請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9026
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 宋國士(Gwo-Shyh Song) | |
dc.contributor.author | Jhao-Ru Chen | en |
dc.contributor.author | 陳昭儒 | zh_TW |
dc.date.accessioned | 2021-05-20T20:06:59Z | - |
dc.date.available | 2009-08-17 | |
dc.date.available | 2021-05-20T20:06:59Z | - |
dc.date.copyright | 2009-08-17 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-10 | |
dc.identifier.citation | Beyer A., Chakraborty B., and Schenke H.W., 2007, Seafloor classification of the mound and channel provinces of the Porcupine Seabight: an application of the multibeam angular backscatter data, International Journal of Earth Sciences, v. 96, p. 11-20.
Blondel P., 2000, Automatic mine detection by textural analysis of COTS sidescan sonar imagery, International Journal of Remote Sensing, v. 21, p. 3115-3128. Blondel P., Sempere J.C., and Robigou V., 1993, Textural Analysis and Structure-hacking for geological mapping: Applications to sonar images from Endeavour Segment, Juan de Fuca Ridge, IEEE Xplore, v. 3, p. 203-213. Chang T., and Kuo C.C.J., 1993, Texture analysis and classification with tree-structured wavelet transform, IEEE transactions on image processing, v. 2, p. 429-441. Collier J.S., and Brown C.J., 2005, Correlation of sidescan backscatter with grain size distribution of surficial seabed sediments, Marine Geology, v. 214, p. 431-449. Davis K.S., Slowet N.C., Stender I.H., Fiedler H., Bryant W.R., and Fechner G., 1996, Acoustic backscatter and sediment textural properties of inner shelf sands, northeastern Gulf of Mexico, Geo-Marine Letters, v. 16, p. 273-278. Fish J.P., and Carr H.A., 1990, Sound Underwater Images- A Guide to the Generation and Interpretation of Side Scan Sonar data, American Underwater Search and Survey. Goff J.A., Olson H.C., and Duncan C.S., 2000, Correlation of side-scan backscatter intensity with grain-size distribution of shelf sediments, New Jersey margin, Geo-Marine Letters, v. 20, p. 43-49. Gonidec Y.L., Lamarche G., and Wright I.C., 2003, Inhomogeneous substrate analysis using EM300 backscatter imagery, Marine Geophysical Researches, v. 24, p. 311-324. Haralick R.M., Shanmugam K., and Dinstein I.H., 1973, Textural Features for Image Classification, IEEE Transactions on Systems, Man and Cybernetics, v. 3, p. 610-621. Huvenne V.A.I., Blondel P., and Henriet J.P., 2002, Textural analyses of sidescan sonar imagery from two mound provinces in the Porcupine Seabight, Marine Geology, v. 189. Jackson D.R., Baird A.M., and Crisp J.J., 1986, High‐frequency bottom backscatter measurements in shallow water, The Journal of the Acoustical Society of America, v. 80, p. 1188-1199. Johnson H.P., and Helferty M., 1990, The Geological Interpretation of Side-Scan Sonar, Reviews of Geophysics, v. 28, p. 357-380. Keeton J.A., and Searle R.C., 1996, Analysis of simrad EM12 multibeam bathymetry and acoustic backscatter data for seafloor mapping, exemplified at the Mid-Atlantic Ridge at 45° N, Marine Geophysical Researches, p. 633-688. Linnett L.M., and Richardso, A.J., 1990, Texture segmentation using directional operators, IEEE Xplore, v. 4, p. 2309-2312 Marceau D., Howarth P.J., and Dubois J.M., 1989, Automated Texture Extraction From High Spatial Resolution Satellite Imagery For Land-cover Classification: Concepts And Application, Geoscience and Remote Sensing Symposium, v. 5, p. 2765-2768. Mazel, C., 1985, Side scan sonar training manual. Pun C.M., and Lee M.C., 2001, Rotation-invariant texture classification using a two-stage wavelet packet feature approach, IEE Proceedings-Vision, Image and Signal Processing, v. 148, p. 422-428. Ryan W.B.F., and Flood R.D., 1996, Side-Looking Sonar Backscatter Response at Dual Frequencies, Marine Geophysical Researches, v. 18, p. 689-705. Smith S.W., 1999, The Scientist and Engineer’s Guide to Digital Signal Processing, Second Edition, 11-35 p. Song G.S., Chang Y.C., and Ma C.P., 1997, Characteristic of Submarine Topography off Northern Taiwan, TAO, v. 8, p. 461-480. 于海鵬, 劉一星, 張賦,李永峰, 2004, 木材表面纹理的灰度共生矩陣分析, Scientia Silvae Sinicae, v. 40. 林俊賢, 2001, 海床影像側掃聲納之研究:併圖影像之修正, 台灣大學海洋研究所碩士論文. 林俊賢, 宋國士, 2000, 側掃聲納影像之拼圖,第二屆國際海洋大氣會議論文 劉佩琨, 2007, 側掃聲納數位影像之解析與辨識分析研究, 台灣大學海洋研究所博士論文. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9026 | - |
dc.description.abstract | 本研究則利用側掃聲納之訊號,將訊號以影像方式呈現,並用幾種數位影像處理方式去分辨不同的地貌影像。資料來源是使用2007年6月與10月執行基隆港疏浚工程浚渫物海洋棄置計畫側掃聲納影像。判斷地貌影像方法主要有兩種:小波特徵值、灰度共現矩陣。小波特徵值是將影像訊號利用小波轉換分成七個頻段,計算七個頻段之統計值,根據統計曲線去判斷不同地貌影像。灰度共現矩陣是以參考像元為中心,針對各方向之鄰近像元間所產生的灰階組合,組成灰度共現矩陣,再以統計方式建立該影像的特徵,以描敘影像灰度分佈情形。最後以自動辨認方式取代人工的影像紋理辨認,對特定底質進行辨認。地貌影像辨認結果顯示影像的小波特徵質之頻段特徵,以及灰度共現矩陣之商與同質性分佈圖都能辨認地貌影像之不同;在自動辨認的結果上,都能找出特定底質的地點,並且對資料處理以及資料品質引起辨認誤差之討論。 | zh_TW |
dc.description.abstract | In this study, side-scan signals were displayed as sonograph, and different morphological images were classified using digital image processing methods. The data of side-scan sonar image was collected in the project of “Disposal plan of the Keelung Harbor dredging material” in June and October 2007, respectively. Two kinds of method to analysis image are: Wavelet Packet Feature (WPF) and Gray Level Co-occurrence Matrix (GLCM). WPF constructs the signals into seven bands to calculate their respective statistics, and each morphological feature poses their represented trend of statistics among the bands; GLCM produces 16 by 16 grayscale matrix based on the grayscale value which is derived from the pairs of each of 8 peripheral elements matching with the central pixel, respectively, in a sequence of 3 by 3 matrix. GLCM matrix is to establish the characteristics or distribution for each specified image. In the follow, this study also tries to recognize texture composed by side-scan image using automatically identification method instead of manually approach, especially to identify some specific sediment properties. Results of morphological recognition using side-scan images show WPF distribution among the bands and GLCM entropy and homogeneity patterns provide successful differentiation on different morphological images. In addition, for automatic identification, this method can identify their respective locations for those specific sediment properties. In the final, the study brings up some discussions regarding to error judgment to the images resulted from data processing and data quality. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:06:59Z (GMT). No. of bitstreams: 1 ntu-98-R96241318-1.pdf: 8885772 bytes, checksum: f47f23cd40f0256a871f92829380c925 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii Abstract iv 目錄 v 圖目錄 vii 第一章 緒論 1 1.1前言 1 1.2 研究目的 4 1.3 研究概述 5 第二章 側掃聲納之系統與資料處理 6 2.1側掃聲納組合單元 6 2.2底質聲波回散射特性 10 2.3側掃聲納記錄模式 14 2.4側掃聲納資料轉換 17 2.4.1側掃聲納資料種類 17 2.4.2轉換 22 2.4.3水層判斷 23 2.4.4斜距修正 26 2.5資料來源與航線定位修正 28 2.5.1資料來源 28 2.5.2資料航線定位修正 29 第三章 特徵地貌影像之回散射訊號解析 30 3.1地貌特徵選取 30 3.2地貌特徵回散射訊號比較 37 3.3小波特徵值 42 3.3.1 小波轉換概述 42 3.3.2利用小波特徵值判定特徵地貌 46 3.4灰度共現矩陣 58 3.4.1灰度共現矩陣概述 58 3.4.2 利用灰度共現矩陣判定特徵地貌 63 3.5 討論與小結 74 第四章 自動判定地貌影像 75 4.1利用灰度共現矩陣判定特徵地貌與實例 75 4.2使用相關性匹配判定特徵地貌與實例 83 4.2.1 相關性匹配介紹 83 4.2.2 相關係數尺度與訊號修正 85 第五章 大區域實例比較結果 95 第六章 結論 106 參考文獻 108 | |
dc.language.iso | zh-TW | |
dc.title | 側掃聲納回散射訊號之海床地貌影像分析研究 | zh_TW |
dc.title | The Study of Side-Scan Sonar Image for Sea Bed Propreties | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 羅聖宗(Sheng-Chung Lo),黃千芬(Chen-Fen Huang) | |
dc.subject.keyword | 側掃聲納影像處理,自動辨認,小波特徵值,灰度共現矩陣, | zh_TW |
dc.subject.keyword | Side-Scan Sonar Image Processing,Automatic Identification,Wavelet Packet Feature,Gray Level Co-occurrence Matrix., | en |
dc.relation.page | 109 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2009-08-11 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf | 8.68 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。