請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90342完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江伯倫 | zh_TW |
| dc.contributor.advisor | Bor-Luen Chiang | en |
| dc.contributor.author | 賴夢萱 | zh_TW |
| dc.contributor.author | Meng-Xuan Lai | en |
| dc.date.accessioned | 2023-09-26T16:21:03Z | - |
| dc.date.available | 2025-12-31 | - |
| dc.date.copyright | 2023-09-26 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | 1. Elias, P. M., & Steinhoff, M. (2008). “Outside-to-Inside” (and now back to “utside”) pathogenic mechanisms in atopic dermatitis. The Journal of Investigative Dermatology, 128(5), 1067-1070.
2. Garmhausen, D., Hagemann, T., Bieber, T., Dimitriou, I., Fimmers, R., Diepgen, T., & Novak, N. (2013). Characterization of different courses of atopic dermatitis in adolescent and adult patients. Allergy, 68(4), 498–506. 3. Leung, D. Y., Boguniewicz, M., Howell, M. D., Nomura, I., & Hamid, Q. A. (2004). New insights into atopic dermatitis. The Journal of Clinical Investigation, 113(5), 651–657. 4. Novak, N., Kraft, S., & Bieber, T. (2003). Unraveling the mission of FcepsilonRI on antigen-presenting cells. The Journal of Allergy and Clinical Immunology, 111(1), 38–44. 5. Trautmann, A., Akdis, M., Kleemann, D., Altznauer, F., Simon, H. U., Graeve, T., Noll, M., Bröcker, E. B., Blaser, K., & Akdis, C. A. (2000). T cell-mediated Fas-induced keratinocyte apoptosis plays a key pathogenetic role in eczematous dermatitis. The Journal of Clinical Investigation, 106(1), 25–35. 6. Santamaria Babi, L. F., Picker, L. J., Perez Soler, M. T., Drzimalla, K., Flohr, P., Blaser, K., & Hauser, C. (1995). Circulating allergen-reactive T cells from patients with atopic dermatitis and allergic contact dermatitis express the skin-selective homing receptor, the cutaneous lymphocyte-associated antigen. The Journal of Experimental Medicine, 181(5), 1935–1940. 7. Barker, J. N., Allen, M. H., & MacDonald, D. M. (1990). Alterations induced in normal human skin by in vivo interferon-gamma. The British Journal of Dermatology, 122(4), 451–458. 8. Norris, D. A., Middleton, M. H., Whang, K., Schleicher, M., McGovern, T., Bennion, S. D., David-Bajar, K., Davis, D., & Duke, R. C. (1997). Human keratinocytes maintain reversible anti-apoptotic defenses in vivo and in vitro. Apoptosis : an International Journal on Programmed Cell Death, 2(2), 136–148. 9. Brandt, E. B., & Sivaprasad, U. (2011). Th2 Cytokines and Atopic Dermatitis. Journal of Clinical & Cellular Immunology, 2(3), 110. 10. Leung D. Y. (2000). Atopic dermatitis: new insights and opportunities for therapeutic intervention. The Journal of Allergy and Clinical Immunology, 105(5), 860–876. 11. Nakazato, J., Kishida, M., Kuroiwa, R., Fujiwara, J., Shimoda, M., & Shinomiya, N. (2008). Serum levels of Th2 chemokines, CCL17, CCL22, and CCL27, were the important markers of severity in infantile atopic dermatitis. Pediatric Allergy and Immunology : Official Publication of the European Society of Pediatric Allergy and Immunology, 19(7), 605–613. 12. Yue, H., Umehara, Y., Trujillo-Paez, J. V., Peng, G., Nguyen, H. L. T., Chieosilapatham, P., Kiatsurayanon, C., Song, P., Okumura, K., Ogawa, H., Ikeda, S., & Niyonsaba, F. (2021). Exogenous factors in the pathogenesis of atopic dermatitis: Irritants and cutaneous infections. Clinical and Experimental Allergy : Journal of the British Society for Allergy and Clinical Immunology, 51(3), 382–392. 13. Galli, E., Cinicola, B., Carello, R., Caimmi, S., Brindisi, G., De Castro, G., Zicari, A. M., Tosca, M. A., Manti, S., Martelli, A., Calvani, M., Cravidi, C., Marseglia, G. L., Cardinale, F., Miraglia Del Giudice, M., Caffarelli, C., & Duse, M. (2020). Atopic dermatitis. Acta bio-medica : Atenei Parmensis, 91(11-S), e2020011. 14. Pawlitschek, T. D., Arkin, L. M., & Shields, B. E. (2022). The Impact of Prenatal nutrition on the development of atopic dermatitis in infancy and childhood. Cutis, 109(3), 152–156. 15. Hsiao, Y. Y., Chen, Y. H., Hung, W. T., & Tang, K. T. (2022). The relationship between outdoor air pollutants and atopic dermatitis of adults: A systematic review and meta-analysis. Asian Pacific Journal of Allergy and Immunology, 40(4), 295–307. 16. Kim, J. H., Lee, S. H., Kang, M. J., Hwang, S. G., Park, Y. M., Kim, B. S., Lee, S. Y., Kim, S. A., Park, M. J., Song, K. B., Choi, E. J., Jung, S., & Hong, S. J. (2022). Host-microbial interactions between PTGR2 and Bifidobacterium in the early life gut of atopic dermatitis children. Pediatric Allergy and Immunology : official publication of the European Society of Pediatric Allergy and Immunology, 33(2), e13724. 17. Ahluwalia, J., Davis, D. M., Jacob, S., Waldman, A., Ong, P. Y., Cohen, S., Friedman, A., Lio, P., Jetter, N., Bienstock, J., LeBovidge, J., Spergel, J., & Fonacier, L. (2017). Atopic dermatitis: addressing allergy, infection, itch and complementary therapies. Seminars in Cutaneous Medicine and Surgery, 36(3), 112–117. 18. Hussein, M. R., Abdel-Magid, W. M., Saleh, R., & Nada, E. (2009). Phenotypical characteristics of the immune cells in allergic contact dermatitis, atopic dermatitis and pityriasis rosea. Pathology Oncology Research : POR, 15(1), 73–79. 19. Sybilski, A. J., Raciborski, F., Lipiec, A., Tomaszewska, A., Lusawa, A., Samel-Kowalik, P., Walkiewicz, A., Krzych-Fałta, E., & Samoliński, B. (2015). Epidemiology of atopic dermatitis in Poland according to the Epidemiology of Allergic Disorders in Poland (ECAP) study. The Journal of Dermatology, 42(2), 140–147. 20. Nagata, Y., Yoshihisa, Y., Matsunaga, K., Rehman, M. U., Kitaichi, N., & Shimizu, T. (2015). Role of macrophage migration inhibitory factor (MIF) in pollen-induced allergic conjunctivitis and pollen dermatitis in mice. PloS one, 10(2), e0115593. 21. Scala, E., Abeni, D., Guerra, E. C., Pirrotta, L., Locanto, M., Meneguzzi, G., Giani, M., Russo, G., & Asero, R. (2020). β-1,3-glucanase rOle e 9 and MnSOD rAsp f 6 IgE reactivity are the signature of atopic dermatitis in the Mediterranean area. Clinical and Experimental Allergy : Journal of the British Society for Allergy and Clinical Immunology, 50(4), 487–498. 22. Ma, L., Xue, H. B., Guan, X. H., Shu, C. M., Wang, F., Zhang, J. H., & An, R. Z. (2014). The Imbalance of Th17 cells and CD4(+) CD25(high) Foxp3(+) Treg cells in patients with atopic dermatitis. Journal of the European Academy of Dermatology and Venereology : JEADV, 28(8), 1079–1086. 23. Ma, L., Xue, H. B., Guan, X. H., Shu, C. M., Zhang, J. H., & Yu, J. (2014). Possible pathogenic role of T helper type 9 cells and interleukin (IL)-9 in atopic dermatitis. Clinical and Experimental Immunology, 175(1), 25–31. 24. Weidinger, S., Illig, T., Baurecht, H., Irvine, A. D., Rodriguez, E., Diaz-Lacava, A., Klopp, N., Wagenpfeil, S., Zhao, Y., Liao, H., Lee, S. P., Palmer, C. N., Jenneck, C., Maintz, L., Hagemann, T., Behrendt, H., Ring, J., Nothen, M. M., McLean, W. H., & Novak, N. (2006). Loss-of-function variations within the filaggrin gene predispose for atopic dermatitis with allergic sensitizations. The Journal of Allergy and Clinical Immunology, 118(1), 214–219. 25. Leyva-Castillo, J. M., Jabara, H. H., Wenzel, J., McGurk, A., Wong, D., Bieber, T., & Geha, R. S. (2020). APRIL expression is upregulated in atopic dermatitis skin lesions and at sites of antigen driven allergic skin inflammation in mice. Clinical Immunology (Orlando, Fla.), 219, 108556. 26. Silverberg, J. I., Hanifin, J. M., Law, S., White, K., & Storrs, F. J. (2016). Lack of association between dust mite sensitivity and atopic dermatitis. Dermatitis : contact, atopic, occupational, drug, 27(2), 59–67. 27. Penders, J., Thijs, C., Mommers, M., Stobberingh, E. E., Dompeling, E., Reijmerink, N. E., van den Brandt, P. A., Kerkhof, M., Koppelman, G. H., & Postma, D. S. (2010). Intestinal lactobacilli and the DC-SIGN gene for their recognition by dendritic cells play a role in the aetiology of allergic manifestations. Microbiology (Reading, England), 156(Pt 11), 3298–3305. 28. Maeda, K., Yamamoto, K., Tanaka, Y., Anan, S., & Yoshida, H. (1992). House dust mite (HDM) antigen in naturally occurring lesions of atopic dermatitis (AD): the relationship between HDM antigen in the skin and HDM antigen-specific IgE antibody. Journal of Dermatological Science, 3(2), 73–77. 29. Tanaka, T., Hitomi, Y., Kambayashi, Y., Hibino, Y., Fukutomi, Y., Shibata, A., Sugimoto, N., Hatta, K., Eboshida, A., Konoshita, T., & Nakamura, H. (2012). The differences in the involvements of loci of promoter region and Ile50Val in interleukin-4 receptor α chain gene between atopic dermatitis and Japanese cedar pollinosis. Allergology International : Official Journal of the Japanese Society of Allergology, 61(1), 57–63. 30. Dhingra, N., Gulati, N., & Guttman-Yassky, E. (2013). Mechanisms of contact sensitization offer insights into the role of barrier defects vs. intrinsic immune abnormalities as drivers of atopic dermatitis. The Journal of Investigative Dermatology, 133(10), 2311–2314. https://doi.org/10.1038/jid.2013.239 31. Jin, H., He, R., Oyoshi, M., & Geha, R. S. (2009). Animal models of atopic dermatitis. The Journal of Investigative Dermatology, 129(1), 31–40. 32. Kim, W. H., An, H. J., Kim, J. Y., Gwon, M. G., Gu, H., Jeon, M., Sung, W. J., Han, S. M., Pak, S. C., Kim, M. K., & Park, K. K. (2017). Beneficial effects of melittin on ovalbumin-induced atopic dermatitis in mouse. Scientific Reports, 7(1), 17679. 33. Kim, J., Kim, B. E., & Leung, D. Y. M. (2019). Pathophysiology of atopic dermatitis: Clinical implications. Allergy and Asthma Proceedings, 40(2), 84–92. 34. Matsuda, H., Watanabe, N., Geba, G. P., Sperl, J., Tsudzuki, M., Hiroi, J., Matsumoto, M., Ushio, H., Saito, S., Askenase, P. W., & Ra, C. (1997). Development of atopic dermatitis-like skin lesion with IgE hyperproduction in NC/Nga mice. International Immunology, 9(3), 461–466. 35. Taïeb, A., Hanifin, J., Cooper, K., Bos, J. D., Imokawa, G., David, T. J., Ring, J., Gelmetti, C., Kapp, A., Furue, M., de Prost, Y., Darsow, U., Werfel, T., Atherton, D., & Oranje, A. P. (2006). Proceedings of the 4th Georg Rajka International Symposium on Atopic Dermatitis, Arcachon, France, September 15-17, 2005. The Journal of Allergy and Clinical Immunology, 117(2), 378–390. 36. Carretero, M., Guerrero-Aspizua, S., Illera, N., Galvez, V., Navarro, M., García-García, F., Dopazo, J., Jorcano, J. L., Larcher, F., & del Rio, M. (2016). Differential Features between chronic skin inflammatory diseases revealed in skin-humanized psoriasis and atopic dermatitis mouse models. The Journal of Investigative Dermatology, 136(1), 136–145. 37. Saunders, S. P., Moran, T., Floudas, A., Wurlod, F., Kaszlikowska, A., Salimi, M., Quinn, E. M., Oliphant, C. J., Núñez, G., McManus, R., Hams, E., Irvine, A. D., McKenzie, A. N., Ogg, G. S., & Fallon, P. G. (2016). Spontaneous atopic dermatitis is mediated by innate immunity, with the secondary lung inflammation of the atopic march requiring adaptive immunity. The Journal of Allergy and Clinical Immunology, 137(2), 482–491. 38. Oyoshi, M. K., Oettgen, H. C., Chatila, T. A., Geha, R. S., & Bryce, P. J. (2014). Food allergy: Insights into etiology, prevention, and treatment provided by murine models. The Journal of Allergy and Clinical Immunology, 133(2), 309–317. 39. Brandt, E. B., & Sivaprasad, U. (2011). Th2 Cytokines and Atopic Dermatitis. Journal of Clinical & Cellular Immunology, 2(3), 110. 40. Früh, S. P., Saikia, M., Eule, J., Mazulis, C. A., Miller, J. E., Cowulich, J. M., Oyesola, O. O., Webb, L. M., Peng, S. A., Cubitt, R. L., Danko, C. G., Miller, W. H., & Tait Wojno, E. D. (2020). Elevated circulating Th2 but not group 2 innate lymphoid cell responses characterize canine atopic dermatitis. Veterinary Immunology and Immunopathology, 221, 110015. 41. Domenico, J., Lucas, J. J., Fujita, M., & Gelfand, E. W. (2012). Susceptibility to vaccinia virus infection and spread in mice is determined by age at infection, allergen sensitization and mast cell status. International archives of allergy and Immunology, 158(2), 196–205. 42. Yoshioka, T., Hikita, I., Asakawa, M., Hirasawa, T., Deguchi, M., Matsutani, T., Oku, H., Horikawa, T., & Arimura, A. (2006). Spontaneous scratching behaviour in DS-Nh mice as a possible model for pruritus in atopic dermatitis. Immunology, 118(3), 293–301. 43. Greenfield, D. A., Feizpour, A., & Evans, C. L. (2023). Quantifying inflammatory response and drug-aided resolution in an atopic dermatitis model with deep learning. The Journal of Investigative Dermatology, S0022-202X(23)00094-5. Advance online publication. 44. Katagiri, K., Arakawa, S., Hatano, Y., & Fujiwara, S. (2008). Tolerogenic antigen-presenting cells successfully inhibit atopic dermatitis-like skin lesion induced by repeated epicutaneous exposure to ovalbumin. Archives of Dermatological Research, 300(10), 583–593. 45. Elentner, A., Finke, D., Schmuth, M., Chappaz, S., Ebner, S., Malissen, B., Kissenpfennig, A., Romani, N., & Dubrac, S. (2009). Langerhans cells are critical in the development of atopic dermatitis-like inflammation and symptoms in mice. Journal of Cellular and Molecular Medicine, 13(8B), 2658–2672. 46. Hussain, M., Borcard, L., Walsh, K. P., Pena Rodriguez, M., Mueller, C., Kim, B. S., Kubo, M., Artis, D., & Noti, M. (2018). Basophil-derived IL-4 promotes epicutaneous antigen sensitization concomitant with the development of food allergy. The Journal of Allergy and Clinical Immunology, 141(1), 223–234.e5. 47. Li, H., Zhang, Z., Zhang, H., Guo, Y., & Yao, Z. (2021). Update on the pathogenesis and therapy of atopic dermatitis. Clinical Reviews in Allergy & Immunology, 61(3), 324–338. 48. Krutmann, J., Czech, W., Diepgen, T., Niedner, R., Kapp, A., & Schöpf, E. (1992). High-dose UVA1 therapy in the treatment of patients with atopic dermatitis. Journal of the American Academy of Dermatology, 26(2 Pt 1), 225–230. 49. Trompette, A., Pernot, J., Perdijk, O., Alqahtani, R. A. A., Domingo, J. S., Camacho-Muñoz, D., Wong, N. C., Kendall, A. C., Wiederkehr, A., Nicod, L. P., Nicolaou, A., von Garnier, C., Ubags, N. D. J., & Marsland, B. J. (2022). Gut-derived short-chain fatty acids modulate skin barrier integrity by promoting keratinocyte metabolism and differentiation. Mucosal Immunology, 15(5), 908–926. 50. Shukla, J. N., Kalsi, M., Sethi, A., Narva, K. E., Fishilevich, E., Singh, S., Mogilicherla, K., & Palli, S. R. (2016). Reduced stability and intracellular transport of dsRNA contribute to poor RNAi response in lepidopteran insects. RNA biology, 13(7), 656–669. 51. Saleh, M. C., van Rij, R. P., Hekele, A., Gillis, A., Foley, E., O'Farrell, P. H., & Andino, R. (2006). The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nature Cell Biology, 8(8), 793–802. 52. Clemens, J. C., Worby, C. A., Simonson-Leff, N., Muda, M., Maehama, T., Hemmings, B. A., & Dixon, J. E. (2000). Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proceedings of the National Academy of Sciences of the United States of America, 97(12), 6499–6503. 53. Germain, N. D., Chung, W. K., & Sarmiere, P. D. (2023). RNA interference (RNAi)-based therapeutics for treatment of rare neurologic diseases. Molecular Aspects of Medicine, 91, 101148. 54. Agrawal, N., Dasaradhi, P. V., Mohmmed, A., Malhotra, P., Bhatnagar, R. K., & Mukherjee, S. K. (2003). RNA interference: biology, mechanism, and applications. Microbiology and Molecular Biology Reviews: MMBR, 67(4), 657–685. 55. Chiu, Y. L., & Rana, T. M. (2003). siRNA function in RNAi: a chemical modification analysis. RNA (New York, N.Y.), 9(9), 1034–1048. 56. Sui, G., Soohoo, C., Affar, elB., Gay, F., Shi, Y., Forrester, W. C., & Shi, Y. (2002). A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 99(8), 5515–5520. 57. Paddison, P. J., Caudy, A. A., & Hannon, G. J. (2002). Stable suppression of gene expression by RNAi in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 99(3), 1443–1448. 58. Tuschl, T., Zamore, P. D., Lehmann, R., Bartel, D. P., & Sharp, P. A. (1999). Targeted mRNA degradation by double-stranded RNA in vitro. Genes & Development, 13(24), 3191–3197. 59. Vogel, E., Santos, D., Mingels, L., Verdonckt, T. W., & Broeck, J. V. (2019). RNA interference in insects: protecting beneficials and controlling pests. Frontiers in physiology, 9, 1912. 60. Ubags, N. D., Trompette, A., Pernot, J., Nibbering, B., Wong, N. C., Pattaroni, C., Rapin, A., Nicod, L. P., Harris, N. L., & Marsland, B. J. (2021). Microbiome-induced antigen-presenting cell recruitment coordinates skin and lung allergic inflammation. The Journal of Allergy and Clinical Immunology, 147(3), 1049–1062.e7. 147, 1049-1062.e1047 61. Liang, X., Zhang, J., Ou, H., Chen, J., Mitragotri, S., & Chen, M. (2020). Skin Delivery of siRNA Using Sponge Spicules in Combination with Cationic Flexible Liposomes. Molecular Therapy. Nucleic Acids, 20, 639–648 62. Eckert, L., Gupta, S., Gadkari, A., Mahajan, P., & Gelfand, J. M. (2019). Burden of illness in adults with atopic dermatitis: Analysis of National Health and Wellness Survey data from France, Germany, Italy, Spain, and the United Kingdom. Journal of the American Academy of Dermatology, 81(1), 187–195. 63. Ong, P. Y., & Leung, D. Y. (2016). Bacterial and Viral Infections in Atopic dermatitis: a Comprehensive review. Clinical Reviews in Allergy & Immunology, 51(3), 329–337. 64. Shi, B., Leung, D. Y. M., Taylor, P. A., & Li, H. (2018). Methicillin-Resistant Staphylococcus aureus colonization is associated with decreased skin commensal bacteria in atopic dermatitis. The Journal of investigative dermatology, 138(7), 1668–1671. 65. Orciani, M., Campanati, A., Caffarini, M., Ganzetti, G., Consales, V., Lucarini, G., Offidani, A., & Di Primio, R. (2017). T helper (Th)1, Th17 and Th2 imbalance in mesenchymal stem cells of adult patients with atopic dermatitis: at the origin of the problem. The British Journal of Dermatology, 176(6), 1569–1576. 66. Brunner, P. M., Emerson, R. O., Tipton, C., Garcet, S., Khattri, S., Coats, I., Krueger, J. G., & Guttman-Yassky, E. (2017). Nonlesional atopic dermatitis skin shares similar T-cell clones with lesional tissues. Allergy, 72(12), 2017–2025. 67. Nakahara, T., Kido-Nakahara, M., Tsuji, G., & Furue, M. (2021). Basics and recent advances in the pathophysiology of atopic dermatitis. The Journal of Dermatology, 48(2), 130–139. 68. Furue, M., Ulzii, D., Vu, Y. H., Tsuji, G., Kido-Nakahara, M., & Nakahara, T. (2019). Pathogenesis of atopic dermatitis: Current paradigm. Iranian Journal of Immunology: IJI, 16(2), 97–107. 69. Chen, Y. L., Gutowska-Owsiak, D., Hardman, C. S., Westmoreland, M., MacKenzie, T., Cifuentes, L., Waithe, D., Lloyd-Lavery, A., Marquette, A., Londei, M., & Ogg, G. (2019). Proof-of-concept clinical trial of etokimab shows a key role for IL-33 in atopic dermatitis pathogenesis. Science Translational Medicine, 11(515), eaax2945. 70. Hueber, W., Sands, B. E., Lewitzky, S., Vandemeulebroecke, M., Reinisch, W., Higgins, P. D., Wehkamp, J., Feagan, B. G., Yao, M. D., Karczewski, M., Karczewski, J., Pezous, N., Bek, S., Bruin, G., Mellgard, B., Berger, C., Londei, M., Bertolino, A. P., Tougas, G., Travis, S. P., … Secukinumab in Crohn's Disease Study Group (2012). Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut, 61(12), 1693–1700. 71. Wedell-Neergaard, A. S., Lang Lehrskov, L., Christensen, R. H., Legaard, G. E., Dorph, E., Larsen, M. K., Launbo, N., Fagerlind, S. R., Seide, S. K., Nymand, S., Ball, M., Vinum, N., Dahl, C. N., Henneberg, M., Ried-Larsen, M., Nybing, J. D., Christensen, R., Rosenmeier, J. B., Karstoft, K., Pedersen, B. K., … Krogh-Madsen, R. (2019). Exercise-induced changes in visceral adipose tissue mass are regulated by IL-6 signaling: A randomized controlled trial. Cell metabolism, 29(4), 844–855.e3. 72. Kurowska-Stolarska, M., Kewin, P., Murphy, G., Russo, R. C., Stolarski, B., Garcia, C. C., Komai-Koma, M., Pitman, N., Li, Y., Niedbala, W., McKenzie, A. N., Teixeira, M. M., Liew, F. Y., & Xu, D. (2008). IL-33 induces antigen-specific IL-5+ T cells and promotes allergic-induced airway inflammation independent of IL-4. Journal of Immunology (Baltimore, Md.: 1950), 181(7), 4780–4790. 73. Pastorelli, L., Garg, R. R., Hoang, S. B., Spina, L., Mattioli, B., Scarpa, M., Fiocchi, C., Vecchi, M., & Pizarro, T. T. (2010). Epithelial-derived IL-33 and its receptor ST2 are dysregulated in ulcerative colitis and in experimental Th1/Th2 driven enteritis. Proceedings of the National Academy of Sciences of the United States of America, 107(17), 8017–8022. 74. Bieber T. (2020). Interleukin-13: Targeting an underestimated cytokine in atopic dermatitis. Allergy, 75(1), 54–62. 75. Zahn, S., Godillot, P., Yoshimura, A., & Chaiken, I. (2000). IL-5-Induced JAB-JAK2 interaction. Cytokine, 12(9), 1299–1306. 76. McCormick, S. M., & Heller, N. M. (2015). Commentary: IL-4 and IL-13 receptors and signaling. Cytokine, 75(1), 38–50. 77. Lupardus, P. J., Birnbaum, M. E., & Garcia, K. C. (2010). Molecular basis for shared cytokine recognition revealed in the structure of an unusually high affinity complex between IL-13 and IL-13Ralpha2. Structure (London, England : 1993), 18(3), 332–342. 78. Ferreira, B. R., Pio-Abreu, J. L., Figueiredo, A., & Misery, L. (2021). Pruritus, allergy and autoimmunity: Paving the way for an integrated understanding of psychodermatological diseases. Frontiers in Allergy, 2, 688999. 79. Chieosilapatham, P., Kiatsurayanon, C., Umehara, Y., Trujillo-Paez, J. V., Peng, G., Yue, H., Nguyen, L. T. H., & Niyonsaba, F. (2021). Keratinocytes: innate immune cells in atopic dermatitis. Clinical and Experimental Immunology, 204(3), 296–309. 80. Imai Y. (2019). Interleukin-33 in atopic dermatitis. Journal of Dermatological Science, 96(1), 2–7. 81. Beck, L. A., Cork, M. J., Amagai, M., De Benedetto, A., Kabashima, K., Hamilton, J. D., & Rossi, A. B. (2022). Type 2 Inflammation contributes to skin barrier dysfunction in atopic dermatitis. JID Innovations: Skin Science from Molecules to Population Health, 2(5), 100131. 82. Borowczyk, J., Shutova, M., Brembilla, N. C., & Boehncke, W. H. (2021). IL-25 (IL-17E) in epithelial immunology and pathophysiology. The Journal of Allergy and Clinical Immunology, 148(1), 40–52. 83. Chung, E. J., Luo, C. H., Thio, C. L., & Chang, Y. J. (2022). Immunomodulatory role of Staphylococcus aureus in atopic dermatitis. Pathogens (Basel, Switzerland), 11(4), 422. 84. Mjösberg, J., & Eidsmo, L. (2014). Update on innate lymphoid cells in atopic and non-atopic inflammation in the airways and skin. Clinical and Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology, 44(8), 1033–1043. 85. Kidd, M. E., Shin, S., & Shea, L. D. (2012). Fibrin hydrogels for lentiviral gene delivery in vitro and in vivo. Journal of Controlled Release: Official Journal of The Controlled Release Society, 157(1), 80–85. 86. Rezaie, J., Ajezi, S., Avci, Ç. B., Karimipour, M., Geranmayeh, M. H., Nourazarian, A., Sokullu, E., Rezabakhsh, A., & Rahbarghazi, R. (2018). Exosomes and their Application in Biomedical Field: Difficulties and Advantages. Molecular Neurobiology, 55(4), 3372–3393. 87. Akil O. (2020). Dual and triple AAV delivery of large therapeutic gene sequences into the inner ear. Hearing Research, 394, 107912. 88. Ku, M. W., Authié, P., Nevo, F., Souque, P., Bourgine, M., Romano, M., Charneau, P., & Majlessi, L. (2021). Lentiviral vector induces high-quality memory T cells via dendritic cells transduction. Communications Biology, 4(1), 713. 89. Berger, G., Durand, S., Goujon, C., Nguyen, X. N., Cordeil, S., Darlix, J. L., & Cimarelli, A. (2011). A simple, versatile and efficient method to genetically modify human monocyte-derived dendritic cells with HIV-1-derived lentiviral vectors. Nature Protocols, 6(6), 806–816. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90342 | - |
| dc.description.abstract | 異位性皮膚炎(atopic dermatitis,AD)是一種會反覆發作過敏引起的慢性疾病,主要是會造成皮膚的病變,如:發炎、搔癢、紅腫、脹痛等症狀。全球約有10~20%的孩童受此疾病所苦。在AD的發病機制中,第二型輔助T細胞(Th2 cells)扮演重要角色,分泌介白素4(interleukin 4)與介白素13(interleukin 13)會抑制表皮分化和抑制表皮脂質生成,再次破壞皮膚屏障,並刺激B細胞分泌免疫球蛋白E (IgE)使肥大細胞致敏化,最後釋出組織胺介質而導致AD。目前已有抗IgE單株抗體藥物omalizuma和抗IL-4, IL-13 dupilumab,不過生物製劑的費用較為昂貴,因此我們想研究利用RNA干擾(RNAi)技術來研究治療。本研究將針對發病機制中關鍵的細胞激素IL-4和IL-13作為治療軸心,利用RNAi的技術幫助降解IL-4/IL-13的mRNA。實驗結果顯示,使用慢病毒載體遞送siRNA能有效地降低炎症細胞浸潤和減少發炎細胞激素IL-4,IL-13的表現,並進一步通過水凝膠混合帶有IL-4和IL-13的siRNA慢病毒載體敷至AD小鼠皮膚抑制基因的表現,實驗結果表明表現有顯著差異。未來,我們將選用微針技術更有效率地將siRNA遞送至小鼠做進一步的探討。本研究為AD的治療提供了新的思路和方法,有望成為治療AD的有效手段。 | zh_TW |
| dc.description.abstract | The goal of this research is to explore therapeutic strategies for atopic dermatitis (AD), a chronic disease caused by repeated allergic reactions, affecting approximately 10-20% of children worldwide. AD involves Th2 cells that release IL-4 and IL-13, which inhibit epidermal differentiation and suppress epidermal lipid synthesis, resulting in the impairment of the skin’s protective barrier. Mast cells become more sensitive or reactive due to the release of IgE antibodies. Ultimately, the release of histamine mediators cause AD. Currently, monoclonal antibodies against IgE, such as omalizumab and anti-IL-4R dupilumab are available, but they are quite expensive. Therefore, we aimed to explore the feasibility of RNA interference (RNAi) technology as a potential alternative. The study focused on targeting IL-4 and IL-13 of AD via RNAi to degrade their mRNA. The experimental results demonstrated that the use of a lentiviral vector to deliver siRNA can effectively reduce inflammatory cell infiltration and decrease IL-4 and IL-13 inflammatory cytokines. Moreover, the application of hydrogel mixed with lentiviral vectors carrying siRNA targeting IL-4 and IL-13 was employed to treat AD in mice, resulting in significant differences in the experimental outcomes. In the future, the study aims to investigate further the efficient delivery of siRNA to mice using microneedle technology. This study provides novel ideas and methods to address AD and might become a promising strategy to treating this disease. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-26T16:21:02Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-26T16:21:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 III Abstract IV Contents VI Contents of figures XI Chapter 1. Introduction 1 Part1. Background 2 1. Atopic dermatitis 2 2. AD therapy Advance in AD treatment strategy 5 3. The mechanism of RNA interference 8 Part2. Hypothesis and specific aim 9 Chapter2. Materials and Methods 12 Part 1. Materials 13 1. Animals 13 2. Culture medium and buffer 13 3. Enzyme-linked immunosorbent assay (ELISA) 15 4. RNA extraction 15 5. Reverse transcriptase polymerase chain reaction (RT-PCR) 16 6. Real-time polymerase chain reaction / quantitative polymerase chain reaction (qPCR) 17 7. Flow cytometry 17 8. Immunohistochemical staining 17 9. Escherichia coli (E. coli) bacterial culturing and DNA extraction kit 17 10. Agarose gel electrophoresis, restriction enzyme and buffer 18 11. Preparation of shRNA-encoding lentivirus and treatment 18 12. The lentiviral titer was assessed by qPCR lentivirus titration kit 18 13. Ovalbumin-induced AD animal model 19 14. Therapeutics targeting IL-4 and IL-13 via lentiviral gene delivery in the skin of Ovalbumin-induced AD animal model 19 Part 2. Methods 20 1. Cell lines, cell culture and stimulation 20 2. Determination of EL4 cell line cytokine production 20 3. RNA extraction 21 4. cDNA synthesis and quantitative real-time PCR 22 5. Plasmids DNA prepared from E. coli bacteria 22 6. Plasmid DNA purification from E. coli by DNA extraction kit 23 7. Restriction Digest of Plasmid DNA 24 8. Agarose Gel Electrophoresis for the Separation of DNA Fragments 24 9. Determining RNA target sites and sequencing 25 10. Construction of shRNA lentiviral vector 25 11. The lentiviral titer was estimated by qPCR lentivirus titration kit 26 12. Determination of transfection efficiency by eGFP-lentivirus in EL4 T cell 26 13. Assessment of the inhibitory capacity of siIL-4 and siIL-13 in EL4 T cell 27 14. The murine model of ovalbumin-induced AD 27 15. Serum sample collection 28 16. Quantification of gene expression by mouse 29 17. Skin severity score 29 18. Histopathological studies 29 19. Hydrogel mixed with eGFP-lentivirus for OVA-induced AD model 30 20. Application of siIL-4 and siIL-13 lentivirus with hydrogel to the skin for OVA model 30 21. Statistical analysis 31 Chapter 3. Results 32 1. Lentiviral vector preparation and construction of plasmids 33 1.1 Genetic information transfection and plasmid construction 33 1.2 Utilized gel electrophoresis to identify the DNA fragment sizes in the lentiviral transfer plasmids 33 2. PMA + Ionomycin stimulation of IL-4 and IL-13 expression in EL-4 cell line 34 3. The most appropriate MOI formula to infect EL4 T cells 34 4. The delivery of lentivirus carrying siIL-4 effectively inhibited IL-4 formation in EL4 T cells. 35 5. Establishment of OVA-induced AD model 35 6. Skin severity score of AD 36 7. OVA-induced AD model triggered the induction of dermatitis resembling AD 36 8. The IgE level increased in OVA-induced AD model 37 9. OVA-induced AD caused inflammation 37 10. The mice were treated with a virus GFP-lentivirus to induce AD after exposure to OVA 38 11. The GFP-lentivirus hydrogel matrix is the most suitable therapeutic approach in our AD model 39 12. Dexamethasone, siIL-4, and siIL-13 significantly reduced epidermal thickness in AD model compared to the control group 40 Chapter 4. Discussion 42 Figures 49 References 64 | - |
| dc.language.iso | en | - |
| dc.subject | 第二型輔助T細胞 | zh_TW |
| dc.subject | 免疫球蛋白E | zh_TW |
| dc.subject | 慢病毒載體 | zh_TW |
| dc.subject | 異位性皮膚炎 | zh_TW |
| dc.subject | 基因沉默 | zh_TW |
| dc.subject | Atopic dermatitis | en |
| dc.subject | IgE | en |
| dc.subject | Lentivirus vector | en |
| dc.subject | T helper 2 cells | en |
| dc.subject | Gene silencing | en |
| dc.title | IL-4和IL-13的siRNA 對異位性皮膚炎動物模型的影響 | zh_TW |
| dc.title | Study on the effects of siRNA against IL-4 and IL-13 in animal model of atopic dermatitis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 侯欣翰 | zh_TW |
| dc.contributor.coadvisor | Hsin-Han Hou | en |
| dc.contributor.oralexamcommittee | 王麗潔;莊雅惠 | zh_TW |
| dc.contributor.oralexamcommittee | Li-Chieh Wang;Ya-Hui Chuang | en |
| dc.subject.keyword | 異位性皮膚炎,第二型輔助T細胞,慢病毒載體,免疫球蛋白E,基因沉默, | zh_TW |
| dc.subject.keyword | Atopic dermatitis,T helper 2 cells,Lentivirus vector,IgE,Gene silencing, | en |
| dc.relation.page | 82 | - |
| dc.identifier.doi | 10.6342/NTU202303855 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-10 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 口腔生物科學研究所 | - |
| 顯示於系所單位: | 口腔生物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 2.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
