請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90256完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王東美 | zh_TW |
| dc.contributor.advisor | Tong-Mei Wang | en |
| dc.contributor.author | 林承斌 | zh_TW |
| dc.contributor.author | Chen-Ping Lin | en |
| dc.date.accessioned | 2023-09-25T16:08:00Z | - |
| dc.date.available | 2026-01-01 | - |
| dc.date.copyright | 2023-09-25 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-07 | - |
| dc.identifier.citation | [1] Soboļeva U, Lauriņa L, Slaidiņa A. The masticatory system--an overview. Stomatologija. 2005;7:77-80.
[2] Iwasaki LR, Petsche PE, McCall WD, Jr., Marx D, Nickel JC. Neuromuscular objectives of the human masticatory apparatus during static biting. Arch Oral Biol. 2003;48:767-77. [3] Laird MF, Vogel ER, Pontzer H. Chewing efficiency and occlusal functional morphology in modern humans. J Hum Evol. 2016;93:1-11. [4] Misch CE, Suzuki JB, Misch-Dietsh FM, Bidez MW. A positive correlation between occlusal trauma and peri-implant bone loss: literature support. Implant Dent. 2005;14:108-16. [5] Isidor F. Loss of osseointegration caused by occlusal load of oral implants. A clinical and radiographic study in monkeys. Clin Oral Implants Res. 1996;7:143-52. [6] Isidor F. Histological evaluation of peri-implant bone at implants subjected to occlusal overload or plaque accumulation. Clin Oral Implants Res. 1997;8:1-9. [7] Rangert B, Krogh PH, Langer B, Van Roekel N. Bending overload and implant fracture: a retrospective clinical analysis. Int J Oral Maxillofac Implants. 1995;10:326-34. [8] Racich MJ. Occlusion, temporomandibular disorders, and orofacial pain: An evidence-based overview and update with recommendations. J Prosthet Dent. 2018;120:678-85. [9] Dawson PE. Functional Occlusion: From TMJ to Smile Design: Mosby; 2007. [10] Kim Y, Oh TJ, Misch CE, Wang HL. Occlusal considerations in implant therapy: clinical guidelines with biomechanical rationale. Clin Oral Implants Res. 2005;16:26-35. [11] Berglundh T, Giannobile WV, Sanz M, Lang NP. Lindhe's Clinical Periodontology and Implant Dentistry: Wiley; 2021. [12] Gross MD. Occlusion in implant dentistry. A review of the literature of prosthetic determinants and current concepts. Aust Dent J. 2008;53 Suppl 1:S60-8. [13] Misch CE, Bidez MW. Occlusal considerations for implant-supported prostheses: Implant-protective occlusion. Dental Implant Prosthetics2005. p. 472-510. [14] The Glossary of Prosthodontic Terms: Ninth Edition. J Prosthet Dent. 2017;117:e1-e105. [15] Cavalcanti Garcia MA, Vieira T. Surface electromyography: Why, when and how to use it. Revista Andaluza de Medicina del Deporte. 2011;4:17-28. [16] Bozhkova T, Musurlieva N, Slavchev D, Dimitrova M, Rimalovska S. Occlusal Indicators Used in Dental Practice: A Survey Study. Biomed Res Int. 2021;2021:2177385. [17] Babu RR, Nayar SV. Occlusion indicators: A review. The Journal of Indian Prosthodontic Society. 2007;7:170-4. [18] McNeill C. Science and practice of occlusion. Chicago: Quintessence Pub. Co.; 1997. [19] Brånemark PI, Hansson BO, Adell R, Breine U, Lindström J, Hallén O et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl. 1977;16:1-132. [20] Jacobs R, van Steenberghe D. Comparison between implant-supported prostheses and teeth regarding passive threshold level. Int J Oral Maxillofac Implants. 1993;8:549-54. [21] Mericske-Stern R, Assal P, Mericske E, Bürgin W. Occlusal force and oral tactile sensibility measured in partially edentulous patients with ITI implants. Int J Oral Maxillofac Implants. 1995;10:345-53. [22] Sekine H, Komiyama Y, Potta H, Yoshida K. Mobility characteristics and tactile sensitivity of osseointegrated fixture-supporting systems. In: van Steenberghe D, Albrektsson T, Branemark PI, HHenry PJ, Holt R, Liden G, editors. Tissue integration in oral and maxillofacial reconstruction. Amsterdam: Excerpta Medica. 1986:326-32. [23] Schulte W. Implants and the periodontium. Int Dent J. 1995;45:16-26. [24] Parfitt GJ. Measurement of the physiological mobility of individual teeth in an axial direction. J Dent Res. 1960;39:608-18. [25] Hillam DG. Stresses in the periodontal ligament. Journal of Periodontal Research. 1973;8:51-6. [26] Richter EJ. In vivo horizontal bending moments on implants. Int J Oral Maxillofac Implants. 1998;13:232-44. [27] Higaki N, Goto T, Ishida Y, Watanabe M, Tomotake Y, Ichikawa T. Do sensation differences exist between dental implants and natural teeth?: a meta-analysis. Clin Oral Implants Res. 2014;25:1307-10. [28] Naert I, Quirynen M, van Steenberghe D, Darius P. A study of 589 consecutive implants supporting complete fixed prostheses. Part II: Prosthetic aspects. J Prosthet Dent. 1992;68:949-56. [29] Falk H, Laurell L, Lundgren D. Occlusal force pattern in dentitions with mandibular implant-supported fixed cantilever prostheses occluded with complete dentures. Int J Oral Maxillofac Implants. 1989;4:55-62. [30] Pameijer JHN. Periodontal and Occlusal Factors in Crown and Bridge Procedures: Dental Center for Postgraduate Courses; 1985. [31] dos Santos J. Occlusion: Principles and Concepts: Ishiyaku EuroAmerica; 1985. [32] Hobo S, Eiji I, Lily TG. Osseointegration and Occlusal Rehabilitation: Quintessence Publishing Company; 1989. [33] McCollum BB, Stuart CE. A Research Report: Chas. E. Stuart; 1955. [34] Schuyler CH. Considerations of Occlusion in Fixed Partial Dentures. Dental Clinics of North America. 1959;3:175-85. [35] D'Amico A. Functional occlusion of the natural teeth of man. The Journal of Prosthetic Dentistry. 1961;11:899-915. [36] Misch CE, Bidez MW. Implant-protected occlusion: a biomechanical rationale. Compendium. 1994;15:1330, 2, 4 passim; quiz 44. [37] Beyron H. Optimal Occlusion. Dental Clinics of North America. 1969;13:537-54. [38] Picton D. The effect of external forces on the periodontium. Biology of the Periodontium. 1969:363-419. [39] Lundgren D, Laurell L. Biomechanical aspects of fixed bridgework supported by natural teeth and endosseous implants. Periodontol 2000. 1994;4:23-40. [40] Choudhary A. Occlusal Indicators- Chasing Blue Marks?: A Review. TMU J.Dent Vol 1, Issue 3, July- Sept 2014. TMU Jdent. 2014;01. [41] Sharma A, Rahul GR, Poduval ST, Shetty K, Gupta B, Rajora V. History of materials used for recording static and dynamic occlusal contact marks: a literature review. J Clin Exp Dent. 2013;5:e48-53. [42] Saad MN, Weiner G, Ehrenberg D, Weiner S. Effects of load and indicator type upon occlusal contact markings. J Biomed Mater Res B Appl Biomater. 2008;85:18-22. [43] Qadeer S, Kerstein R, Kim RJ, Huh JB, Shin SW. Relationship between articulation paper mark size and percentage of force measured with computerized occlusal analysis. J Adv Prosthodont. 2012;4:7-12. [44] Millstein P, Maya A. An evaluation of occlusal contact marking indicators. A descriptive quantitative method. J Am Dent Assoc. 2001;132:1280-6; quiz 319. [45] Carey JP, Craig M, Kerstein RB, Radke J. Determining a relationship between applied occlusal load and articulating paper mark area. Open Dent J. 2007;1:1-7. [46] Saraçoğlu A, Ozpinar B. In vivo and in vitro evaluation of occlusal indicator sensitivity. J Prosthet Dent. 2002;88:522-6. [47] Bausch. Bausch Articulating and Occlusion Test Materials. 2020. [48] Harper KA, Setchell DJ. The use of shimstock to assess occlusal contacts: a laboratory study. Int J Prosthodont. 2002;15:347-52. [49] Reiber T, Fuhr K, Hartmann H, Leicher D. Recording pattern of occlusal indicators. I. Influence of indicator thickness, pressure, and surface morphology. Dtsch Zahnarztl Z. 1989;44:90-3. [50] Ehrlich J, Taicher S. Intercuspal contacts of the natural dentition in centric occlusion. J Prosthet Dent. 1981;45:419-21. [51] Millstein PL, Clark RE, Kronman JH. Determination of the accuracy of wax interocclusal registrations. II. J Prosthet Dent. 1973;29:40-5. [52] Davies S, Al-Ani Z, Jeremiah H, Winston D, Smith P. Reliability of recording static and dynamic occlusal contact marks using transparent acetate sheet. J Prosthet Dent. 2005;94:458-61. [53] Davies SJ, Gray RJM, Al-Ani MZ, Sloan P, Worthington H. Inter- and intra-operator reliability of the recording of occlusal contacts using 'occlusal sketch' acetate technique. British Dental Journal. 2002;193:397-400. [54] Gazit E, Fitzig S, Lieberman MA. Reproducibility of occlusal marking techniques. J Prosthet Dent. 1986;55:505-9. [55] Korioth TW. Number and location of occlusal contacts in intercuspal position. J Prosthet Dent. 1990;64:206-10. [56] Ingervall B. Tooth contacts on the functional and nonfunctional side in children and young adults. Arch Oral Biol. 1972;17:191-200. [57] Tejo SK, Kumar AG, Kattimani VS, Desai PD, Nalla S, Chaitanya K K. A comparative evaluation of dimensional stability of three types of interocclusal recording materials-an in-vitro multi-centre study. Head & Face Medicine. 2012;8:27. [58] Imamura Y, Sato Y, Kitagawa N, Uchida K, Osawa T, Omori M et al. Influence of occlusal loading force on occlusal contacts in natural dentition. J Prosthodont Res. 2015;59:113-20. [59] Ziebert GJ, Donegan SJ. Tooth contacts and stability before and after occlusal adjustment. J Prosthet Dent. 1979;42:276-81. [60] Verma TP, Kumathalli KI, Jain V, Kumar R. Bite Force Recording Devices - A Review. J Clin Diagn Res. 2017;11:Ze01-ze5. [61] Tzakis MG, Osterberg T, Carlsson GE. A study of some masticatory functions in 90-year old subjects. Gerodontology. 1994;11:25-9. [62] Kogawa EM, Calderon PS, Lauris JR, Araujo CR, Conti PC. Evaluation of maximal bite force in temporomandibular disorders patients. J Oral Rehabil. 2006;33:559-65. [63] Kogawa EM, Calderon PS, Lauris JRP, Araujo CRP, Conti PCR. Evaluation of maximal bite force in temporomandibular disorders patients. Journal of Oral Rehabilitation. 2006;33:559-65. [64] Gonçalves TMSV, Vasconcelos LMRD, Silva WJD, Del Bel Cury AA, Garcia RCMR. Influence of female hormonal fluctuation on maximum occlusal force. Brazilian Dental Journal. 2011;22:497-501. [65] Gomes SG, Custodio W, Faot F, Cury AA, Garcia RC. Chewing side, bite force symmetry, and occlusal contact area of subjects with different facial vertical patterns. Braz Oral Res. 2011;25:446-52. [66] Lyons MF, Sharkey SW, Lamey PJ. An evaluation of the T-Scan computerised occlusal analysis system. Int J Prosthodont. 1992;5:166-72. [67] Khan SIR, Rao D, Ramachandran A, Ashok BV. Influence of personality traits on the intensity of maximum voluntary bite force in adults. Indian J Dent Res. 2020;31:706-11. [68] Lyons MF, Baxendale RH. A preliminary electromyographic study of bite force and jaw-closing muscle fatigue in human subjects with advanced tooth wear. J Oral Rehabil. 1990;17:311-8. [69] Braun S, Bantleon HP, Hnat WP, Freudenthaler JW, Marcotte MR, Johnson BE. A study of bite force, part 1: Relationship to various physical characteristics. Angle Orthod. 1995;65:367-72. [70] Winocur E, Davidov I, Gazit E, Brosh T, Vardimon AD. Centric slide, bite force and muscle tenderness changes over 6 months following fixed orthodontic treatment. Angle Orthod. 2007;77:254-9. [71] Hirao A, Murata S, Murata J, Kubo A, Hachiya M, Asami T. Relationships between the Occlusal Force and Physical/Cognitive Functions of Elderly Females Living in the Community. J Phys Ther Sci. 2014;26:1279-82. [72] Rentes AM, Gavião MB, Amaral JR. Bite force determination in children with primary dentition. J Oral Rehabil. 2002;29:1174-80. [73] Suzuki T, Watanabe T, Yoshitomi N, Ishinabe S, Kumagai H, Uchida T et al. Evaluation of a New Measuring System for Occlusal Force with Pressure Sensitive Sheet. Nihon Hotetsu Shika Gakkai Zasshi. 1994;38:966-73. [74] Ikebe K, Matsuda K, Morii K, Nokubi T, Ettinger RL. The relationship between oral function and body mass index among independently living older Japanese people. Int J Prosthodont. 2006;19:539-46. [75] Shiga H, Komino M, Uesugi H, Sano M, Yokoyama M, Nakajima K et al. Comparison of two dental prescale systems used for the measurement of occlusal force. Odontology. 2020;108:676-80. [76] Horibe Y, Matsuo K, Ikebe K, Minakuchi S, Sato Y, Sakurai K et al. Relationship between two pressure-sensitive films for testing reduced occlusal force in diagnostic criteria for oral hypofunction. Gerodontology. 2021. [77] Hidaka O, Iwasaki M, Saito M, Morimoto T. Influence of clenching intensity on bite force balance, occlusal contact area, and average bite pressure. J Dent Res. 1999;78:1336-44. [78] Kon K, Shiota M, Sakuyama A, Ozeki M, Kozuma W, Kawakami S et al. Evaluation of the Alteration of Occlusal Distribution in Unilateral Free-End and Intermediate Missing Cases. J Oral Implantol. 2017;43:3-7. [79] Motegi E, Nomura M, Tachiki C, Miyazaki H, Takeuchi F, Takaku S et al. Occlusal force in people in their sixties attending college for elderly. Bull Tokyo Dent Coll. 2009;50:135-40. [80] Kono R. Relationship between occlusal force and preventive factors for disability among community-dwelling elderly persons. Nihon Ronen Igakkai Zasshi. 2009;46:55-62. [81] Aras K, Hasanreisoğlu U, Shinogaya T. Masticatory performance, maximum occlusal force, and occlusal contact area in patients with bilaterally missing molars and distal extension removable partial dentures. Int J Prosthodont. 2009;22:204-9. [82] Makino E, Nomura M, Motegi E, Iijima Y, Ishii T, Koizumi Y et al. Effect of orthodontic treatment on occlusal condition and masticatory function. Bull Tokyo Dent Coll. 2014;55:185-97. [83] Hwang S, Choi YJ, Jung S, Kim S, Chung CJ, Kim KH. Posterior dental compensation and occlusal function in adults with different sagittal skeletal malocclusions. Korean J Orthod. 2020;50:98-107. [84] Iwase M, Ohashi M, Tachibana H, Toyoshima T, Nagumo M. Bite force, occlusal contact area and masticatory efficiency before and after orthognathic surgical correction of mandibular prognathism. Int J Oral Maxillofac Surg. 2006;35:1102-7. [85] Moroi A, Yoshizawa K, Iguchi R, Ikawa H, Kosaka A, Hotta A et al. The amount of mandibular setback influence on occlusal force following sagittal split ramus osteotomy. J Craniomaxillofac Surg. 2015;43:1743-8. [86] Castroflorio T, Icardi K, Torsello F, Deregibus A, Debernardi C, Bracco P. Reproducibility of surface EMG in the human masseter and anterior temporalis muscle areas. Cranio. 2005;23:130-7. [87] Im YG, Han SH, Park JI, Lim HS, Kim BG, Kim JH. Repeatability of measurements of surface electromyographic variables during maximum voluntary contraction of temporalis and masseter muscles in normal adults. J Oral Sci. 2017;59:233-45. [88] Chiou YH, Luh JJ, Chen SC, Lai JS, Kuo TS. The comparison of electromyographic pattern classifications with active and passive electrodes. Med Eng Phys. 2004;26:605-10. [89] De Felício CM, Mapelli A, Sidequersky FV, Tartaglia GM, Sforza C. Mandibular kinematics and masticatory muscles EMG in patients with short lasting TMD of mild-moderate severity. J Electromyogr Kinesiol. 2013;23:627-33. [90] Verri E, Silva G, Fioco E, Silva N, Fabrin S, Augusto Bueno Zanella C et al. Effects of Parkinson's disease on molar bite force, electromyographic activity and muscle thickness of the masseter, temporal and sternocleidomastoid muscles: A case-control study. Journal of Oral Rehabilitation. 2019;46. [91] Paphangkorakit J, Chaichit R, Khummool K, Nopphaisit S, Saengsai A. Effect of biting speed and jaw separation on force used to incise food. Journal of Oral Rehabilitation. 2020;47:731-5. [92] Arima T, Takeuchi T, Honda K, Tomonaga A, Tanosoto T, Ohata N et al. Effects of interocclusal distance on bite force and masseter EMG in healthy participants. J Oral Rehabil. 2013;40:900-8. [93] Wang MQ, He JJ, Zhang JH, Wang K, Svensson P, Widmalm SE. SEMG activity of jaw-closing muscles during biting with different unilateral occlusal supports. J Oral Rehabil. 2010;37:719-25. [94] Gonzalez Y, Iwasaki LR, McCall WD, Jr., Ohrbach R, Lozier E, Nickel JC. Reliability of electromyographic activity vs. bite-force from human masticatory muscles. Eur J Oral Sci. 2011;119:219-24. [95] Yen CI, Mao SH, Chen CH, Chen CT, Lee MY. The correlation between surface electromyography and bite force of mastication muscles in Asian young adults. Ann Plast Surg. 2015;74 Suppl 2:S168-72. [96] Bigland B, Lippold OC. The relation between force, velocity and integrated electrical activity in human muscles. J Physiol. 1954;123:214-24. [97] Häkkinen K, Komi PV. Electromyographic changes during strength training and detraining. Med Sci Sports Exerc. 1983;15:455-60. [98] Kawazoe Y, Kotani H, Hamada T. Relation between integrated electromyographic activity and biting force during voluntary isometric contraction in human masticatory muscles. J Dent Res. 1979;58:1440-9. [99] Pruim GJ, Ten Bosch JJ, de Jongh HJ. Jaw muscle EMG-activity and static loading of the mandible. J Biomech. 1978;11:389-95. [100] Proeschel PA, Morneburg T. Task-dependence of Activity/ Bite-force Relations and its Impact on Estimation of Chewing Force from EMG. Journal of Dental Research. 2002;81:464-8. [101] Teo WP, Rodrigues JP, Mastaglia FL, Thickbroom GW. Changes in corticomotor excitability and inhibition after exercise are influenced by hand dominance and motor demand. Neuroscience. 2012;210:110-7. [102] Hammond G. Correlates of human handedness in primary motor cortex: a review and hypothesis. Neurosci Biobehav Rev. 2002;26:285-92. [103] Wang T-M, Chang Y-H, Yang T-C, Lin L-D. Effect of scan delay on measurements of an occlusal pressure sensitive film: An in-vitro study. Journal of Dental Sciences. 2022;17:30-4. [104] Ratner B. The correlation coefficient: Its values range between +1/−1, or do they? Journal of Targeting, Measurement and Analysis for Marketing. 2009;17:139-42. [105] Iwasaki S, Tokunaga T, Baba S, Tanaka M, Kawazoe T. Noninvasive estimation of the location of the end plate in the human masseter muscle using surface electromyograms with an electrode array. J Osaka Dent Univ. 1990;24:135-40. [106] Ye Y, Di P, Jia S, Lin Y. [Occlusal force and its distribution in the position of maximum intercuspation in individual normal occlusion: a cross-sectional study]. Zhonghua Kou Qiang Yi Xue Za Zhi. 2015;50:536-9. [107] Regalo SCH, Santos CM, Vitti M, Regalo CA, de Vasconcelos PB, Mestriner W et al. Evaluation of molar and incisor bite force in indigenous compared with white population in Brazil. Archives of Oral Biology. 2008;53:282-6. [108] Horibe Y, Matsuo K, Ikebe K, Minakuchi S, Sato Y, Sakurai K et al. Relationship between two pressure-sensitive films for testing reduced occlusal force in diagnostic criteria for oral hypofunction. Gerodontology. 2022;39:3-9. [109] Kumagai H, Suzuki T, Hamada T, Sondang P, Fujitani M, Nikawa H. Occlusal force distribution on the dental arch during various levels of clenching. Journal of Oral Rehabilitation. 1999;26:932-5. [110] Zaky M, Fayed N, Shehab M. Comparison of biting force when using a combination of one microplate and one miniplate versus two miniplates for fixation of parasymphyseal mandibular fracture: the use of microplates for parasymphyseal mandibular fracture. Oral and Maxillofacial Surgery. 2020;24. [111] Malta Barbosa J, Urtula AB, Hirata R, Caramês J. Thickness evaluation of articulating papers and foils. J Esthet Restor Dent. 2018;30:70-2. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90256 | - |
| dc.description.abstract | 實驗簡介
咬合接觸以及咬合力量的偵測是牙醫師在臨床上的每日例行公事。如何有效的紀錄咬合接觸和咬合力量,以及如何針對不同類型的贋復物做出輕重咬合之差異以利有效之調整,至今仍未有公認之客觀方式。 本實驗旨為探討在監控雙側咬肌之肌電活動下,使受試者做出不同咬合指示時使用Dental Prescale II(DPS II)試片紀錄測得之咬合接觸面積、咬合平均壓力及咬合力量,並分析肌電活動與各項咬合數據間之關係。希望建立一有效且客觀之方式以進行口腔機能診斷、全口重建治療效果評估以及植體贋復物之咬合調整。 實驗材料及方法 主要分成兩部分:首先透過體外實驗針對DPS II試片做基本性質之測試,接著以體內實驗進行不同咬合指示下之咬合數據測試。 體外實驗:使用萬能試驗機(Instron 5566, Instron Corp., USA)針對DPS II試片進行100至1200N之受力測試,觀察其測得數據之變化。 體內實驗:共有24位健康受試者,12位男性及12位女性。對健康受試者在監控咬肌肌電活動(Teethan® , MI, Italy)下針對不同咬合指示進行DPS II咬合測試,探討肌電活動和各項咬合數據之差異及趨勢。 實驗結果 體外實驗之結果顯示,在DPS II測得之接觸面積、平均壓力、最大壓力以及力量值皆和萬能試驗機之施力大小呈現正相關,其中在施力500N以下各項數據之線性關係較為明顯。此外,為比較DPS II測得力量之可信度,實驗結果顯示DPS II測得之力量值和萬能試驗機之施力之迴歸分析下,迴歸係數為為0.7819,相關係數為0.998,呈現極高度線性正相關。 體內實驗針對咬合力量-肌電活動關係之線性迴歸分析中,迴歸係數(muscle activities/bite force ratio)不論性別,慣用側和非慣用側之間無統計學上顯著差異;不論是否為慣用側,男性和女性之間亦無統計學上顯著差異。相關係數部分,咬合力量-肌電活動關係不論性別和慣用側與否都呈現高度正相關,亦即每個個體隨著肌電活動越高,DPS II測得之咬合力量就越大。 最後針對不同咬合指示下,DPS II測得之各項數據探討,結果顯示客觀視覺回饋70%和35%之間,肌電活動和各項咬合數據都有統計學上顯著差異,但慣用側和非慣用側間無顯著差異;主觀咬合指示輕重咬之間,肌電活動和各項咬合數據也都有統計學上顯著差異,但慣用側和非慣用側間無顯著差異。其中結果顯示不論輕重咬合,咬合平均壓力幾乎都在70%以上,也就是在後牙區域不論在輕重咬合皆能提供一定程度的穩定咬合;另外,在監控肌電活動下確實能夠使受試者做出輕咬以及重咬在各項咬合數據之差異。 結論 根據本實驗結果,可得出以下結論: (1) DPS II試片隨著受力增加,和各項數據(接觸面積、壓力以及力量)皆呈現正相關。 (2) DPS II試片測得之力量約為萬能試驗機真實施力值之78.2%。 (3) 個體之咬合力量-肌電活動關係皆呈現高度線性正相關。因此透過監控肌電活動以預測咬合力量之大小確為一可信之方式。 (4) 個體之咬合力量-肌電活動關係之咬合力量-肌電活動比率(muscle activities/bite force ratio)和性別及慣用側與否等差異無顯著相關。 (5) 不論客觀或主觀之咬合指示,受試者皆可以在肌電活動和各項咬合數據上做出輕重程度之顯著差異;但各項數據和慣用側與否並無顯著相關。 (6) 透過監控肌電活動,可以有效使受試者執行輕咬以及重咬之差別,此一方式有利於臨床上植體贋復物之咬合調整。 | zh_TW |
| dc.description.abstract | Introduction
Detecting occlusal contacts and occlusal force are daily work to dentists. However, there is still no effective way to record occlusal contact and occlusal force and no valid method to adjust different types of prostheses under various occlusal tasks. In this study, we acquired occlusal data, including contact area, pressure and force from Dental Prescale II (DPS II) while monitoring the surface electromyography (sEMG) activities of bilateral masseter muscles under different occlusal tasks, then we analyzed the correlation between each occlusal data (occlusal contact area, pressure and force) and sEMG activities. The aim of this study was to establish a valid and efficient way in our daily practice for diagnosis in oral function, occlusal adjustment in implant prostheses and evaluation of the treatment results in full mouth rehabilitation. Materials and Methods This study had two parts. In vitro study: using universal testing machine (Instron, Instron Corp., USA) to provide standard force from 100N to 1200N to test the DPS II sample and then analyze the acquired data with linear regression analysis. In vivo study: there were 24 healthy participants, 12 men and 12 women. Our in vivo study was to explore the acquired data from DPS II while monitoring the surface EMG activities (Teethan® , MI, Italy) of bilateral masseter muscles under different tasks, including objective visual feedback tasks (70%, 35%) and subjective heavy and light force tasks. Results The results from our in vitro study showed that the measured contact area, average pressure, maximum pressure and force from DPS II were all highly positively correlated with the standard force from universal testing machine, and the positively linear relations were more evident with the standard force below 500N. Moreover, to investigate the reliability of the measured force from DPS II, the linear regression analysis showed that the regression coefficient was 0.7819, the correlation coefficient was 0.998, which represented the extremely high positively linear correlation. The first results from this in vivo study were about bite force-EMG relation. There was no significant difference in muscle activities/bite force ratio regardless of gender and preferred side. In terms of correlation coefficient, the results showed every bite force-EMG relation exhibited high positive correlation. It meant that when we observed higher EMG activities in participants, we expected them to have higher bite force. The last results from this in vivo study were about the analysis of measured data (sEMG activities, occlusal contact areas, occlusal average pressure and occlusal force) from DPS II under different tasks. The results from visual feedback instructions showed that there were significant differences in every measured data between 70% and 35% instructions, but there was no significant difference between preferred side and non-preferred side in every measured data; the results from heavy/light force instructions showed that there were significant differences in every measured data between heavy and light force instructions, but there was no significant difference between preferred side and non-preferred side in every measured data as well. In addition, the measured occlusal average pressure from DPS II was mostly above 70% regardless of heavy or light force instructions, and it meant that the posterior tooth played an important role in posterior support regardless of heavy or light force. Last but not least, we could conclude that participants were able to make significant differences in every measured data during heavy and light force tasks while monitoring sEMG activities of bilateral masseter muscles and this could be a valid and objective way for us to perform occlusal adjustment in delivering implant prostheses. Conclusions Based on the results from this study, we can make conclusions as followed: (1) The measured data (contact area, pressure and force) from DPS II were positively correlated with the standard force exerted. (2) The measured force from DPS II was about 78.2% of the standard force exerted. (3) The bite force-EMG relation showed high positively linear relation in every subjects. (4) The muscle activities/bite force ratio showed no significant difference regardless of gender and preferred side. (5) Regardless of objective or subjective instructions, participants were able to make significant differences with heavier and lighter force in every measured data; however, there was no significant difference between preferred side and non-preferred side. (6) Monitoring the EMG activities could be a valid and objective method to make subjects capable of performing heavy and light force with significant differences, and this method could be use in occlusal adjustment on implant prostheses. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-25T16:07:59Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-25T16:08:00Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文摘要 i
英文摘要 iii 目錄 vi 圖目錄 xi 表目錄 xv Chapter 1 緒論 1 1.1 引言 1 1.2 文獻回顧 3 1.2.1 咬合治療成功的關鍵因素 3 1.2.2 自然齒列和牙科植體之差異 5 1.2.3 牙科植體贋復物之咬合設定 7 1.2.4 咬合指示工具(occlusal indicators) 9 1.2.5 定性咬合指示工具(qualitative occlusal indicators) 10 1.2.6 定量咬合指示工具(quantitative occlusal indicators) 14 1.2.7 Dental Prescale II System 17 1.2.8 肌電圖(electromyography)於咀嚼肌群測試之臨床應用 19 1.2.9 咬合力量(occlusal force)和肌電圖(electromyography)之相關分析 21 Chapter 2 研究目的及假說 24 2.1 研究假說 25 2.1.1 體外實驗之虛無假說 25 2.1.2 體內實驗之虛無假說 25 Chapter 3 體外實驗-實驗材料與方法 26 3.1 實驗工具及設備 26 3.1.1 Dental Prescale II System (DPS II, GC Corp., Tokyo, Japan) 26 3.1.2 萬能試驗機(Universal testing machine, Instron 5566, Instron Corp., Canton, MA, USA) 26 3.2 實驗步驟 27 3.2.1 萬能試驗機力量與DPS II測得數值之相關性 27 3.3 統計分析 28 Chapter 4 體內實驗-實驗材料與方法 29 4.1 實驗工具及設備 29 4.1.1 表面肌電圖(surface electromyography, sEMG) 29 4.2 受試者人數、納入以及排除條件 29 4.2.1 受試者人數 29 4.2.2 納入條件 29 4.2.3 排除條件 30 4.3 實驗步驟 30 4.3.1 受試者姿勢 30 4.3.2 肌電圖表面電極放置 30 4.3.3 對受試者進行肌力以及咬合測試 31 4.4 表面肌電圖之資料處理 31 4.5 統計分析 32 4.5.1 咬合力量-肌電活動關係分析 32 4.5.2 主客觀咬合指示下DPS II測得之咬合數據及sEMG之比較 32 Chapter 5 實驗結果 33 5.1 體外實驗 33 5.1.1 萬能試驗機力量與DPS II測得之接觸面積之趨勢關係 33 5.1.2 萬能試驗機力量與DPS II測得之平均壓力值之趨勢關係 33 5.1.3 萬能試驗機力量與DPS II測得之最大壓力值之關係 33 5.1.4 萬能試驗機力量與DPS II測得之力量值之趨勢關係 33 5.2 體內實驗 34 5.2.1 受試者基本資訊 34 5.2.2 受試者測得之原始數據 34 5.2.3 整體咬合數據-肌電活動趨勢分佈 35 5.2.4 咬合力量-肌電活動關係之線性迴歸分析 36 5.2.5 視覺回饋咬合指示下DPS II測得之咬合數據及sEMG之比較 37 5.2.6 主觀輕重咬合指示下DPS II測得之咬合數據及sEMG之比較 40 5.2.7 主客觀咬合指示下DPS II測得之咬合數據及sEMG之比較 42 Chapter 6 討論 45 6.1 萬能試驗機施力大小對於DPS II試片測得數據之影響 45 6.1.1 樣本數 45 6.1.2 萬能試驗機之施力範圍設定 46 6.1.3 接觸面積 46 6.1.4 平均壓力值 47 6.1.5 最大壓力值 47 6.1.6 力量值 48 6.1.7 DPS II測得之力量值與真實力量間的關係 49 6.2 整體受試者肌電活動值與咬合數據之趨勢 50 6.3 個體咬合力量與肌電活動關係之線性迴歸分析 51 6.3.1 受試者數目 52 6.3.2 肌電活動/咬合力量比率(muscle activity/bite-force ratios) 52 6.3.3 皮爾森相關係數 53 6.4 客觀視覺回饋咬合指示對於咬合數據之影響 53 6.5 主觀咬合指示對於咬合數據之影響 54 6.6 主觀以及客觀咬合指示對於咬合數據影響之差異 56 Chapter 7 總結 59 7.1 體外實驗-DPS II試片之基本測試 59 7.2 體內實驗-咬合力量和肌電活動之迴歸模型 59 7.3 體內實驗-不同咬合指示下之咬合數據差異 59 Chapter 8 實驗設計之限制及未來展望 61 8.1 體外實驗之測試模型 61 8.2 DPS II試片厚度 61 8.3 細分齒位或區域探討咬合數據 62 8.4 慣用側與非慣用側之差異性 62 8.5 未來展望 63 參考文獻 96 附錄 105 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 咬合力量 | zh_TW |
| dc.subject | Dental Prescale II (DPS II) | zh_TW |
| dc.subject | 表面肌電圖 | zh_TW |
| dc.subject | 植體贋復物 | zh_TW |
| dc.subject | 咬合接觸 | zh_TW |
| dc.subject | 咬合壓力 | zh_TW |
| dc.subject | occlusal contact | en |
| dc.subject | surface electromyography (sEMG) | en |
| dc.subject | dental implant prosthesis | en |
| dc.subject | Dental Prescale II (DPS II) | en |
| dc.subject | occlusal force | en |
| dc.subject | occlusal pressure | en |
| dc.title | 探討不同咬合指示下肌電活動、咬合接觸區域與咬合力間之關係 | zh_TW |
| dc.title | Investigating the relation between occlusal contact areas and occlusal loads while monitoring the EMG activity during different tasks | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林立德;洪志遠 | zh_TW |
| dc.contributor.oralexamcommittee | Li-Deh Lin;Chi-Yuan Hong | en |
| dc.subject.keyword | Dental Prescale II (DPS II),表面肌電圖,植體贋復物,咬合接觸,咬合壓力,咬合力量, | zh_TW |
| dc.subject.keyword | Dental Prescale II (DPS II),surface electromyography (sEMG),dental implant prosthesis,occlusal contact,occlusal pressure,occlusal force, | en |
| dc.relation.page | 140 | - |
| dc.identifier.doi | 10.6342/NTU202303141 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-07 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 臨床牙醫學研究所 | - |
| dc.date.embargo-lift | 2028-08-06 | - |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 16.98 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
