fry, R. C. (2019). Chapter 2-1 - The Role of DNA Methylation in Gene Regulation. In S. D. McCullough & D. C. Dolinoy (Eds.), Toxicoepigenetics (pp. 127-151). Academic Press. doi:10.1016/B978-0-12-812433-8.00005-8 Braun, P. R., Han, S., Hing, B., Nagahama, Y., Gaul, L. N., Heinzman, J. T., Grossbach, A. J., Close, L., Dlouhy, B. J., Howard, M. A., Kawasaki, H., Potash, J. B., & Shinozaki, G. (2019). Genome-wide DNA methylation comparison between live human brain and peripheral tissues within individuals. Translational Psychiatry, 9(1), 47. doi:10.1038/s41398-019-0376-y Brenet, F., Moh, M., Funk, P., Feierstein, E., Viale, A. J., Socci, N. D., & Scandura, J. M. (2011). DNA methylation of the first exon is tightly linked to transcriptional silencing. PloS one, 6(1), e14524. doi:10.1371/journal.pone.0014524 Breton, C. V., Landon, R., Kahn, L. G., Enlow, M. B., Peterson, A. K., Bastain, T., Braun, J., Comstock, S. S., Duarte, C. S., Hipwell, A., Ji, H., LaSalle, J. M., Miller, R. L., Musci, R., Posner, J., Schmidt, R., Suglia, S. F., Tung, I., Weisenberger, D., Zhu, Y., & Fry, R. (2021). Exploring the evidence for epigenetic regulation of environmental influences on child health across generations. Communications Biology, 4(1), 769. doi:10.1038/s42003-021-02316-6 Castellani, C. A., Laufer, B. I., Melka, M. G., Diehl, E. J., O’Reilly, R. L., & Singh, S. M. (2015). DNA methylation differences in monozygotic twin pairs discordant for schizophrenia identifies psychosis related genes and networks. BMC Medical Genomics, 8(1), 17. doi:10.1186/s12920-015-0093-1 Charlson, F. J., Ferrari, A. J., Santomauro, D. F., Diminic, S., Stockings, E., Scott, J. G., McGrath, J. J., & Whiteford, H. A. (2018). Global Epidemiology and Burden of Schizophrenia: Findings From the Global Burden of Disease Study 2016. Schizophrenia bulletin, 44(6), 1195-1203. doi:10.1093/schbul/sby058 Choii, G., & Ko, J. (2015). Gephyrin: a central GABAergic synapse organizer. Experimental & Molecular Medicine, 47(4), e158-e158. doi:10.1038/emm.2015.5 Cuesta, M. J., Sánchez-Torres, A. M., de Jalón, E. G., Campos, M. S., Ibáñez, B., Moreno-Izco, L., & Peralta, V. (2014). Spontaneous parkinsonism is associated with cognitive impairment in antipsychotic-naive patients with first-episode psychosis: a 6-month follow-up study. Schizophrenia bulletin, 40(5), 1164-1173. doi:10.1093/schbul/sbt125 Davies, M. N., Volta, M., Pidsley, R., Lunnon, K., Dixit, A., Lovestone, S., Coarfa, C., Harris, R. A., Milosavljevic, A., Troakes, C., Al-Sarraj, S., Dobson, R., Schalkwyk, L. C., & Mill, J. (2012). Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol, 13(6), R43. doi:10.1186/gb-2012-13-6-r43 de la Fuente Revenga, M., Ibi, D., Saunders, J. M., Cuddy, T., Ijaz, M. K., Toneatti, R., Kurita, M., Holloway, T., Shen, L., Seto, J., Dozmorov, M. G., & González-Maeso, J. (2018). HDAC2-dependent Antipsychotic-like Effects of Chronic Treatment with the HDAC Inhibitor SAHA in Mice. Neuroscience, 388, 102-117. doi:10.1016/j.neuroscience.2018.07.010 Du, H., Ma, J., Zhou, W., Li, M., Huai, C., Shen, L., Wu, H., Zhao, X., Zhang, N., Gao, S., Wang, Q., He, L., Wu, X., Qin, S., & Zhao, M. (2022). Methylome-wide association study of different responses to risperidone in schizophrenia. Front Pharmacol, 13, 1078464. doi:10.3389/fphar.2022.1078464 Egerton, A., Griffiths, K., Casetta, C., Deakin, B., Drake, R., Howes, O. D., Kassoumeri, L., Khan, S., Lankshear, S., Lees, J., Lewis, S., Mikulskaya, E., Millgate, E., Oloyede, E., Pollard, R., Rich, N., Segev, A., Sendt, K. V., & MacCabe, J. H. (2023). Anterior cingulate glutamate metabolites as a predictor of antipsychotic response in first episode psychosis: data from the STRATA collaboration. Neuropsychopharmacology, 48(3), 567-575. doi:10.1038/s41386-022-01508-w Fachim, H. A., Loureiro, C. M., Corsi-Zuelli, F., Shuhama, R., Louzada-Junior, P., Menezes, P. R., Dalton, C. F., Del-Ben, C. M., & Reynolds, G. P. (2019). GRIN2B promoter methylation deficits in early-onset schizophrenia and its association with cognitive function. Epigenomics, 11(4), 401-410. doi:10.2217/epi-2018-0127 Flyckt, L., Borg, J., Borg, K., Ansved, T., Edman, G., Bjerkenstedt, L., & Wiesel, F.-A. (2000). Muscle biopsy, macro EMG, and clinical characteristics in patients with schizophrenia. Biological Psychiatry, 47(11), 991-999. doi:https://doi.org/10.1016/S0006-3223(99)00295-4 Fortin, J.-P., Labbe, A., Lemire, M., Zanke, B. W., Hudson, T. J., Fertig, E. J., Greenwood, C. M. T., & Hansen, K. D. (2014). Functional normalization of 450k methylation array data improves replication in large cancer studies. Genome Biology, 15(11), 503. doi:10.1186/s13059-014-0503-2 Fritschy, J.-M., Harvey, R. J., & Schwarz, G. (2008). Gephyrin: where do we stand, where do we go? Trends in Neurosciences, 31(5), 257-264. doi:10.1016/j.tins.2008.02.006 Fromer, M., Pocklington, A. J., Kavanagh, D. H., Williams, H. J., Dwyer, S., Gormley, P., Georgieva, L., Rees, E., Palta, P., Ruderfer, D. M., Carrera, N., Humphreys, I., Johnson, J. S., Roussos, P., Barker, D. D., Banks, E., Milanova, V., Grant, S. G., Hannon, E., . . . O’Donovan, M. C. (2014). De novo mutations in schizophrenia implicate synaptic networks. Nature, 506(7487), 179-184. doi:10.1038/nature12929 Gale-Grant, O., Dazzan, P., Lappin, J. M., Donoghue, K., Reininghaus, U., Croudace, T., Jones, P. B., Murray, R. M., Fearon, P., Doody, G. A., Morgan, C., & Heslin, M. (2021). Diagnostic stability and outcome after first episode psychosis. Journal of Mental Health, 30(1), 104-112. doi:10.1080/09638237.2020.1818191 Gilbert, T. M., Zürcher, N. R., Wu, C. J., Bhanot, A., Hightower, B. G., Kim, M., Albrecht, D. S., Wey, H. Y., Schroeder, F. A., Rodriguez-Thompson, A., Morin, T. M., Hart, K. L., Pellegrini, A. M., Riley, M. M., Wang, C., Stufflebeam, S. M., Haggarty, S. J., Holt, D. J., Loggia, M. L., Perlis, R. H., Brown, H. E., Roffman, J. L., & Hooker, J. M. (2019). PET neuroimaging reveals histone deacetylase dysregulation in schizophrenia. J Clin Invest, 129(1), 364-372. doi:10.1172/jci123743 Hannon, E., Dempster, E., Viana, J., Burrage, J., Smith, A. R., Macdonald, R., St Clair, D., Mustard, C., Breen, G., Therman, S., Kaprio, J., Toulopoulou, T., Pol, H. E. H., Bohlken, M. M., Kahn, R. S., Nenadic, I., Hultman, C. M., Murray, R. M., Collier, D. A., Bass, N., Gurling, H., McQuillin, A., Schalkwyk, L., & Mill, J. (2016). An integrated genetic-epigenetic analysis of schizophrenia: evidence for co-localization of genetic associations and differential DNA methylation. Genome Biology, 17(1), 176. doi:10.1186/s13059-016-1041-x Henderson-Smith, A., Fisch, K. M., Hua, J., Liu, G., Ricciardelli, E., Jepsen, K., Huentelman, M., Stalberg, G., Edland, S. D., Scherzer, C. R., Dunckley, T., & Desplats, P. (2019). DNA methylation changes associated with Parkinson’s disease progression: outcomes from the first longitudinal genome-wide methylation analysis in blood. Epigenetics, 14(4), 365-382. doi:10.1080/15592294.2019.1588682 Horvath, S., & Raj, K. (2018). DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nature Reviews Genetics, 19(6), 371-384. doi:10.1038/s41576-018-0004-3 Houseman, E. A., Accomando, W. P., Koestler, D. C., Christensen, B. C., Marsit, C. J., Nelson, H. H., Wiencke, J. K., & Kelsey, K. T. (2012). DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics, 13(1), 86. doi:10.1186/1471-2105-13-86 Houseman, E. A., Kim, S., Kelsey, K. T., & Wiencke, J. K. (2015). DNA Methylation in Whole Blood: Uses and Challenges. Current Environmental Health Reports, 2(2), 145-154. doi:10.1007/s40572-015-0050-3 Hu, M., Xia, Y., Zong, X., Sweeney, J. A., Bishop, J. R., Liao, Y., Giase, G., Li, B., Rubin, L. H., Wang, Y., Li, Z., He, Y., Chen, X., Liu, C., Chen, C., & Tang, J. (2022). Risperidone-induced changes in DNA methylation in peripheral blood from first-episode schizophrenia patients parallel changes in neuroimaging and cognitive phenotypes. Psychiatry Res, 317, 114789. doi:10.1016/j.psychres.2022.114789 Iasevoli, F., Giordano, S., Balletta, R., Latte, G., Formato, M. V., Prinzivalli, E., De Berardis, D., Tomasetti, C., & de Bartolomeis, A. (2016). Treatment resistant schizophrenia is associated with the worst community functioning among severely-ill highly-disabling psychiatric conditions and is the most relevant predictor of poorer achievements in functional milestones. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 65, 34-48. doi:10.1016/j.pnpbp.2015.08.010 Imamura, A., Morimoto, Y., Ono, S., Kurotaki, N., Kanegae, S., Yamamoto, N., Kinoshita, H., Tsujita, T., Okazaki, Y., & Ozawa, H. (2020). Genetic and environmental factors of schizophrenia and autism spectrum disorder: insights from twin studies. Journal of Neural Transmission, 127(11), 1501-1515. doi:10.1007/s00702-020-02188-w Jaffe, A. E., & Irizarry, R. A. (2014). Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biology, 15(2), R31. doi:10.1186/gb-2014-15-2-r31 Jang, H. S., Shin, W. J., Lee, J. E., & Do, J. T. (2017). CpG and Non-CpG Methylation in Epigenetic Gene Regulation and Brain Function. Genes (Basel), 8(6). doi:10.3390/genes8060148 John, R. M., & Rougeulle, C. (2018). Developmental Epigenetics: Phenotype and the Flexible Epigenome. Front Cell Dev Biol, 6, 130. doi:10.3389/fcell.2018.00130 Johnson, W. E., Li, C., & Rabinovic, A. (2006). Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8(1), 118-127. doi:10.1093/biostatistics/kxj037 Julayanont, P., & Suryadevara, U. (2021). Psychosis. Continuum (Minneap Minn), 27(6), 1682-1711. doi:10.1212/con.0000000000001013 Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The Positive and Negative Syndrome Scale (PANSS) for Schizophrenia. Schizophrenia bulletin, 13(2), 261-276. doi:10.1093/schbul/13.2.261 Kennedy, J. L., Altar, C. A., Taylor, D. L., Degtiar, I., & Hornberger, J. C. (2014). The social and economic burden of treatment-resistant schizophrenia: a systematic literature review. International Clinical Psychopharmacology, 29(2), 63-76. doi:10.1097/YIC.0b013e32836508e6 Kim, T., Park, J. K., Kim, H.-J., Chung, J.-H., & Kim, J. W. (2010). Association of histone deacetylase genes with schizophrenia in Korean population. Psychiatry Research, 178(2), 266-269. doi:10.1016/j.psychres.2009.05.007 Korbecki, J., Bobiński, R., & Dutka, M. (2019). Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors. Inflammation Research, 68(6), 443-458. doi:10.1007/s00011-019-01231-1 Laursen, T. M., Nordentoft, M., & Mortensen, P. B. (2014). Excess Early Mortality in Schizophrenia. Annual Review of Clinical Psychology, 10(1), 425-448. doi:10.1146/annurev-clinpsy-032813-153657 Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E., & Storey, J. D. (2012). The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics, 28(6), 882-883. doi:10.1093/bioinformatics/bts034 Li, M., Li, Y., Qin, H., Tubbs, J. D., Li, M., Qiao, C., Lin, J., Li, Q., Fan, F., Gou, M., Huang, J., Tong, J., Yang, F., Tan, Y., & Yao, Y. (2021). Genome-wide DNA methylation analysis of peripheral blood cells derived from patients with first-episode schizophrenia in the Chinese Han population. Mol Psychiatry, 26(8), 4475-4485. doi:10.1038/s41380-020-00968-0 Liu, J., Chen, J., Ehrlich, S., Walton, E., White, T., Perrone-Bizzozero, N., Bustillo, J., Turner, J. A., & Calhoun, V. D. (2013). Methylation Patterns in Whole Blood Correlate With Symptoms in Schizophrenia Patients. Schizophrenia bulletin, 40(4), 769-776. doi:10.1093/schbul/sbt080 Logotheti, M., Pilalis, E., Venizelos, N., Kolisis, F. N., & Chatziioannou, A. A. (2016). Studying Microarray Gene Expression Data of Schizophrenic Patients for Derivation of a Diagnostic Signature through the Aid of Machine Learning. Biometrics & Biostatistics International Journal, 4. Maekawa, M., Watanabe, A., Iwayama, Y., Kimura, T., Hamazaki, K., Balan, S., Ohba, H., Hisano, Y., Nozaki, Y., Ohnishi, T., Toyoshima, M., Shimamoto, C., Iwamoto, K., Bundo, M., Osumi, N., Takahashi, E., Takashima, A., & Yoshikawa, T. (2017). Polyunsaturated fatty acid deficiency during neurodevelopment in mice models the prodromal state of schizophrenia through epigenetic changes in nuclear receptor genes. Transl Psychiatry, 7(9), e1229. doi:10.1038/tp.2017.182 Mak, M., Samochowiec, J., Frydecka, D., Pełka-Wysiecka, J., Szmida, E., Karpiński, P., Sąsiadek, M. M., Piotrowski, P., Samochowiec, A., & Misiak, B. (2019). First-episode schizophrenia is associated with a reduction of HERV-K methylation in peripheral blood. Psychiatry Res, 271, 459-463. doi:10.1016/j.psychres.2018.12.012 Marques, D. F., Ota, V. K., Santoro, M. L., Talarico, F., Costa, G. O., Spindola, L. M., Cogo-Moreira, H., Carvalho, C. M., Xavier, G., Cavalcante, D. A., Gadelha, A., Noto, C., Cordeiro, Q., Bressan, R. A., Moretti, P. N., & Belangero, S. I. (2020). LINE-1 hypomethylation is associated with poor risperidone response in a first episode of psychosis cohort. Epigenomics, 12(12), 1041-1051. doi:10.2217/epi-2019-0350 Martin, E. M., & Fry, R. C. (2018). Environmental Influences on the Epigenome: Exposure- Associated DNA Methylation in Human Populations. Annual Review of Public Health, 39(1), 309-333. doi:10.1146/annurev-publhealth-040617-014629 Matissek, S. J., & Elsawa, S. F. (2020). GLI3: a mediator of genetic diseases, development and cancer. Cell Communication and Signaling, 18(1), 54. doi:10.1186/s12964-020-00540-x Merenlender-Wagner, A., Malishkevich, A., Shemer, Z., Udawela, M., Gibbons, A., Scarr, E., Dean, B., Levine, J., Agam, G., & Gozes, I. (2015). Autophagy has a key role in the pathophysiology of schizophrenia. Mol Psychiatry, 20(1), 126-132. doi:10.1038/mp.2013.174 Mirbahai, L., & Chipman, J. K. (2014). Epigenetic memory of environmental organisms: A reflection of lifetime stressor exposures. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 764-765, 10-17. doi:10.1016/j.mrgentox.2013.10.003 Misiak, B., Samochowiec, J., Konopka, A., Gawrońska-Szklarz, B., Beszłej, J. A., Szmida, E., & Karpiński, P. (2021). Clinical Correlates of the NR3C1 Gene Methylation at Various Stages of Psychosis. Int J Neuropsychopharmacol, 24(4), 322-332. doi:10.1093/ijnp/pyaa094 Miura, I., Kunii, Y., Hino, M., Hoshino, H., Matsumoto, J., Kanno-Nozaki, K., Horikoshi, S., Kaneko, H., Bundo, M., Iwamoto, K., & Yabe, H. (2018). DNA methylation of ANKK1 and response to aripiprazole in patients with acute schizophrenia: A preliminary study. Journal of Psychiatric Research, 100, 84-87. doi:10.1016/j.jpsychires.2018.02.018 Moore, L. D., Le, T., & Fan, G. (2013). DNA methylation and its basic function. Neuropsychopharmacology, 38(1), 23-38. doi:10.1038/npp.2012.112 Nadesalingam, N., Chapellier, V., Lefebvre, S., Pavlidou, A., Stegmayer, K., Alexaki, D., Gama, D. B., Maderthaner, L., von Känel, S., Wüthrich, F., & Walther, S. (2022). Motor abnormalities are associated with poor social and functional outcomes in schizophrenia. Comprehensive Psychiatry, 115, 152307. doi:https://doi.org/10.1016/j.comppsych.2022.152307 National Collaborating Centre for Mental Health, U. (2014). In Psychosis and Schizophrenia in Adults: Treatment and Management. National Institute for Health and Care Excellence (UK). Nie, F. Y., Zhang, M. R., Shang, S. S., Zhang, Q. X., Zhang, R., Chen, P., & Ma, J. (2021). Methylome-wide association study of first-episode schizophrenia reveals a hypermethylated CpG site in the promoter region of the TNIK susceptibility gene. Prog Neuropsychopharmacol Biol Psychiatry, 106, 110081. doi:10.1016/j.pnpbp.2020.110081 Nishimura, T., Kubosaki, A., Ito, Y., & Notkins, A. L. (2009). Disturbances in the secretion of neurotransmitters in IA-2/IA-2beta null mice: changes in behavior, learning and lifespan. Neuroscience, 159(2), 427-437. doi:10.1016/j.neuroscience.2009.01.022 Nordlund, J., Bäcklin, C. L., Wahlberg, P., Busche, S., Berglund, E. C., Eloranta, M. L., Flaegstad, T., Forestier, E., Frost, B. M., Harila-Saari, A., Heyman, M., Jónsson, O. G., Larsson, R., Palle, J., Rönnblom, L., Schmiegelow, K., Sinnett, D., Söderhäll, S., Pastinen, T., Gustafsson, M. G., Lönnerholm, G., & Syvänen, A. C. (2013). Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia. Genome Biol, 14(9), r105. doi:10.1186/gb-2013-14-9-r105 Norouzitallab, P., Baruah, K., Vanrompay, D., & Bossier, P. (2019). Can epigenetics translate environmental cues into phenotypes? Science of The Total Environment, 647, 1281-1293. doi:10.1016/j.scitotenv.2018.08.063 Owen, M. J., Sawa, A., & Mortensen, P. B. (2016). Schizophrenia. Lancet, 388(10039), 86-97. doi:10.1016/s0140-6736(15)01121-6 Palanca-Ballester, C., Rodriguez-Casanova, A., Torres, S., Calabuig-Fariñas, S., Exposito, F., Serrano, D., Redin, E., Valencia, K., Jantus-Lewintre, E., Diaz-Lagares, A., Montuenga, L., Sandoval, J., & Calvo, A. (2021). Cancer Epigenetic Biomarkers in Liquid Biopsy for High Incidence Malignancies. Cancers, 13(12), 3016. R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res, 43(7), e47. doi:10.1093/nar/gkv007 Rodriguez, G., Fisher, D. W., McClarty, B., Montalvo-Ortiz, J., Cui, Q., Chan, C. S., & Dong, H. (2022). Histone deacetylase inhibitors mitigate antipsychotic risperidone-induced motor side effects in aged mice and in a mouse model of Alzheimer's disease. Front Psychiatry, 13, 1020831. doi:10.3389/fpsyt.2022.1020831 Sargazi, S., Mirani Sargazi, F., Moudi, M., Heidari Nia, M., Saravani, R., Mirinejad, S., Shahraki, S., & Shakiba, M. (2020). Impact of Proliferator-Activated Receptor γ Gene Polymorphisms on Risk of Schizophrenia: A Case-Control Study and Computational Analyses. Iran J Psychiatry, 15(4), 286-296. doi:10.18502/ijps.v15i4.4294 Seto, E., & Yoshida, M. (2014). Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol, 6(4), a018713. doi:10.1101/cshperspect.a018713 Sharma, R. P., Grayson, D. R., & Gavin, D. P. (2008). Histone deactylase 1 expression is increased in the prefrontal cortex of schizophrenia subjects: Analysis of the National Brain Databank microarray collection. Schizophrenia Research, 98(1), 111-117. doi:10.1016/j.schres.2007.09.020 Shi, Y., Li, M., Song, C., Xu, Q., Huo, R., Shen, L., Xing, Q., Cui, D., Li, W., Zhao, J., He, L., & Qin, S. (2017). Combined study of genetic and epigenetic biomarker risperidone treatment efficacy in Chinese Han schizophrenia patients. Transl Psychiatry, 7(7), e1170. doi:10.1038/tp.2017.143 Stahl, E. A., Breen, G., Forstner, A. J., McQuillin, A., Ripke, S., Trubetskoy, V., Mattheisen, M., Wang, Y., Coleman, J. R. I., Gaspar, H. A., de Leeuw, C. A., Steinberg, S., Pavlides, J. M. W., Trzaskowski, M., Byrne, E. M., Pers, T. H., Holmans, P. A., Richards, A. L., Abbott, L., . . . the Bipolar Disorder Working Group of the Psychiatric Genomics, C. (2019). Genome-wide association study identifies 30 loci associated with bipolar disorder. Nature Genetics, 51(5), 793-803. doi:10.1038/s41588-019-0397-8 Straat, M., van Bruggen, R., de Korte, D., & Juffermans, N. P. (2012). Red blood cell clearance in inflammation. Transfus Med Hemother, 39(5), 353-361. doi:10.1159/000342229 Sullivan, P. F., Kendler, K. S., & Neale, M. C. (2003). Schizophrenia as a Complex Trait: Evidence From a Meta-analysis of Twin Studies. Archives of General Psychiatry, 60(12), 1187-1192. doi:10.1001/archpsyc.60.12.1187 Tang, H., Dalton, C. F., Srisawat, U., Zhang, Z. J., & Reynolds, G. P. (2014). Methylation at a transcription factor-binding site on the 5-HT1A receptor gene correlates with negative symptom treatment response in first episode schizophrenia. Int J Neuropsychopharmacol, 17(4), 645-649. doi:10.1017/s1461145713001442 Teschendorff, A. E., Marabita, F., Lechner, M., Bartlett, T., Tegner, J., Gomez-Cabrero, D., & Beck, S. (2013). A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics, 29(2), 189-196. doi:10.1093/bioinformatics/bts680 Tian, Y., Morris, T. J., Webster, A. P., Yang, Z., Beck, S., Feber, A., & Teschendorff, A. E. (2017). ChAMP: updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics, 33(24), 3982-3984. doi:10.1093/bioinformatics/btx513 Trubetskoy, V., Pardiñas, A. F., Qi, T., Panagiotaropoulou, G., Awasthi, S., Bigdeli, T. B., Bryois, J., Chen, C.-Y., Dennison, C. A., Hall, L. S., Lam, M., Watanabe, K., Frei, O., Ge, T., Harwood, J. C., Koopmans, F., Magnusson, S., Richards, A. L., Sidorenko, J., . . . Bertolino, A. (2022). Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 604(7906), 502-508. doi:10.1038/s41586-022-04434-5 Tyagi, S., Gupta, P., Saini, A. S., Kaushal, C., & Sharma, S. (2011). The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J Adv Pharm Technol Res, 2(4), 236-240. doi:10.4103/2231-4040.90879 van Os, J., & Kapur, S. (2009). Schizophrenia. The Lancet, 374(9690), 635-645. doi:10.1016/S0140-6736(09)60995-8 Venugopal, D., Shivakumar, V., Subbanna, M., Kalmady, S. V., Amaresha, A. C., Agarwal, S. M., Narayanaswamy, J. C., Banerjee, M., Debnath, M., & Venkatasubramanian, G. (2018). Impact of antipsychotic treatment on methylation status of Interleukin-6 [IL-6] gene in Schizophrenia. J Psychiatr Res, 104, 88-95. doi:10.1016/j.jpsychires.2018.07.002 Vos, T., Abajobir, A. A., Abate, K. H., Abbafati, C., Abbas, K. M., Abd-Allah, F., Abdulkader, R. S., Abdulle, A. M., Abebo, T. A., Abera, S. F., Aboyans, V., Abu-Raddad, L. J., Ackerman, I. N., Adamu, A. A., Adetokunboh, O., Afarideh, M., Afshin, A., Agarwal, S. K., Aggarwal, R., . . . Murray, C. J. L. (2017). Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet, 390(10100), 1211-1259. doi:10.1016/S0140-6736(17)32154-2 Wahbeh, M. H., & Avramopoulos, D. (2021). Gene-Environment Interactions in Schizophrenia: A Literature Review. Genes (Basel), 12(12). doi:10.3390/genes12121850 Walther, S., & Mittal, V. A. (2017). Motor System Pathology in Psychosis. Current Psychiatry Reports, 19(12), 97. doi:10.1007/s11920-017-0856-9 Walton, E., Hass, J., Liu, J., Roffman, J. L., Bernardoni, F., Roessner, V., Kirsch, M., Schackert, G., Calhoun, V., & Ehrlich, S. (2016). Correspondence of DNA Methylation Between Blood and Brain Tissue and Its Application to Schizophrenia Research. Schizophrenia bulletin, 42(2), 406-414. doi:10.1093/schbul/sbv074 Watkeys, O. J., Cohen-Woods, S., Quidé, Y., Cairns, M. J., Overs, B., Fullerton, J. M., & Green, M. J. (2020). Derivation of poly-methylomic profile scores for schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 101, 109925. doi:10.1016/j.pnpbp.2020.109925 Wold, K. F., Ottesen, A., Camilla, B. F., Johnsen, E., Lagerberg, T. V., Romm, K. L., Simonsen, C., Ueland, T., Widing, L., Åsbø, G., & Melle, I. (2023). Early identification of treatment non-response in first-episode psychosis. European Psychiatry, 66(1), e30, Article e30. doi:10.1192/j.eurpsy.2023.15 Wong, T.-S., Li, G., Li, S., Gao, W., Chen, G., Gan, S., Zhang, M., Li, H., Wu, S., & Du, Y. (2023). G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduction and Targeted Therapy, 8(1), 177. doi:10.1038/s41392-023-01427-2 Wu, H., & Zhang, Y. (2014). Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell, 156(1-2), 45-68. doi:10.1016/j.cell.2013.12.019 Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., Zhou, L., Tang, W., Zhan, L., Fu, X., Liu, S., Bo, X., & Yu, G. (2021). clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation, 2(3). doi:10.1016/j.xinn.2021.100141 Xia, F., Fu, Y., Xie, H., Chen, Y., Fang, D., Zhang, W., Liu, P., & Li, M. (2022). Suppression of ATG4B by copper inhibits autophagy and involves in Mallory body formation. Redox Biology, 52, 102284. doi:10.1016/j.redox.2022.102284 Yamada, L., & Chong, S. (2017). Epigenetic studies in Developmental Origins of Health and Disease: pitfalls and key considerations for study design and interpretation. Journal of Developmental Origins of Health and Disease, 8(1), 30-43. doi:10.1017/S2040174416000507 Yan, J., Chen, Y., Ju, P., Gao, J., Zhang, L., Li, J., Wang, K., Zhang, J., Li, C., Xia, Q., Zhu, C., & Zhang, X. (2022). Network Association of Biochemical and Inflammatory Abnormalities With Psychiatric Symptoms in First-Episode Schizophrenia Patients [Original Research]. Frontiers in Psychiatry, 13. doi:10.3389/fpsyt.2022.834539 Yang, X., Han, H., De Carvalho, D. D., Lay, F. D., Jones, P. A., & Liang, G. (2014). Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell, 26(4), 577-590. doi:10.1016/j.ccr.2014.07.028 Yuan, Y., Wang, H., Wei, Z., & Li, W. (2015). Impaired Autophagy in Hilar Mossy Cells of the Dentate Gyrus and Its Implication in Schizophrenia. Journal of Genetics and Genomics, 42(1), 1-8. doi:10.1016/j.jgg.2014.12.001 Zheng, X., Yang, Z., Gu, Q., Xia, F., Fu, Y., Liu, P., Yin, X. M., & Li, M. (2020). The protease activity of human ATG4B is regulated by reversible oxidative modification. Autophagy, 16(10), 1838-1850. doi:10.1080/15548627.2019.1709763 Zhou, J., Li, M., Wang, X., He, Y., Xia, Y., Sweeney, J. A., Kopp, R. F., Liu, C., & Chen, C. (2021). Drug Response-Related DNA Methylation Changes in Schizophrenia, Bipolar Disorder, and Major Depressive Disorder. Front Neurosci, 15, 674273. doi:10.3389/fnins.2021.674273 Zhou, W., Laird, P. W., & Shen, H. (2017). Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res, 45(4), e22. doi:10.1093/nar/gkw967 Zong, X., He, C., Huang, X., Xiao, J., Li, L., Li, M., Yao, T., Hu, M., Liu, Z., Duan, X., & Zheng, J. (2022). Predictive Biomarkers for Antipsychotic Treatment Response in Early Phase of Schizophrenia: Multi-Omic Measures Linking Subcortical Covariant Network, Transcriptomic Signatures, and Peripheral Epigenetics. Front Neurosci, 16, 853186. doi:10.3389/fnins.2022.853186 Zou, D., Qiu, Y., Li, R., Meng, Y., & Wu, Y. (2020). A Novel Schizophrenia Diagnostic Model Based on Statistically Significant Changes in Gene Methylation in Specific Brain Regions. Biomed Res Int, 2020, 8047146. doi:10.1155/2020/8047146 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90396 | - |
| dc.description.abstract | 背景及目的
越來越多研究指出在精神病症患者(大多為思覺失調症患者)的血液中部份候選基因存在DNA甲基化異常的現象。目前僅有很少研究使用全基因體甲基化的方法針對像是首次發作精神病症患者這類對象去了解DNA甲基化在疾病早期所扮演的角色以及DNA甲基化的異常是否會影響這些患者的治療反應。因此,本研究的目的為針對首次發作精神病症患者和健康對照組的血液樣本進行全基因體DNA甲基化分析,去找出在這些患者和對照組之間甲基化程度有差異的位點,並且進一步找出在治療反應良好和治療反應較差的患者之間甲基化程度有差異的位點。 方法 本研究由兩部分組成,一部分為病例對照研究,另一部分為單純病例研究。病例對照研究的部分從台灣北部的三間醫院和兩間診所招募到49名具有基線和六個月後追蹤資料的首次發作精神病症患者,並從研究生、職員和社區中招募了43名健康對照組,並在基線時收集所有參與者的血液樣本。患者在基線和治療六個月後使用活性與負性症狀量表(Positive and Negative Syndrome Scale, PANSS)測量症狀嚴重程度,測量分數下降大於20%的患者被歸類為治療反應良好者(n=19),下降程度為20%或更低的則被歸類為治療反應較差者(n=30)。使用Illumina Infinium MethylationEPIC v1.0 BeadChip對全基因體DNA甲基化進行定量。使用線性模型並校正年齡、性別、吸菸狀況和白細胞種類比例後找出與疾病有關的差異甲基化位點;並另外再校正病人收案來源(住院/門診病人)找出與治療反應有關的差異甲基化位點。透過基因本體富集分析去了解差異甲基化位點所坐落的基因主要參與的生物路徑。分別對在病例對照研究和病例治療反應比較研究中找到的差異甲基化位點其甲基化程度進行加權,去建立兩個分類指數,並使用ROC曲線下面積評估分類指數區分不同組別的表現。 結果 通過比較首次發作精神病症患者與對照組的甲基化程度,我們共找出84個達全基因體顯著水準(p < 5.74 × 10^-6)的差異甲基化位點,以及208個達啟發性顯著水準(p < 5 × 10^-5)的差異甲基化位點。針對這些差異甲基化位點坐落的基因進行基因本體富集分析後,發現它們主要富集於紅血球相關路徑與過氧化物酶體增殖物活化受體相關路徑。比較治療反應良好和治療反應較差的患者其甲基化程度後,沒有找到差異甲基化位點達全基因體顯著水準,但有64個達啟發性顯著水準的位點,並且發現這些位點對應的基因富集於活化蛋白質激酶C的G蛋白偶合受體信號傳導路徑和肌肉細胞相關路徑。基於84個與疾病有關的差異甲基化位點的疾病指數在區分首次發作精神病症患者和健康對照組時具有好的表現,ROC曲線下面積為86.7%;基於64個與治療反應有關的差異甲基化位點所建立的反應指數其ROC曲線下面積達到96.1%,說明此指數在區分治療反應較差者和反應良好者時也有良好的表現。 結論 周邊血液DNA的甲基化異常與精神病症的致病機轉還有精神病症患者的初期治療反應有關。周邊血液的DNA甲基化可能是未來發展協助診斷與辨別精神病症患者不同治療反應的生物標記的潛在來源。 | zh_TW |
| dc.description.abstract | Background
Accumulating studies have reported aberrant DNA methylation in certain candidate genes in peripheral blood from patients with psychosis, mostly patients with schizophrenia. There remains rarely examined the role of DNA methylation in the early phase of illness, such as first-episode psychosis (FEP), using a genome-wide methylation approach, and whether aberrant DNA methylation is also involved in these patients’ treatment responses. Hence, this study aims to conduct genome-wide DNA methylation analyses of blood samples from FEP patients and healthy controls to identify differentially methylated positions (DMPs) between these patients and controls and then to further identify DMPs between FEP patients with good treatment response and those with poor treatment response. Methods This study consisted of two parts: a case-control study and a case-only study. For the case-control part, 49 FEP patients were recruited from three hospitals and two private clinics in northern Taiwan and had both baseline and 6-month follow-up data, and 43 controls were recruited from a pool of graduate students, staff, and community volunteers. Blood samples were collected from all participants at baseline. Patients measured the symptom severity using the Positive and Negative Syndrome Scale at baseline and after six months, those with a reduction rate greater than 20% were classified as good responders (n=19), and those with 20% or even lower were classified as poor responders (n=30). The genome-wide DNA methylation patterns were quantified using an Illumina Infinium MethylationEPIC v1.0 BeadChip. Linear models with the adjustment for age, gender, smoking status, and white blood cell type proportion were used to identify disease-related DMPs, and with additional adjustment for recruitment source (inpatient/outpatient) to identify response-related DMPs. Gene ontology enrichment analyses were used to reveal the biological pathways of DMPs mapped genes. Two classification indexes were created by summing DMPs with their weighted methylation levels for the case-control and the good-vs-poor response study, respectively, and then using the area under the ROC curve (AUC) to evaluate the performance of the indexes in distinguishing different groups. Results Comparing FEP patients with controls, we identified 84 DMPs reaching genome-wide significance (p < 5.74 × 10^-6) and 208 DMPs reaching suggestive significance (p < 5 × 10^-5). When both sets of DMPs were subjected to gene ontology enrichment analysis, they were found to be mainly enriched in erythrocyte-related pathways and peroxisome proliferator activated receptor-related pathways. Comparing FEP patients with good response with those with poor response, none DMPs reached genome-wide significance and 64 DMPs reached suggestive significance level, which were found to be enriched in protein kinase C-activating G protein-coupled receptor signaling pathway and muscle cell-related pathways. The disease index based on the 84 disease-related DMPs had a high performance in distinguishing FEP patients from healthy controls, with the AUC of 86.7%. The AUC of the response index based on the 64 response-related DMPs was 96.1%, which also showed good performance in distinguishing poor responders from good responders. Conclusions Aberrant DNA methylation in peripheral blood was associated with the pathogenesis of psychosis and the initial treatment response of patients with psychosis, respectively. DNA methylation levels of blood samples might be a potential source to develop biomarkers for aiding in diagnosis or distinguishing between different treatment response groups of patients with psychosis. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-28T16:12:26Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-28T16:12:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract v Contents viii List of tables x List of figures xi List of supplementary materials xii Chapter 1 Introduction 1 Chapter 2 Materials and Methods 6 2.1 Participants 6 2.2 Measurements 7 2.3 DNA methylation profiling 7 2.4 Statistical analysis 9 2.4.1 Descriptive statistics of demographic and clinical variables 9 2.4.2 Identification of differentially methylated positions 9 2.4.3 Gene ontology enrichment analysis 10 2.4.4 Classification index 10 2.4.5 Statistical software 11 Chapter 3 Results 12 3.1 Demographic and clinical characteristics of participants 12 3.2 Differential methylation analysis of FEP patients and healthy controls 13 3.3 Differential methylation analysis of poor responders and good responders 15 3.4 Overlap between disease-related and response-related DMPs mapped genes 16 Chapter 4 Discussion 18 4.1 Disease-related DMPs and relevant biological pathways 18 4.2 Response-related DMPs and relevant biological pathways 20 4.3 Genes related to both disease and treatment response 22 4.4 Limitations 23 4.5 Conclusions 23 Reference 25 Supplementary Materials 53 | - |
| dc.language.iso | en | - |
| dc.subject | 生物標記 | zh_TW |
| dc.subject | DNA甲基化 | zh_TW |
| dc.subject | 首次發作精神病症 | zh_TW |
| dc.subject | 症狀改善 | zh_TW |
| dc.subject | 治療反應 | zh_TW |
| dc.subject | treatment response | en |
| dc.subject | first-episode psychosis | en |
| dc.subject | DNA methylation | en |
| dc.subject | symptom improvement | en |
| dc.subject | biomarker | en |
| dc.title | 首次發作精神病症患者之全基因體DNA甲基化異常及與治療反應有關之甲基化異常 | zh_TW |
| dc.title | Aberrant DNA methylation genomewide in patients with first-episode psychosis and the aberrant methylation associated with treatment response | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 郭柏秀;陳璿宇;劉智民 | zh_TW |
| dc.contributor.oralexamcommittee | Po-Hsiu Kuo;Hsuan-Yu Chen;Chih-Ming Liu | en |
| dc.subject.keyword | DNA甲基化,首次發作精神病症,症狀改善,治療反應,生物標記, | zh_TW |
| dc.subject.keyword | DNA methylation,first-episode psychosis,symptom improvement,treatment response,biomarker, | en |
| dc.relation.page | 89 | - |
| dc.identifier.doi | 10.6342/NTU202303142 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-07 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | - |
| Appears in Collections: | 流行病學與預防醫學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-111-2.pdf Restricted Access | 2.61 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
