Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90257
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊宗傑zh_TW
dc.contributor.advisorTsung-Chieh Yangen
dc.contributor.author劉又嘉zh_TW
dc.contributor.authorYu-Chia Liuen
dc.date.accessioned2023-09-25T16:08:17Z-
dc.date.available2026-01-01-
dc.date.copyright2023-09-25-
dc.date.issued2023-
dc.date.submitted2023-08-07-
dc.identifier.citation[1] Jacobson T, Krol A. A contemporary review of the factors involved in complete denture retention, stability, and support. Part I: retention. J Prosthet Dent. 1983;49:5-15.
[2] Jacobson T, Krol A. A contemporary review of the factors involved in complete dentures. Part II: stability. J Prosthet Dent. 1983;49:165-72.
[3] Jacobson T, Krol A. A contemporary review of the factors involved in complete dentures. Part III: support. J Prosthet Dent. 1983;49:306-13.
[4] Murray MD, Darvell BW. The evolution of the complete denture base. Theories of complete denture retention—A review. Part 4. Aust Dent J. 1993;38:450-5.
[5] Darvell B, Clark R. The physical mechanisms of complete denture retention. Br Dent J. 2000;189:248-52.
[6] Giglio JJ, Lace WP, Arden H. Factors affecting retention and stability of complete dentures. J Prosthet Dent. 1962;12:848-56.
[7] Khindria S, Mittal S, Sukhija U. Evolution of denture base materials. The journal of indian prosthodontic society. 2009;9:64-9.
[8] Prpić V, Schauperl Z, Ćatić A, Dulčić N, Čimić S. Comparison of mechanical properties of 3D‐printed, CAD/CAM, and conventional denture base materials. J Prosthodont. 2020;29:524-8.
[9] Tandon R, Gupta S, Agarwal SK. Denture base materials: From past to future. Indian J Dent Sci. 2010;2:33-9.
[10] Villias A, Karkazis H, Yannikakis S, Artopoulou II, Polyzois G. Is the number of appointments for complete denture fabrication reduced with CAD-CAM? A literature review. Prosthesis. 2022;4:91-101.
[11] Arakawa I, Husain NA-H, Srinivasan M, Maniewicz S, Abou-Ayash S, Schimmel M. Clinical outcomes and costs of conventional and digital complete dentures in a university clinic: A retrospective study. J Prosthet Dent. 2022;128:390-5.
[12] Smith PB, Perry J, Elza W. Economic and clinical impact of digitally produced dentures. J Prosthodont. 2021;30:108-12.
[13] Baba NZ, Goodacre BJ, Goodacre CJ, Müller F, Wagner S. CAD/CAM complete denture systems and physical properties: A review of the literature. J Prosthodont. 2021;30:113-24.
[14] Janeva NM, Kovacevska G, Elencevski S, Panchevska S, Mijoska A, Lazarevska B. Advantages of CAD/CAM versus conventional complete dentures-a review. Open access Macedonian journal of medical sciences. 2018;6:1498.
[15] Mubaraki MQ, Moaleem MMA, Alzahrani AH, Shariff M, Alqahtani SM, Porwal A et al. Assessment of conventionally and digitally fabricated complete dentures: a comprehensive review. Materials. 2022;15:3868.
[16] Srinivasan M, Kamnoedboon P, McKenna G, Angst L, Schimmel M, Özcan M et al. CAD-CAM removable complete dentures: A systematic review and meta-analysis of trueness of fit, biocompatibility, mechanical properties, surface characteristics, color stability, time-cost analysis, clinical and patient-reported outcomes. J Dent. 2021;113:103777.
[17] Sulaiman TA. Materials in digital dentistry—A review. Journal of Esthetic and Restorative Dentistry. 2020;32:171-81.
[18] Kattadiyil MT, Goodacre CJ, Baba NZ. CAD/CAM complete dentures: a review of two commercial fabrication systems. Journal of the California Dental Association. 2013;41:407-16.
[19] Wulfman C, Bonnet G, Carayon D, Lance C, Fages M, Vivard F et al. Digital removable complete denture: A narrative review. French Journal of Dental Medicine. 2020;10.
[20] Schlenz MA, Schmidt A, Wöstmann B, Rehmann P. Clinical performance of computer-engineered complete dentures: a retrospective pilot study. Quintessence Int. 2019;50.
[21] Kim TH, Huh JB, Lee J, Bae EB, Park CJ. Retrospective comparison of postinsertion maintenances between conventional and 3D printed complete dentures fabricated in a predoctoral clinic. J Prosthodont. 2021;30:158-62.
[22] John AV, Abraham G, Alias A. Two-visit CAD/CAM milled dentures in the rehabilitation of edentulous arches: A case series. The Journal of the Indian Prosthodontic Society. 2019;19:88.
[23] Drago C, Borgert AJ. Comparison of nonscheduled, postinsertion adjustment visits for complete dentures fabricated with conventional and CAD-CAM protocols: A clinical study. J Prosthet Dent. 2019;122:459-66.
[24] Clark WA, Brazile B, Matthews D, Solares J, De Kok IJ. A comparison of conventionally versus digitally fabricated denture outcomes in a university dental clinic. J Prosthodont. 2021;30:47-50.
[25] Schwindling FS, Stober T. A comparison of two digital techniques for the fabrication of complete removable dental prostheses: A pilot clinical study. J Prosthet Dent. 2016;116:756-63.
[26] Millet C. Management of an edentulous patient with temporomandibular disorders by using CAD-CAM prostheses: A clinical report. J Prosthet Dent. 2018;120:635-41.
[27] Saponaro PC, Yilmaz B, Johnston W, Heshmati RH, McGlumphy EA. Evaluation of patient experience and satisfaction with CAD-CAM-fabricated complete dentures: A retrospective survey study. J Prosthet Dent. 2016;116:524-8.
[28] Bidra AS, Farrell K, Burnham D, Dhingra A, Taylor TD, Kuo C-L. Prospective cohort pilot study of 2-visit CAD/CAM monolithic complete dentures and implant-retained overdentures: Clinical and patient-centered outcomes. J Prosthet Dent. 2016;115:578-86. e1.
[29] Kivovics P, Jahn M, Borbely J, Marton K. Frequency and location of traumatic ulcerations following placement of complete dentures. International Journal of Prosthodontics. 2007;20.
[30] Kattadiyil MT, Jekki R, Goodacre CJ, Baba NZ. Comparison of treatment outcomes in digital and conventional complete removable dental prosthesis fabrications in a predoctoral setting. J Prosthet Dent. 2015;114:818-25.
[31] Schwindling FS, Stober T. A comparison of two digital techniques for the fabrication of complete removable dental prostheses. 2016.
[32] Baba NZ. Materials and processes for CAD/CAM complete denture fabrication. Current Oral Health Reports. 2016;3:203-8.
[33] Gesser H, Castaldi C. The preparation and evaluation of wetting dentures for adhesion and retention. J Prosthet Dent. 1971;25:236-43.
[34] Monsenego P, Proust J. Complete denture retention. Part I: Physical analysis of the mechanism. Hysteresis of the solid-liquid contact angle. J Prosthet Dent. 1989;62:189-96.
[35] Al Moaleem MM, Porwal A, Al Ahmari NM, Shariff M. Oral biofilm on dental materials among Khat Chewers. Curr Pharm Biotechnol. 2020;21:964-72.
[36] Al‐Dwairi ZN, Tahboub KY, Baba NZ, Goodacre CJ, Özcan M. A comparison of the surface properties of CAD/CAM and conventional polymethylmethacrylate (PMMA). J Prosthodont. 2019;28:452-7.
[37] Arslan M, Murat S, Alp G, Zaimoglu A. Evaluation of flexural strength and surface properties of prepolymerized CAD/CAM PMMA-based polymers used for digital 3D complete dentures. Int J Comput Dent. 2018;21:31-40.
[38] Murat S, Alp G, Alatalı C, Uzun M. In vitro evaluation of adhesion of Candida albicans on CAD/CAM PMMA‐based polymers. J Prosthodont. 2019;28:e873-e9.
[39] Steinmassl O, Dumfahrt H, Grunert I, Steinmassl PA. Influence of CAD/CAM fabrication on denture surface properties. J Oral Rehabil. 2018;45:406-13.
[40] Srinivasan M, Kalberer N, Kamnoedboon P, Mekki M, Durual S, Özcan M et al. CAD-CAM complete denture resins: An evaluation of biocompatibility, mechanical properties, and surface characteristics. J Dent. 2021;114:103785.
[41] Bollenl CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: a review of the literature. Dent Mater. 1997;13:258-69.
[42] Müller F, Kalberer N, Mekki M, Schimmel M, Srinivasan M. CAD/CAM denture resins: in-vitro evaluation of mechanical and surface properties. J Dent Res. 2019;98:0949.
[43] Gruber S, Kamnoedboon P, Özcan M, Srinivasan M. CAD/CAM complete denture resins: an in vitro evaluation of color stability. J Prosthodont. 2021;30:430-9.
[44] Alp G, Johnston WM, Yilmaz B. Optical properties and surface roughness of prepolymerized poly (methyl methacrylate) denture base materials. J Prosthet Dent. 2019;121:347-52.
[45] Al-Qarni FD, Goodacre CJ, Kattadiyil MT, Baba NZ, Paravina RD. Stainability of acrylic resin materials used in CAD-CAM and conventional complete dentures. J Prosthet Dent. 2020;123:880-7.
[46] Iwaki M, Kanazawa M, Arakida T, Minakuchi S. Mechanical properties of a polymethyl methacrylate block for CAD/CAM dentures. J Oral Sci. 2020;62:420-2.
[47] Dayan C, Guven MC, Gencel B, Bural C. A comparison of the color stability of conventional and CAD/CAM polymethyl methacrylate denture base materials. Acta Stomatol Croat. 2019;53:158.
[48] Perea-Lowery L, Minja IK, Lassila L, Ramakrishnaiah R, Vallittu PK. Assessment of CAD-CAM polymers for digitally fabricated complete dentures. J Prosthet Dent. 2021;125:175-81.
[49] Al‐Dwairi ZN, Tahboub KY, Baba NZ, Goodacre CJ. A comparison of the flexural and impact strengths and flexural modulus of CAD/CAM and conventional heat‐cured polymethyl methacrylate (PMMA). J Prosthodont. 2020;29:341-9.
[50] Srinivasan M, Gjengedal H, Cattani-Lorente M, Moussa M, Durual S, Schimmel M et al. CAD/CAM milled complete removable dental prostheses: An in vitro evaluation of biocompatibility, mechanical properties, and surface roughness. Dent Mater J. 2018;37:526-33.
[51] Ayman A-D. The residual monomer content and mechanical properties of CAD\CAM resins used in the fabrication of complete dentures as compared to heat cured resins. Electronic physician. 2017;9:4766.
[52] International Organization for Standardization. ISO 20795-1:2013. Dentistry
e base polymers. Part 1: denture base polymers. Geneva: ISO; 2015. Available
at: https://www.iso.org/standard/62277.html.
[53] Pacquet W, Benoit A, Hatège-Kimana C, Wulfman C. Mechanical properties of CAD/CAM denture base resins. Int J Prosthodont. 2019;32:104-6.
[54] Becerra J, Mainjot A, Hüe O, Sadoun M, Nguyen JF. Influence of high‐pressure polymerization on mechanical properties of denture base resins. J Prosthodont. 2021;30:128-34.
[55] Aguirre BC, Chen J-H, Kontogiorgos ED, Murchison DF, Nagy WW. Flexural strength of denture base acrylic resins processed by conventional and CAD-CAM methods. J Prosthet Dent. 2020;123:641-6.
[56] Sykora O, Sutow E. Posterior palatal seal adaptation: influence of processing technique, palate shape and immersion. J Oral Rehabil. 1993;20:19-31.
[57] Artopoulos A, Juszczyk AS, Rodriguez JM, Clark RK, Radford DR. Three-dimensional processing deformation of three denture base materials. J Prosthet Dent. 2013;110:481-7.
[58] Hsu C-Y, Yang T-C, Wang T-M, Lin L-D. Effects of fabrication techniques on denture base adaptation: an in vitro study. J Prosthet Dent. 2020;124:740-7.
[59] Yoon S-N, Oh KC, Lee SJ, Han J-S, Yoon H-I. Tissue surface adaptation of CAD-CAM maxillary and mandibular complete denture bases manufactured by digital light processing: A clinical study. J Prosthet Dent. 2020;124:682-9.
[60] Hwang H-J, Lee SJ, Park E-J, Yoon H-I. Assessment of the trueness and tissue surface adaptation of CAD-CAM maxillary denture bases manufactured using digital light processing. J Prosthet Dent. 2019;121:110-7.
[61] Lee S, Hong S-J, Paek J, Pae A, Kwon K-R, Noh K. Comparing accuracy of denture bases fabricated by injection molding, CAD/CAM milling, and rapid prototyping method. The journal of advanced prosthodontics. 2019;11:55-64.
[62] Steinmassl O, Dumfahrt H, Grunert I, Steinmassl P-A. CAD/CAM produces dentures with improved fit. Clin Oral Investig. 2018;22:2829-35.
[63] McLaughlin JB, Ramos Jr V, Dickinson DP. Comparison of fit of dentures fabricated by traditional techniques versus CAD/CAM technology. J Prosthodont. 2019;28:428-35.
[64] Goodacre BJ, Goodacre CJ, Baba NZ, Kattadiyil MT. Comparison of denture tooth movement between CAD-CAM and conventional fabrication techniques. J Prosthet Dent. 2018;119:108-15.
[65] Einarsdottir ER, Geminiani A, Chochlidakis K, Feng C, Tsigarida A, Ercoli C. Dimensional stability of double-processed complete denture bases fabricated with compression molding, injection molding, and CAD-CAM subtraction milling. J Prosthet Dent. 2020;124:116-21.
[66] Gao H, Yang Z, Lin WS, Tan J, Chen L. The effect of build orientation on the dimensional accuracy of 3D‐printed mandibular complete dentures manufactured with a Multijet 3D printer. J Prosthodont. 2021;30:684-9.
[67] Hada T, Kanazawa M, Iwaki M, Arakida T, Soeda Y, Katheng A et al. Effect of printing direction on the accuracy of 3D-printed dentures using stereolithography technology. Materials. 2020;13:3405.
[68] Weintraub GS. Establishing the posterior palatal seal during the final impression procedure: a functional approach. The Journal of the American Dental Association. 1977;94:505-10.
[69] Winland RD, Young JM. Maxillary complete denture posterior palatal seal: variations in size, shape, and location. J Prosthet Dent. 1973;29:256-61.
[70] Michael CG, Javid N, Colaizzi F, Gibbs C. Biting strength and chewing forces in complete denture wearers. J Prosthet Dent. 1990;63:549-53.
[71] AlHelal A, AlRumaih HS, Kattadiyil MT, Baba NZ, Goodacre CJ. Comparison of retention between maxillary milled and conventional denture bases: A clinical study. J Prosthet Dent. 2017;117:233-8.
[72] Faty MA, Sabet ME, Thabet YG. A comparison of denture base retention and adaptation between CAD-CAM and conventional fabrication techniques. Int J Prosthodont. 2021.
[73] Maniewicz S, Imamura Y, El Osta N, Srinivasan M, Müller F, Chebib N. Fit and retention of complete denture bases: Part I–Conventional versus CAD-CAM methods: A clinical controlled crossover study. J Prosthet Dent. 2022.
[74] Kydd WL, Daly CH. The biologic and mechanical effects of stress on oral mucosa. J Prosthet Dent. 1982;47:317-29.
[75] Ettinger RL, Scandrett FR. The posterior palatal seal. A review. Aust Dent J. 1980;25:197-200.
[76] Chang BMW, Wright RF. Accurate location of postpalatal seal area on the maxillary complete denture cast. Journal of Prosthetic Dentistry. 2006;96:454-5.
[77] Hardy IR, Kapur KK. Posterior border seal—its rationale and importance. J Prosthet Dent. 1958;8:386-97.
[78] Rashedi B, Petropoulos VC. Current concepts for determining the postpalatal seal in complete dentures. J Prosthodont. 2003;12:265-70.
[79] Tharakan SR, Chander NG, Anitha KV, Balasubramaniam M. Retention of removable complete dentures made with different posterior palatal seal techniques and oral health quality of life: A clinical study. J Prosthet Dent. 2021;126:393-7.
[80] Zupancic Cepic L, Gruber R, Eder J, Vaskovich T, Schmid-Schwap M, Kundi M. Digital versus Conventional Dentures: A Prospective, Randomized Cross-Over Study on Clinical Efficiency and Patient Satisfaction. Journal of Clinical Medicine. 2023;12:434.
[81] Allen PF. Assessment of oral health related quality of life. Health and quality of life outcomes. 2003;1:1-8.
[82] Ohara K, Isshiki Y, Hoshi N, Ohno A, Kawanishi N, Nagashima S et al. Patient satisfaction with conventional dentures vs. digital dentures fabricated using 3D-printing: A randomized crossover trial. Journal of Prosthodontic Research. 2022;66:623-9.
[83] Wemken G, Spies BC, Pieralli S, Adali U, Beuer F, Wesemann C. Do hydrothermal aging and microwave sterilization affect the trueness of milled, additive manufactured and injection molded denture bases? Journal of the Mechanical Behavior of Biomedical Materials. 2020;111:103975.
[84] Goodacre BJ, Goodacre CJ, Baba NZ, Kattadiyil MT. Comparison of denture base adaptation between CAD-CAM and conventional fabrication techniques. J Prosthet Dent. 2016;116:249-56.
[85] Srinivasan M, Cantin Y, Mehl A, Gjengedal H, Müller F, Schimmel M. CAD/CAM milled removable complete dentures: an in vitro evaluation of trueness. Clin Oral Investig. 2017;21:2007-19.
[86] Wang C, Shi Y-F, Xie P-J, Wu J-H. Accuracy of digital complete dentures: A systematic review of in vitro studies. J Prosthet Dent. 2021;125:249-56.
[87] Goodacre BJ, Goodacre CJ. Additive manufacturing for complete denture fabrication: A narrative review. J Prosthodont. 2022;31:47-51.
[88] Jin M-C, Yoon H-I, Yeo I-S, Kim S-H, Han J-S. The effect of build angle on the tissue surface adaptation of maxillary and mandibular complete denture bases manufactured by digital light processing. J Prosthet Dent. 2020;123:473-82.
[89] You S-M, You S-G, Kang S-Y, Bae S-Y, Kim J-H. Evaluation of the accuracy (trueness and precision) of a maxillary trial denture according to the layer thickness: An in vitro study. J Prosthet Dent. 2021;125:139-45.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90257-
dc.description.abstract實驗目的:
本研究目的在測試以以不同製程技術製作全口義齒時,固持力與密合度及義齒後腭封區 (posterior palatal seal)型態之相關評估。
材料與方法:
本實驗招募了九位上顎無牙的受試者 (2位男性; 7位女性, 平均年齡64.5歲)。使用客製化印模托進行邊緣成形後以矽膠印模材(Express XT Light body; 3M)進行精確印模。將製作出來的上顎模型進行桌掃(E3; 3Shape A/S),並使用模擬設計軟體(Dental system 2020; 3Shape A/S)設計厚度為2mm之義齒基底試品,並調整邊緣及拋光面(polishing surface)型態。每位受試者會有五個不同製成的義齒基底,其中有一個傳統熱聚合樹脂(Lucitone 199; Dentsply Intl [Con]), 兩個數位切削 (Yamahachi PMMA clear; Yamahachi Dental MFG [Mil], [Mil-P]), 和兩個3D列印 (Enlighten AA temp, Enlighten materials co [Prt], [Prt-P])的義齒基底。其中數位切削和3D列印的義齒基底,又分為有後腭封區 (posterior palatal seal) 的Mil-P 組和Prt-P 組,和沒有後腭封區 (posterior palatal seal) 的Mil組和Prt 組。使用萬能測試機 (universal testing maching) (TD-221; JobHo Technology)和一個客製化的面弓(Mega) 組合作為拉力測試的施力裝置,來測量固持力(retentive force) (gw),拉伸速率設定為50mm/min。每個義齒基底會進行三次拉力測試,每次測試之間間隔一分鐘。平均固持力將會使用廣義估計方程式(Generalized estimating equation)來進行統計分析 (α=.05)。關於密合度的部分,所有的義齒基底(共45個)使用桌掃機(E3; 3Shape A/S)進行掃描,得到義齒基底之立體結構檔案(STL檔),並進行義齒基底之組織面與初始設計檔差距之比較。使用疊合軟體將義齒基底之組織面與設計檔進行疊合,先於軟體中定義出組織面貼合之範圍,而後將設計檔之組織面以及義齒基底組織面進行最佳疊合(best fit alignment)。疊合之後以軟體分析兩者之間的立體空間差距,並以均方根誤差(root mean square)代表誤差大小。誤差大小使用廣義估計方程式(Generalized estimating equation)來進行統計分析 (α=.05),若組之間有顯著差異再使用最小顯著性差異法(Least Significant Differnece) 進行事後檢定。並將不同組測得均方根誤差數值與拉力測試數值進使用一致性相關係數(Lin’s concordance correlation)來進行相關性評估,得到一致性相關係數rc, 值域落在-1與1之間,若為-1則表示兩儀器之間完全不一 致;為0則表示彼此間互相獨立;為1則表示兩者之間完全一致。
實驗結果:
比較不同製成的義齒基底固持力,Con組(1669gw)和Mil-P組(1593gw)的平均固持力之間並沒有顯著差異。而這兩組的固持力都高於Prt-P組(853gw)。比較義齒基底有無後腭封區,固持力是否產生差異,不論是Mil 組(14 22gw) 和Mil-P 組(1593gw)之間,或是Prt組 (840gw) 和Prt-P 組(853gw)之間,都沒有顯著差異。關於密合度的部分,Mil-p組有最佳的密合度(RMS = 0.049mm),而Con 組(RMS = 0.124mm)和Prt-P 組(RMS=0.149mm)之間則沒有顯著差異 (P<0.05)。固持力和密合度之間的一致性相關係數,分別為0.0036(Con), -0.00033(Mil), 0.00002(Mil-P), -0.01139(Prt), -0.00559(Prt-P)。從以上結果可之固持力和密合度之間相互獨立。
結論:
在本實驗有限的條件下,推論出以下的結論:
1. 傳統熱聚合樹脂和CAD/CAM milling PMMA製作的義齒基底,固持力沒有顯著差異,3D printing的臨床固持力表現最差。
2. CAD/CAM milling PMMA以及3D prinitng製作的義齒基底,有無後腭封區對固持力沒有造成顯著差異。
3. CAD/CAM milling PMMA製作的義齒基底密合度最佳,傳統熱聚合樹脂和3D printing 之間則沒有顯著差異。
4. 受試者對於不同製成的義齒基底,舒適滿意度沒有明顯差異。
zh_TW
dc.description.abstractObjective:
This in vivo study was to evaluate the effects of different fabrication techniques (conventional press molding, CAD/CAM milling, and 3D printing), and posterior palatal seal design on the retention of the denture base.
Material and methods
9 participants (2 male; 7 female, average 64.5yrs) with completely edentulous maxillary arches were enrolled in this study. Impressions were taken in the individual tray using the PVS impression material (Express XT Light body; 3M) after border molding. The maxillary master casts were scanned (E3; 3Shape A/S) and denture bases were designed by CAD simulation design software (Dental system 2020; 3Shape). Each participant had 5 denture bases made of different fabrication techniques and materials including: conventional press molding (Lucitone 199; Dentsply Intl [Con]), CAD/CAM milling (Yamahachi PMMA clear; Yamahachi Dental MFG [Mil], [Mil-P]), and 3D printing (Enlighten AA temp, Enlighten materials co [Prt], [Prt-P]). For CAD/CAM milling and and 3D printing denture bases, we divided them into 4 subgroups according to the design of posterior palatal seal: Mil group and Prt group were denture bases without posterior palatal seal while Mil-P group and Prt-P group were those with posterior palatal seal. A universal testing machine (TD-221, JobHo Technology) and a custom-designed facebow (Mega) were used as a force-applying device to measure denture retention (gw). The crosshead speed was set at 50 mm/min. Each denture base was subjected to a vertical pulling force 3 times at 1-minute intervals. The average retention of the 5 different denture bases was compared using Generalized estimating equation (α=.05). To evaluate the adaptation, all the denture bases were scanned with a table scanner (E3; 3Shape A/S) to obtain the three-dimensional structure file (STL file). After superimposing between the denture base file and the initial design file, the three-dimensional space gap was analyzed by image analysis software (Geomagic Control X 2020), and the root mean square (RMS) was calculated to represent the adaptation error.
Results
About the retention there was no significant difference between the Con group(1669gw) and the Mil-P group (1593gw). Both Con group and Mil-P group were significantly higher than the Prt-P group (853gw). There was no significant difference between Mil (14 22gw) and Mil-P (1593gw) or between Prt (840gw) and Prt-P (853gw). The results of adaptation showed that the Mil-p group had the best adaptation (RMS = 0.049mm). There was no significant difference between the Con group (RMS = 0.124mm), and the Prt-P group (RMS=0.149mm) (P<0.05). The concordance correlation coefficient rc values between retention and RMS are 0.0036(Con), -0.00033(Mil), 0.00002(Mil-P), -0.01139(Prt), -0.00559(Prt-P). The result showed that retention and adaptation are independent.
Conclusions
Within the limitation of the study, the conclusions are
1. The CAD/CAM milling denture bases presented similar retention with the conventional press molding denture bases, followed by the 3D printing denture bases.
2. There is no significant difference between the retention of denture bases with or without the design of posterior palatal seal.
3. The CAD/CAM milling denture bases showed better adaptation than the conventional press molding denture bases and the 3D printing denture bases. There was no significant difference between Con group and Prt-P group.
4. There is no significant difference between the satisfaction of different denture bases.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-25T16:08:16Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-25T16:08:17Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中 文 摘 要 ii
Abstract v
目錄 viii
第一章 文獻回顧 1
1.1 市面上存在的數位全口義齒產品簡介 1
1.2 數位流程是否能節省全口義齒的製作時間 3
1.3 數位義齒的表面親水性(wettability) 4
1.4 數位義齒的表面粗糙度(surface roughness) 5
1.5 數位義齒的顏色穩定性 5
1.6 數位義齒的彎曲強度(flexural strength) 6
1.7 數位義齒的彎曲模量(flexural modulus of elasticity) 8
1.8 數位義齒的材料硬度(hardness) 9
1.9 數位義齒組織面的準確度(Accuracy) 11
第二章 研究動機與目的 15
第三章 材料與方法 16
一、受試者篩選 16
二、模型製作 17
三、義齒基底製作 17
四、固持力之測量:客觀分析 21
五、滿意度評分:主觀分析 22
六、全口義齒基底密合度之檢測: 22
七、實驗數據分析及統計方法 23
第四章 實驗結果 24
第五章 討論 28
5.1 義齒基底固持力之測量方式 31
5.2義齒基底與數位設計檔之疊合 31
5.3影響數位義齒基底準確度的因素 33
5.4義齒基底密合度與固持力之關聯 34
5.5實驗的誤差與限制 34
第六章 結論 35
第七章 未來展望 36
參考文獻 73
-
dc.language.isozh_TW-
dc.subject固持力zh_TW
dc.subject數位切削zh_TW
dc.subject3D列印zh_TW
dc.subject熱聚合樹脂zh_TW
dc.subject全口活動義齒zh_TW
dc.subject義齒基底密合度zh_TW
dc.subjectretentive forceen
dc.subject3D printingen
dc.subjectcomplete dentureen
dc.subjectCAD/CAM millingen
dc.subjectadaptationen
dc.subjectposterior palatal sealen
dc.title臨床評估不同製程技術及後腭封區型態對上腭全口 義齒固持力及密合度的影響 體內實驗zh_TW
dc.titleEffects of fabrication techniques and posterior palatal seal on retention and adaptation of denture base: An in vivo studyen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林立德;洪志遠zh_TW
dc.contributor.oralexamcommitteeLi-Deh Lin;Zhi-Yuan Hongen
dc.subject.keyword數位切削,3D列印,熱聚合樹脂,全口活動義齒,義齒基底密合度,固持力,zh_TW
dc.subject.keywordCAD/CAM milling,3D printing,complete denture,retentive force,posterior palatal seal,adaptation,en
dc.relation.page80-
dc.identifier.doi10.6342/NTU202302870-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-07-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床牙醫學研究所-
dc.date.embargo-lift2026-01-01-
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
89.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved