Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 解剖學暨細胞生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90296
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳玉怜zh_TW
dc.contributor.advisorYuh-Lien Chenen
dc.contributor.author任藝zh_TW
dc.contributor.authorYi Renen
dc.date.accessioned2023-09-26T16:08:45Z-
dc.date.available2023-11-10-
dc.date.copyright2023-09-26-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citationAbdellatif, M., Ljubojevic-Holzer, S., Madeo, F., & Sedej, S. (2020). Autophagy in cardiovascular health and disease. Prog Mol Biol Transl Sci, 172, 87-106. https://doi.org/10.1016/bs.pmbts.2020.04.022
Adebayo, M., Singh, S., Singh, A. P., & Dasgupta, S. (2021). Mitochondrial fusion and fission: The fine-tune balance for cellular homeostasis. Faseb j, 35(6), e21620. https://doi.org/10.1096/fj.202100067R
Ajoolabady, A., Chiong, M., Lavandero, S., Klionsky, D. J., & Ren, J. (2022). Mitophagy in cardiovascular diseases: molecular mechanisms, pathogenesis, and treatment. Trends Mol Med, 28(10), 836-849. https://doi.org/10.1016/j.molmed.2022.06.007
Andrieux, P., Chevillard, C., Cunha-Neto, E., & Nunes, J. P. S. (2021). Mitochondria as a Cellular Hub in Infection and Inflammation. Int J Mol Sci, 22(21). https://doi.org/10.3390/ijms222111338
Arjun, V., Kumar, P., Dutt, R., Kumar, A., Bala, R., Verma, N., Jerome, A., Virmani, M., Patil, C. S., Bhardwaj, S., Kumar, D., & Yadav, P. S. (2022). Effect of mitochondria-targeted antioxidant on the regulation of the mitochondrial function of sperm during cryopreservation. Andrologia, 54(7), e14431. https://doi.org/10.1111/and.14431
Ashrafi, G., & Schwarz, T. L. (2013). The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ, 20(1), 31-42. https://doi.org/10.1038/cdd.2012.81
Atkinson, R. W., Kang, S., Anderson, H. R., Mills, I. C., & Walton, H. A. (2014). Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: a systematic review and meta-analysis. Thorax, 69(7), 660-665. https://doi.org/10.1136/thoraxjnl-2013-204492
Binas, S., Knyrim, M., Hupfeld, J., Kloeckner, U., Rabe, S., Mildenberger, S., Quarch, K., Strätz, N., Misiak, D., Gekle, M., Grossmann, C., & Schreier, B. (2020). miR-221 and -222 target CACNA1C and KCNJ5 leading to altered cardiac ion channel expression and current density. Cell Mol Life Sci, 77(5), 903-918. https://doi.org/10.1007/s00018-019-03217-y
Cen, M., Ouyang, W., Zhang, W., Yang, L., Lin, X., Dai, M., Hu, H., Tang, H., Liu, H., Xia, J., & Xu, F. (2021). MitoQ protects against hyperpermeability of endothelium barrier in acute lung injury via a Nrf2-dependent mechanism. Redox Biol, 41, 101936. https://doi.org/10.1016/j.redox.2021.101936
Chang, C. C., Huang, T. Y., Chen, H. Y., Huang, T. C., Lin, L. C., Chang, Y. J., & Hsia, S. M. (2018). Protective Effect of Melatonin against Oxidative Stress-Induced Apoptosis and Enhanced Autophagy in Human Retinal Pigment Epithelium Cells. Oxid Med Cell Longev, 2018, 9015765. https://doi.org/10.1155/2018/9015765
Chang, E. M., Chao, C. C., Wang, M. T., Hsu, C. L., & Chen, P. C. (2023). PM(2.5) promotes pulmonary fibrosis by mitochondrial dysfunction. Environ Toxicol, 38(8), 1905-1913. https://doi.org/10.1002/tox.23817
Chen, W. R., Zhou, Y. J., Sha, Y., Wu, X. P., Yang, J. Q., & Liu, F. (2020). Melatonin attenuates vascular calcification by inhibiting mitochondria fission via an AMPK/Drp1 signalling pathway. J Cell Mol Med, 24(11), 6043-6054. https://doi.org/10.1111/jcmm.15157
Cheng, J., Yang, H. L., Gu, C. J., Liu, Y. K., Shao, J., Zhu, R., He, Y. Y., Zhu, X. Y., & Li, M. Q. (2019). Melatonin restricts the viability and angiogenesis of vascular endothelial cells by suppressing HIF-1α/ROS/VEGF. Int J Mol Med, 43(2), 945-955. https://doi.org/10.3892/ijmm.2018.4021
Chitimus, D. M., Popescu, M. R., Voiculescu, S. E., Panaitescu, A. M., Pavel, B., Zagrean, L., & Zagrean, A. M. (2020). Melatonin's Impact on Antioxidative and Anti-Inflammatory Reprogramming in Homeostasis and Disease. Biomolecules, 10(9). https://doi.org/10.3390/biom10091211
Correia de Sousa, M., Gjorgjieva, M., Dolicka, D., Sobolewski, C., & Foti, M. (2019). Deciphering miRNAs' Action through miRNA Editing. Int J Mol Sci, 20(24). https://doi.org/10.3390/ijms20246249
Deng, R., Zhang, H. L., Huang, J. H., Cai, R. Z., Wang, Y., Chen, Y. H., Hu, B. X., Ye, Z. P., Li, Z. L., Mai, J., Huang, Y., Li, X., Peng, X. D., Feng, G. K., Li, J. D., Tang, J., & Zhu, X. F. (2021). MAPK1/3 kinase-dependent ULK1 degradation attenuates mitophagy and promotes breast cancer bone metastasis. Autophagy, 17(10), 3011-3029. https://doi.org/10.1080/15548627.2020.1850609
Deng, X., Liu, J., Liu, L., Sun, X., Huang, J., & Dong, J. (2020). Drp1-mediated mitochondrial fission contributes to baicalein-induced apoptosis and autophagy in lung cancer via activation of AMPK signaling pathway. Int J Biol Sci, 16(8), 1403-1416. https://doi.org/10.7150/ijbs.41768
Deng, Y., Li, S., Chen, Z., Wang, W., Geng, B., & Cai, J. (2021). Mdivi-1, a mitochondrial fission inhibitor, reduces angiotensin-II- induced hypertension by mediating VSMC phenotypic switch. Biomed Pharmacother, 140, 111689. https://doi.org/10.1016/j.biopha.2021.111689
Di, J., Jiang, L., Zhou, Y., Cao, H., Fang, L., Wen, P., Li, X., Dai, C., & Yang, J. (2014). Ets-1 targeted by microrna-221 regulates angiotensin II-induced renal fibroblast activation and fibrosis. Cell Physiol Biochem, 34(4), 1063-1074. https://doi.org/10.1159/000366321
Diener, C., Keller, A., & Meese, E. (2022). Emerging concepts of miRNA therapeutics: from cells to clinic. Trends Genet, 38(6), 613-626. https://doi.org/10.1016/j.tig.2022.02.006
Ding, J., Zhang, Z., Li, S., Wang, W., Du, T., Fang, Q., Wang, Y., & Wang, D. W. (2022). Mdivi-1 alleviates cardiac fibrosis post myocardial infarction at infarcted border zone, possibly via inhibition of Drp1-Activated mitochondrial fission and oxidative stress. Arch Biochem Biophys, 718, 109147. https://doi.org/10.1016/j.abb.2022.109147
Goldblatt, Z. E., Cirka, H. A., & Billiar, K. L. (2021). Mechanical Regulation of Apoptosis in the Cardiovascular System. Ann Biomed Eng, 49(1), 75-97. https://doi.org/10.1007/s10439-020-02659-x
Guan, L., Geng, X., Stone, C., Cosky, E. E. P., Ji, Y., Du, H., Zhang, K., Sun, Q., & Ding, Y. (2019). PM(2.5) exposure induces systemic inflammation and oxidative stress in an intracranial atherosclerosis rat model. Environ Toxicol, 34(4), 530-538. https://doi.org/10.1002/tox.22707
Hayes, R. B., Lim, C., Zhang, Y., Cromar, K., Shao, Y., Reynolds, H. R., Silverman, D. T., Jones, R. R., Park, Y., Jerrett, M., Ahn, J., & Thurston, G. D. (2020). PM2.5 air pollution and cause-specific cardiovascular disease mortality. Int J Epidemiol, 49(1), 25-35. https://doi.org/10.1093/ije/dyz114
Hou, L., Zhang, J., Liu, Y., Fang, H., Liao, L., Wang, Z., Yuan, J., Wang, X., Sun, J., Tang, B., Chen, H., Ye, P., Ding, Z., Lu, H., Wang, Y., & Wang, X. (2021). MitoQ alleviates LPS-mediated acute lung injury through regulating Nrf2/Drp1 pathway. Free Radic Biol Med, 165, 219-228. https://doi.org/10.1016/j.freeradbiomed.2021.01.045
Ishtiaq, A., Ali, T., Bakhtiar, A., Bibi, R., Bibi, K., Mushtaq, I., Li, S., Khan, W., Khan, U., Anis, R. A., Anees, M., Sultan, A., & Murtaza, I. (2021). Melatonin abated Bisphenol A-induced neurotoxicity via p53/PUMA/Drp-1 signaling. Environ Sci Pollut Res Int, 28(14), 17789-17801. https://doi.org/10.1007/s11356-020-12129-5
Jeong, S. J., Zhang, X., Rodriguez-Velez, A., Evans, T. D., & Razani, B. (2019). p62/SQSTM1 and Selective Autophagy in Cardiometabolic Diseases. Antioxid Redox Signal, 31(6), 458-471. https://doi.org/10.1089/ars.2018.7649
Jiang, J., Liang, S., Zhang, J., Du, Z., Xu, Q., Duan, J., & Sun, Z. (2021). Melatonin ameliorates PM(2.5) -induced cardiac perivascular fibrosis through regulating mitochondrial redox homeostasis. J Pineal Res, 70(1), e12686. https://doi.org/10.1111/jpi.12686
Jin, J. Y., Wei, X. X., Zhi, X. L., Wang, X. H., & Meng, D. (2021). Drp1-dependent mitochondrial fission in cardiovascular disease. Acta Pharmacol Sin, 42(5), 655-664. https://doi.org/10.1038/s41401-020-00518-y
Kang, L., Liu, S., Li, J., Tian, Y., Xue, Y., & Liu, X. (2020). The mitochondria-targeted anti-oxidant MitoQ protects against intervertebral disc degeneration by ameliorating mitochondrial dysfunction and redox imbalance. Cell Prolif, 53(3), e12779. https://doi.org/10.1111/cpr.12779
Kim, R. E., Shin, C. Y., Han, S. H., & Kwon, K. J. (2020). Astaxanthin Suppresses PM2.5-Induced Neuroinflammation by Regulating Akt Phosphorylation in BV-2 Microglial Cells. Int J Mol Sci, 21(19). https://doi.org/10.3390/ijms21197227
Knyrim, M., Rabe, S., Grossmann, C., Gekle, M., & Schreier, B. (2021). Influence of miR-221/222 on cardiomyocyte calcium handling and function. Cell Biosci, 11(1), 160. https://doi.org/10.1186/s13578-021-00676-4
Kraus, F., Roy, K., Pucadyil, T. J., & Ryan, M. T. (2021). Function and regulation of the divisome for mitochondrial fission. Nature, 590(7844), 57-66. https://doi.org/10.1038/s41586-021-03214-x
Leclercq, B., Kluza, J., Antherieu, S., Sotty, J., Alleman, L. Y., Perdrix, E., Loyens, A., Coddeville, P., Lo Guidice, J. M., Marchetti, P., & Garçon, G. (2018). Air pollution-derived PM(2.5) impairs mitochondrial function in healthy and chronic obstructive pulmonary diseased human bronchial epithelial cells. Environ Pollut, 243(Pt B), 1434-1449. https://doi.org/10.1016/j.envpol.2018.09.062
Lederer, A. M., Fredriksen, P. M., Nkeh-Chungag, B. N., Everson, F., Strijdom, H., De Boever, P., & Goswami, N. (2021). Cardiovascular effects of air pollution: current evidence from animal and human studies. Am J Physiol Heart Circ Physiol, 320(4), H1417-h1439. https://doi.org/10.1152/ajpheart.00706.2020
Li, M. (2021). The role of P53 up-regulated modulator of apoptosis (PUMA) in ovarian development, cardiovascular and neurodegenerative diseases. Apoptosis, 26(5-6), 235-247. https://doi.org/10.1007/s10495-021-01667-z
Li, R., Kou, X., Geng, H., Xie, J., Yang, Z., Zhang, Y., Cai, Z., & Dong, C. (2015). Effect of ambient PM(2.5) on lung mitochondrial damage and fusion/fission gene expression in rats. Chem Res Toxicol, 28(3), 408-418. https://doi.org/10.1021/tx5003723
Liu, M., López de Juan Abad, B., & Cheng, K. (2021). Cardiac fibrosis: Myofibroblast-mediated pathological regulation and drug delivery strategies. Adv Drug Deliv Rev, 173, 504-519. https://doi.org/10.1016/j.addr.2021.03.021
Lu, P., Ding, F., Xiang, Y. K., Hao, L., & Zhao, M. (2022). Noncoding RNAs in Cardiac Hypertrophy and Heart Failure. Cells, 11(5). https://doi.org/10.3390/cells11050777
Luderer, U., Lim, J., Ortiz, L., Nguyen, J. D., Shin, J. H., Allen, B. D., Liao, L. S., Malott, K., Perraud, V., Wingen, L. M., Arechavala, R. J., Bliss, B., Herman, D. A., & Kleinman, M. T. (2022). Exposure to environmentally relevant concentrations of ambient fine particulate matter (PM(2.5)) depletes the ovarian follicle reserve and causes sex-dependent cardiovascular changes in apolipoprotein E null mice. Part Fibre Toxicol, 19(1), 5. https://doi.org/10.1186/s12989-021-00445-8
Mancini, F. R., Laine, J. E., Tarallo, S., Vlaanderen, J., Vermeulen, R., van Nunen, E., Hoek, G., Probst-Hensch, N., Imboden, M., Jeong, A., Gulliver, J., Chadeau-Hyam, M., Nieuwenhuijsen, M., de Kok, T. M., Piepers, J., Krauskopf, J., Kleinjans, J. C. S., Vineis, P., & Naccarati, A. (2020). microRNA expression profiles and personal monitoring of exposure to particulate matter. Environ Pollut, 263(Pt B), 114392. https://doi.org/10.1016/j.envpol.2020.114392
Münzel, T., & Daiber, A. (2018). Environmental Stressors and Their Impact on Health and Disease with Focus on Oxidative Stress. Antioxid Redox Signal, 28(9), 735-740. https://doi.org/10.1089/ars.2017.7488
Nhu, N. T., Li, Q., Liu, Y., Xu, J., Xiao, S. Y., & Lee, S. D. (2021). Effects of Mdivi-1 on Neural Mitochondrial Dysfunction and Mitochondria-Mediated Apoptosis in Ischemia-Reperfusion Injury After Stroke: A Systematic Review of Preclinical Studies. Front Mol Neurosci, 14, 778569. https://doi.org/10.3389/fnmol.2021.778569
Ning, R., Li, Y., Du, Z., Li, T., Sun, Q., Lin, L., Xu, Q., Duan, J., & Sun, Z. (2021). The mitochondria-targeted antioxidant MitoQ attenuated PM(2.5)-induced vascular fibrosis via regulating mitophagy. Redox Biol, 46, 102113. https://doi.org/10.1016/j.redox.2021.102113
Nolfi-Donegan, D., Braganza, A., & Shiva, S. (2020). Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol, 37, 101674. https://doi.org/10.1016/j.redox.2020.101674
Pan, P., Zhang, H., Su, L., Wang, X., & Liu, D. (2018). Melatonin Balance the Autophagy and Apoptosis by Regulating UCP2 in the LPS-Induced Cardiomyopathy. Molecules, 23(3). https://doi.org/10.3390/molecules23030675
Perelman, A., Wachtel, C., Cohen, M., Haupt, S., Shapiro, H., & Tzur, A. (2012). JC-1: alternative excitation wavelengths facilitate mitochondrial membrane potential cytometry. Cell Death Dis, 3(11), e430. https://doi.org/10.1038/cddis.2012.171
Poeggeler, B., Reiter, R. J., Tan, D. X., Chen, L. D., & Manchester, L. C. (1993). Melatonin, hydroxyl radical-mediated oxidative damage, and aging: a hypothesis. J Pineal Res, 14(4), 151-168. https://doi.org/10.1111/j.1600-079x.1993.tb00498.x
Rajagopalan, S., Al-Kindi, S. G., & Brook, R. D. (2018). Air Pollution and Cardiovascular Disease: JACC State-of-the-Art Review. J Am Coll Cardiol, 72(17), 2054-2070. https://doi.org/10.1016/j.jacc.2018.07.099
Reiter, R. J., Rosales-Corral, S., Tan, D. X., Jou, M. J., Galano, A., & Xu, B. (2017). Melatonin as a mitochondria-targeted antioxidant: one of evolution's best ideas. Cell Mol Life Sci, 74(21), 3863-3881. https://doi.org/10.1007/s00018-017-2609-7
Ren, F., Ji, C., Huang, Y., Aniagu, S., Jiang, Y., & Chen, T. (2020). AHR-mediated ROS production contributes to the cardiac developmental toxicity of PM2.5 in zebrafish embryos. Sci Total Environ, 719, 135097. https://doi.org/10.1016/j.scitotenv.2019.135097
Rodriguez, C., Mayo, J. C., Sainz, R. M., Antolín, I., Herrera, F., Martín, V., & Reiter, R. J. (2004). Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res, 36(1), 1-9. https://doi.org/10.1046/j.1600-079x.2003.00092.x
Shaito, A., Aramouni, K., Assaf, R., Parenti, A., Orekhov, A., Yazbi, A. E., Pintus, G., & Eid, A. H. (2022). Oxidative Stress-Induced Endothelial Dysfunction in Cardiovascular Diseases. Front Biosci (Landmark Ed), 27(3), 105. https://doi.org/10.31083/j.fbl2703105
Shao, R., Li, J., Qu, T., Liao, Y., & Chen, M. (2022). Mitophagy: A Potential Target for Pressure Overload-Induced Cardiac Remodelling. Oxid Med Cell Longev, 2022, 2849985. https://doi.org/10.1155/2022/2849985
Singhanat, K., Apaijai, N., Chattipakorn, S. C., & Chattipakorn, N. (2018). Roles of melatonin and its receptors in cardiac ischemia-reperfusion injury. Cell Mol Life Sci, 75(22), 4125-4149. https://doi.org/10.1007/s00018-018-2905-x
Smith, R. A., & Murphy, M. P. (2010). Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann N Y Acad Sci, 1201, 96-103. https://doi.org/10.1111/j.1749-6632.2010.05627.x
Song, C., Zhao, J., Fu, B., Li, D., Mao, T., Peng, W., Wu, H., & Zhang, Y. (2017). Melatonin-mediated upregulation of Sirt3 attenuates sodium fluoride-induced hepatotoxicity by activating the MT1-PI3K/AKT-PGC-1α signaling pathway. Free Radic Biol Med, 112, 616-630. https://doi.org/10.1016/j.freeradbiomed.2017.09.005
Song, Y., Zhang, C., Zhang, J., Jiao, Z., Dong, N., Wang, G., Wang, Z., & Wang, L. (2019). Localized injection of miRNA-21-enriched extracellular vesicles effectively restores cardiac function after myocardial infarction. Theranostics, 9(8), 2346-2360. https://doi.org/10.7150/thno.29945
Springer, M. Z., Poole, L. P., Drake, L. E., Bock-Hughes, A., Boland, M. L., Smith, A. G., Hart, J., Chourasia, A. H., Liu, I., Bozek, G., & Macleod, K. F. (2021). BNIP3-dependent mitophagy promotes cytosolic localization of LC3B and metabolic homeostasis in the liver. Autophagy, 17(11), 3530-3546. https://doi.org/10.1080/15548627.2021.1877469
Srinivas, U. S., Tan, B. W. Q., Vellayappan, B. A., & Jeyasekharan, A. D. (2019). ROS and the DNA damage response in cancer. Redox Biol, 25, 101084. https://doi.org/10.1016/j.redox.2018.101084
Stempels, F. C., Janssens, M. H., Ter Beest, M., Mesman, R. J., Revelo, N. H., Ioannidis, M., & van den Bogaart, G. (2022). Novel and conventional inhibitors of canonical autophagy differently affect LC3-associated phagocytosis. FEBS Lett, 596(4), 491-509. https://doi.org/10.1002/1873-3468.14280
Sun, B., Shi, Y., Li, Y., Jiang, J., Liang, S., Duan, J., & Sun, Z. (2020). Short-term PM(2.5) exposure induces sustained pulmonary fibrosis development during post-exposure period in rats. J Hazard Mater, 385, 121566. https://doi.org/10.1016/j.jhazmat.2019.121566
Tang, D., Kang, R., Berghe, T. V., Vandenabeele, P., & Kroemer, G. (2019). The molecular machinery of regulated cell death. Cell Res, 29(5), 347-364. https://doi.org/10.1038/s41422-019-0164-5
Teo, K. K., & Rafiq, T. (2021). Cardiovascular Risk Factors and Prevention: A Perspective From Developing Countries. Can J Cardiol, 37(5), 733-743. https://doi.org/10.1016/j.cjca.2021.02.009
Thomé, M. P., Filippi-Chiela, E. C., Villodre, E. S., Migliavaca, C. B., Onzi, G. R., Felipe, K. B., & Lenz, G. (2016). Ratiometric analysis of Acridine Orange staining in the study of acidic organelles and autophagy. J Cell Sci, 129(24), 4622-4632. https://doi.org/10.1242/jcs.195057
Wang, L., Lin, L., Qi, H., Chen, J., & Grossfeld, P. (2022). Endothelial Loss of ETS1 Impairs Coronary Vascular Development and Leads to Ventricular Non-Compaction. Circ Res, 131(5), 371-387. https://doi.org/10.1161/circresaha.121.319955
Wang, Q., & Zou, M. H. (2018). Measurement of Reactive Oxygen Species (ROS) and Mitochondrial ROS in AMPK Knockout Mice Blood Vessels. Methods Mol Biol, 1732, 507-517. https://doi.org/10.1007/978-1-4939-7598-3_32
Wang, W. K., Wang, B., Cao, X. H., & Liu, Y. S. (2022). Spironolactone alleviates myocardial fibrosis via inhibition of Ets-1 in mice with experimental autoimmune myocarditis. Exp Ther Med, 23(6), 369. https://doi.org/10.3892/etm.2022.11296
Wu, M., Xing, Q., Duan, H., Qin, G., & Sang, N. (2022). Suppression of NADPH oxidase 4 inhibits PM(2.5)-induced cardiac fibrosis through ROS-P38 MAPK pathway. Sci Total Environ, 837, 155558. https://doi.org/10.1016/j.scitotenv.2022.155558
Xu, M., Wang, X., Xu, L., Zhang, H., Li, C., Liu, Q., Chen, Y., Chung, K. F., Adcock, I. M., & Li, F. (2021). Chronic lung inflammation and pulmonary fibrosis after multiple intranasal instillation of PM(2) (.5) in mice. Environ Toxicol, 36(7), 1434-1446. https://doi.org/10.1002/tox.23140
Yang, H., Xie, Y., Yang, D., & Ren, D. (2017). Oxidative stress-induced apoptosis in granulosa cells involves JNK, p53 and Puma. Oncotarget, 8(15), 25310-25322. https://doi.org/10.18632/oncotarget.15813
Yang, X., Zhao, T., Feng, L., Shi, Y., Jiang, J., Liang, S., Sun, B., Xu, Q., Duan, J., & Sun, Z. (2019). PM(2.5)-induced ADRB2 hypermethylation contributed to cardiac dysfunction through cardiomyocytes apoptosis via PI3K/Akt pathway. Environ Int, 127, 601-614. https://doi.org/10.1016/j.envint.2019.03.057
Yuan, N., Song, L., Zhang, S., Lin, W., Cao, Y., Xu, F., Fang, Y., Wang, Z., Zhang, H., Li, X., Wang, Z., Cai, J., Wang, J., Zhang, Y., Mao, X., Zhao, W., Hu, S., Chen, S., & Wang, J. (2015). Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia. Haematologica, 100(3), 345-356. https://doi.org/10.3324/haematol.2014.113324
Yue, W., Tong, L., Liu, X., Weng, X., Chen, X., Wang, D., Dudley, S. C., Weir, E. K., Ding, W., Lu, Z., Xu, Y., & Chen, Y. (2019). Short term Pm2.5 exposure caused a robust lung inflammation, vascular remodeling, and exacerbated transition from left ventricular failure to right ventricular hypertrophy. Redox Biol, 22, 101161. https://doi.org/10.1016/j.redox.2019.101161
Zare, S., Heydari, F. S., Hayes, A. W., Reiter, R. J., Zirak, M. R., & Karimi, G. (2021). Melatonin attenuates chemical-induced cardiotoxicity. Hum Exp Toxicol, 40(3), 383-394. https://doi.org/10.1177/0960327120959417
Zhang, C., Zhang, J., Zhang, A., Wang, Y., Han, L., You, Y., Pu, P., & Kang, C. (2010). PUMA is a novel target of miR-221/222 in human epithelial cancers. Int J Oncol, 37(6), 1621-1626. https://doi.org/10.3892/ijo_00000816
Zhang, C. Z., Zhang, J. X., Zhang, A. L., Shi, Z. D., Han, L., Jia, Z. F., Yang, W. D., Wang, G. X., Jiang, T., You, Y. P., Pu, P. Y., Cheng, J. Q., & Kang, C. S. (2010). MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Mol Cancer, 9, 229. https://doi.org/10.1186/1476-4598-9-229
Zhang, J., & Ney, P. A. (2009). Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ, 16(7), 939-946. https://doi.org/10.1038/cdd.2009.16
Zhang, J., Sha, J., Zhou, Y., Han, K., Wang, Y., Su, Y., Yin, X., Hu, H., & Yao, Y. (2016). Bufalin Inhibits Proliferation and Induces Apoptosis in Osteosarcoma Cells by Downregulating MicroRNA-221. Evid Based Complement Alternat Med, 2016, 7319464. https://doi.org/10.1155/2016/7319464
Zhang, M., Chen, J., Jiang, Y., & Chen, T. (2022). Fine particulate matter induces heart defects via AHR/ROS-mediated endoplasmic reticulum stress. Chemosphere, 307(Pt 2), 135962. https://doi.org/10.1016/j.chemosphere.2022.135962
Zhang, Y., Wang, Z., Lan, D., Zhao, J., Wang, L., Shao, X., Wang, D., Wu, K., Sun, M., Huang, X., Yan, M., Liang, H., Rong, X., Diao, H., & Guo, J. (2022). MicroRNA-24-3p alleviates cardiac fibrosis by suppressing cardiac fibroblasts mitophagy via downregulating PHB2. Pharmacol Res, 177, 106124. https://doi.org/10.1016/j.phrs.2022.106124
Zhou, H., Zhang, Y., Hu, S., Shi, C., Zhu, P., Ma, Q., Jin, Q., Cao, F., Tian, F., & Chen, Y. (2017). Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis. J Pineal Res, 63(1). https://doi.org/10.1111/jpi.12413
Zhou, Y., Ng, D. Y. E., Richards, A. M., & Wang, P. (2020). microRNA-221 Inhibits Latent TGF-β1 Activation through Targeting Thrombospondin-1 to Attenuate Kidney Failure-Induced Cardiac Fibrosis. Mol Ther Nucleic Acids, 22, 803-814. https://doi.org/10.1016/j.omtn.2020.09.041
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90296-
dc.description.abstract空氣污染是目前人類健康的主要威脅,而其中的有害成分PM2.5與空氣污染物導致的心血管疾病的風險增加。在過去研究中,已證實PM2.5會藉由影響細胞內的活性氧化物堆積,進而造成心肌纖維化。在本研究中,我將探討抗氧化藥物,褪黑激素對PM2.5所造成細胞凋亡與纖維化的相關機轉。此外,由於先前本實驗室曾發表心肌纖維化受miR-221/222調控,故在本研究中也將探討miR-221/222所扮演的角色及其是否與melatonin引發的機轉有關。首先,在動物實驗中,我利用C57BL/6 (WT) 及 miR-221/222 KO 小鼠,以進行氣管內注射10 mg/kg PM2.5及管餵20 mg/kg褪黑激素方式建立動物模型。PM2.5處理後的小鼠心臟收縮及舒張功能都有所損傷,而褪黑激素不論是WT或KO小鼠皆能一定程度上恢復其心臟功能。在小鼠心肌細胞凋亡與纖維化方面,通過TUNEL和Fibronectin、ETS-1免疫組織染色實驗,證明PM2.5分別促進WT及 miR-221/222 KO 小鼠的心臟功能損傷。進一步使用會使膠原蛋白呈現紅色的Sirius Red染色,同樣也證實PM2.5處理後會導致小鼠心臟纖維化增加,並且miR-221/222 KO 小鼠的心臟功能損傷和纖維化更為嚴重,而褪黑激素能夠恢復PM2.5造成的傷害。
在細胞實驗中,我利用H9c2大鼠心肌母細胞作為體外細胞模式,使用20 g/mL PM2.5處理H9c2細胞24小時以模擬空氣污染之環境。利用qPCR發現PM2.5會降低miR-221/222表達,並且褪黑激素可恢復miR-221/222的表達。細胞存活率、TUNEL測定和Fibronectin免疫螢光染色,結果顯示褪黑激素可顯著恢復PM2.5造成的細胞活性降低與細胞凋亡和纖維化的增加。Western blot實驗結果證實褪黑激素可顯著恢復PM2.5造成的細胞凋亡相關蛋白PUMA和纖維化相關蛋白Fibronectin、ETS-1的表達之增加。此外,透過 MitoSOX Red 與流式細胞儀共同顯示褪黑激素處理恢復PM2.5誘發的粒線體活性氧化物 (Reactive oxygen species, ROS)表現增加。JC-1染色結果表明褪黑激素處理會恢復PM2.5 造成的心肌細胞中的粒線體膜電位(Δψm)降低。在自噬方面,吖啶橙(Acridine Orange)螢光染色與Western blots實驗共同證實褪黑激素處理減輕PM2.5誘發的細胞自噬,並恢復了PM2.5處理後自噬相關蛋白p62和LC3B、BNIP3表現的增加。綜上所述,PM2.5增加粒線體ROS產生並誘發粒線體功能障礙,增加線粒體裂解及線粒體自噬,進而導致心臟細胞凋亡和纖維化最終導致心臟功能障礙,而褪黑激素能夠恢復PM2.5所造成的傷害。期待在未來褪黑激素可成為預防空氣污染所造成心臟損傷的治療方針。
zh_TW
dc.description.abstractAir pollution is currently a major threat to human health, with the harmful component PM2.5 contributing to increased cardiovascular diseases risks associated with air pollution. Previous research has confirmed that PM2.5 leads to myocardial fibrosis by influencing the accumulation of intracellular reactive oxygen species (ROS). In this study, I aim to explore the underlying mechanisms of cellular apoptosis and fibrosis caused by PM2.5 and their modulation by antioxidant agents, specifically melatonin. Considering what our lab has already found about how miR-221/222 controls cardiac fibrosis, this study will also look at the role of miR-221/222 and how it might interact with the mechanisms that melatonin sets off.
First, C57BL/6 (WT) and miR-221/222 knockout (KO) mice were used to make an animal model by injecting 10 mg/kg PM2.5 into the trachea and giving 20 mg/kg melatonin by mouth. The cardiac contraction and relaxation functions of the mice were impaired following PM2.5 exposure, while melatonin administration partially restored cardiac function in both WT and KO mice. TUNEL assay and immunohistochemical staining for Fibronectin and ETS-1 confirmed the detrimental effects on cardiac function induced by PM2.5, observed in both WT and miR-221/222 KO mice. Furthermore, Sirius Red staining, which stains collagen red, confirmed increased cardiac fibrosis following PM2.5 exposure, with miR-221/222 KO mice exhibiting more severe cardiac dysfunction and fibrosis. The administration of melatonin attenuated the adverse effects caused by PM2.5.
In cellular experiments, H9c2 rat cardiomyocytes were employed as an in vitro cellular model and subjected to 20 g/mL PM2.5 treatment for 24 hours to simulate air pollution conditions. qPCR analysis revealed a downregulation of miR-221/222 expression induced by PM2.5, which was restored by melatonin administration. Cell viability assay, TUNEL staining, and Fibronectin immunofluorescence staining demonstrated that melatonin significantly mitigated the decrease in cell viability, the increase in apoptosis, and the fibrotic response induced by PM2.5. Western blot analysis confirmed that melatonin administration effectively restored the elevated expression of the apoptosis-related protein PUMA and the fibrosis-related proteins Fibronectin and ETS-1 triggered by PM2.5. Additionally, co-staining with MitoSOX Red and flow cytometry revealed that melatonin treatment restored the heightened production of mitochondrial reactive oxygen species (ROS) induced by PM2.5. JC-1 staining indicated that melatonin treatment restored the decreased mitochondrial membrane potential (Δψm) observed in PM2.5-treated cardiomyocytes. Regarding autophagy, Acridine Orange staining and Western blot analysis collectively demonstrated that melatonin treatment alleviated PM2.5-induced cellular autophagy and restored the increased expression of autophagy-related proteins p62, LC3B, and BNIP3 induced by PM2.5.
In conclusion, PM2.5 increases the production of ROS, which leads to mitochondrial dysfunction, mitochondrial fission, and mitochondrial autophagy. This, in turn, causes cardiac cell apoptosis and fibrosis, which lowers the function of the heart. However, the administration of melatonin effectively mitigates the deleterious effects caused by PM2.5 exposure. It is envisaged that melatonin may hold promise as a therapeutic strategy for preventing cardiac damage resulting from air pollution in the future.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-26T16:08:45Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-26T16:08:45Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文審定書 I
致謝 II
摘要 III
Abstract V
目錄 i
壹、緒論 1
心臟的構造與功能 1
懸浮微粒與心血管疾病的相關性 2
粒線體的生理活動 3
粒線體自噬作用 4
褪黑激素的治療成效 5
miR-221/222與心血管疾病的相關性 7
研究動機與假說 8
貳、實驗材料 9
一、實驗儀器 9
二、材料與試劑 10
三、溶液配方 13
參、實驗方法 16
製備PM2.5 16
細胞培養 16
動物模式 17
組織石蠟包埋 (Paraffin embedding) 18
細胞活性測定 18
TUNEL assay 19
細胞免疫螢光染色(immunofluorescence staining) 20
免疫化學組織染色法(immunohistochemistry) 20
西方墨點法 21
使用MitoSOX Red偵測粒線體活性氧(Mitochondrial ROS level assay) 24
使用JC-1偵測粒線體膜電位測定(Measurement of mitochondrial membrane potential ΔΨm) 24
使用mitotracker粒線體即時影像分析 (time-lapse imaging) 24
吖啶橙螢光染色(Acridine Orange) 25
細胞ATP測定 (ATP assay) 25
組織冷凍包埋 25
Dihydroethidium staining (DHE) 和MitoSOX Red assay 26
實時聚合酶鏈式反應(qPCR) 26
資料統計分析 27
肆、結果 28
1. 褪黑激素可減少PM2.5所造成的小鼠心臟損傷 28
2.褪黑激素可減少PM2.5所造成的H9c2細胞凋亡和纖維化 29
3.褪黑激素可影響PM2.5處理的H9c2細胞粒線體活性氧Reactive oxygen species (ROS)的表現 30
4.褪黑激素可改善PM2.5處理下的H9c2細胞粒線體功能 31
5.褪黑激素可改善PM2.5處理下的H9c2細胞粒線體自噬 32
6.miR-221/222可改善PM2.5造成的的H9c2細胞損傷 33
伍、討論與結論 35
陸、參考文獻 41
柒、圖 48
圖1. 褪黑激素可減少PM2.5所造成的小鼠心臟損傷 52
圖2.褪黑激素可減少PM2.5所造成的H9c2細胞凋亡和纖維化 55
圖3.褪黑激素可影響PM2.5處理的H9c2細胞粒線體活性氧Reactive oxygen species (ROS)的表現 58
圖4.褪黑激素可改善PM2.5處理下的H9c2細胞粒線體功能 65
圖5.褪黑激素可改善PM2.5處理下的H9c2細胞粒線體自噬 71
圖6.miR-221/222可改善PM2.5造成的的H9c2細胞損傷 75
-
dc.language.isozh_TW-
dc.title探討褪黑激素對懸浮微粒誘發心臟損傷及粒線體失能的影響zh_TW
dc.titleTo study the effect of melatonin on particulate matter 2.5-induced cardiac damage and mitochondrial dysfunctionen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee莫凡毅;吳佳慶;許美鈴;王懷詩zh_TW
dc.contributor.oralexamcommitteeFan-E Mo;Chia-Ching Wu;Mei-Ling Sheu;Hwai-Shi Wangen
dc.subject.keyword懸浮微粒,細胞凋亡,纖維化,粒線體氧化壓力,粒線體分裂,粒線體自噬,miR-221/222,褪黑激素,zh_TW
dc.subject.keywordApoptosis,Fibrosis,Mitochondrial oxidative stress,Mitochondrial fission,Mitochondrial autophagy,miR-221/222,Melatonin,en
dc.relation.page75-
dc.identifier.doi10.6342/NTU202303680-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college醫學院-
dc.contributor.author-dept解剖學暨細胞生物學研究所-
dc.date.embargo-lift2028-08-08-
顯示於系所單位:解剖學暨細胞生物學科所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  此日期後於網路公開 2028-08-08
4.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved