請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90250完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊宏志 | zh_TW |
| dc.contributor.advisor | Hung-Chih Yang | en |
| dc.contributor.author | 王宇平 | zh_TW |
| dc.contributor.author | Yu-Ping Wang | en |
| dc.date.accessioned | 2023-09-24T16:12:16Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-23 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-10 | - |
| dc.identifier.citation | Ballestero-Téllez, M., Docobo-Pérez, F., Portillo-Calderón, I., Rodríguez-Martínez, J.M., Racero, L., Ramos-Guelfo, M.S., Blázquez, J., Rodríguez-Baño, J., and Pascual, A. (2017). Molecular insights into fosfomycin resistance in Escherichia coli. J Antimicrob Chemother 72, 1303-1309. doi: 10.1093/jac/dkw573
Castañeda-García, A., Blázquez, J., and Rodríguez-Rojas, A. (2013). Molecular Mechanisms and Clinical Impact of Acquired and Intrinsic Fosfomycin Resistance. Antibiotics (Basel) 2, 217-236. doi: 10.3390/antibiotics2020217 Chen, Y.H. (2020). Transporters-mediated high level resistance mechanisms to fosfomycin in carbapenem-resistant Klebsiella pneumoniae. (Master's thesis). College of Medicine, National Taiwan University, Taipei, Taiwan. Cheng, Y.H., Lin, T.L., Pan, Y.J., Wang, Y.P., Lin, Y.T., and Wang, J.T. (2015). Colistin resistance mechanisms in Klebsiella pneumoniae strains from Taiwan. Antimicrob Agents Chemother 59, 2909-2913. doi: 10.1128/aac.04763-14 Chiu, S.K., Wu, T.L., Chuang, Y.C., Lin, J.C., Fung, C.P., Lu, P.L., Wang, J.T., Wang, L.S., Siu, L.K., and Yeh, K.M. (2013). National surveillance study on carbapenem non-susceptible Klebsiella pneumoniae in Taiwan: the emergence and rapid dissemination of KPC-2 carbapenemase. PLoS One 8, e69428. doi: 10.1371/journal.pone.0069428 Chu, P.H. (2018). Fosfomycin Resistance Mechanism(s) in Klebsiella pneumoniae (II) (Master's thesis). College of Medicine, National Taiwan University, Taipei, Taiwan. Diancourt, L., Passet, V., Verhoef, J., Grimont, P.A., and Brisse, S. (2005). Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol 43, 4178-4182. doi: 10.1128/jcm.43.8.4178-4182.2005 Elliott, Z.S., Barry, K.E., Cox, H.L., Stoesser, N., Carroll, J., Vegesana, K., Kotay, S., Sheppard, A.E., Wailan, A., Crook, D.W., Parikh, H., and Mathers, A.J. (2019). The Role of fosA in Challenges with Fosfomycin Susceptibility Testing of Multispecies Klebsiella pneumoniae Carbapenemase-Producing Clinical Isolates. J Clin Microbiol 57. doi: 10.1128/jcm.00634-19 Endimiani, A., Patel, G., Hujer, K.M., Swaminathan, M., Perez, F., Rice, L.B., Jacobs, M.R., and Bonomo, R.A. (2010). In vitro activity of fosfomycin against blaKPC-containing Klebsiella pneumoniae isolates, including those nonsusceptible to tigecycline and/or colistin. Antimicrob Agents Chemother 54, 526-529. doi: 10.1128/aac.01235-09 Falagas, M.E., Maraki, S., Karageorgopoulos, D.E., Kastoris, A.C., Mavromanolakis, E., and Samonis, G. (2010). Antimicrobial susceptibility of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Enterobacteriaceae isolates to fosfomycin. Int J Antimicrob Agents 35, 240-243. doi: 10.1016/j.ijantimicag.2009.10.019 Fang, C.T., Chuang, Y.P., Shun, C.T., Chang, S.C., and Wang, J.T. (2004). A novel virulence gene in Klebsiella pneumoniae strains causing primary liver abscess and septic metastatic complications. J Exp Med 199, 697-705. doi: 10.1084/jem.20030857 Fritzenwanker, M., Imirzalioglu, C., Herold, S., Wagenlehner, F.M., Zimmer, K.P., and Chakraborty, T. (2018). Treatment Options for Carbapenem- Resistant Gram-Negative Infections. Dtsch Arztebl Int 115, 345-352. doi: 10.3238/arztebl.2018.0345 Gadebusch, H.H., Stapley, E.O., and Zimmerman, S.B. (1992). The discovery of cell wall active antibacterial antibiotics. Crit Rev Biotechnol 12, 225-243. doi: 10.3109/07388559209069193 Huang, L., Cao, M., Hu, Y., Zhang, R., Xiao, Y., and Chen, G. (2021). Prevalence and mechanisms of fosfomycin resistance among KPC-producing Klebsiella pneumoniae clinical isolates in China. Int J Antimicrob Agents 57, 106226. doi: 10.1016/j.ijantimicag.2020.106226 Huang, L., Hu, Y.Y., and Zhang, R. (2017). Prevalence of fosfomycin resistance and plasmid-mediated fosfomycin-modifying enzymes among carbapenem-resistant Enterobacteriaceae in Zhejiang, China. J Med Microbiol 66, 1332-1334. doi: 10.1099/jmm.0.000578 Hung, I.C. (2016). Fosfomycin Resistance Mechanism(s) in Klebsiella pneumoniae (Master's thesis, College of Medicine, National Taiwan University, Taipei, Taiwan). Retrieved from: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/19369 Ito, R., Mustapha, M.M., Tomich, A.D., Callaghan, J.D., Mcelheny, C.L., Mettus, R.T., Shanks, R.M.Q., Sluis-Cremer, N., and Doi, Y. (2017). Widespread Fosfomycin Resistance in Gram-Negative Bacteria Attributable to the Chromosomal fosA Gene. mBio 8. doi: 10.1128/mBio.00749-17 Jing, X., Zhou, H., Min, X., Zhang, X., Yang, Q., Du, S., Li, Y., Yu, F., Jia, M., Zhan, Y., Zeng, Y., Yang, B., Pan, Y., Lu, B., Liu, R., and Zeng, J. (2018). The Simplified Carbapenem Inactivation Method (sCIM) for Simple and Accurate Detection of Carbapenemase-Producing Gram-Negative Bacilli. Front Microbiol 9, 2391. doi: 10.3389/fmicb.2018.02391 Juan, C.H., Chuang, C., Chen, C.H., Li, L., and Lin, Y.T. (2019). Clinical characteristics, antimicrobial resistance and capsular types of community-acquired, healthcare-associated, and nosocomial Klebsiella pneumoniae bacteremia. Antimicrob Resist Infect Control 8, 1. doi: 10.1186/s13756-018-0426-x Kaase, M., Szabados, F., Anders, A., and Gatermann, S.G. (2014). Fosfomycin susceptibility in carbapenem-resistant Enterobacteriaceae from Germany. J Clin Microbiol 52, 1893-1897. doi: 10.1128/jcm.03484-13 Karampatakis, T., Tsergouli, K., and Behzadi, P. (2023). Carbapenem-Resistant Klebsiella pneumoniae: Virulence Factors, Molecular Epidemiology and Latest Updates in Treatment Options. Antibiotics (Basel) 12. doi: 10.3390/antibiotics12020234 Kumar, S., Parvathi, A., Hernandez, R.L., Cadle, K.M., and Varela, M.F. (2009). Identification of a novel UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) from Vibrio fischeri that confers high fosfomycin resistance in Escherichia coli. Arch Microbiol 191, 425-429. doi: 10.1007/s00203-009-0468-9 Larsen, M.V., Cosentino, S., Rasmussen, S., Friis, C., Hasman, H., Marvig, R.L., Jelsbak, L., Sicheritz-Pontén, T., Ussery, D.W., Aarestrup, F.M., and Lund, O. (2012). Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol 50, 1355-1361. doi: 10.1128/jcm.06094-11 Law, C.J., Almqvist, J., Bernstein, A., Goetz, R.M., Huang, Y., Soudant, C., Laaksonen, A., Hovmöller, S., and Wang, D.N. (2008). Salt-bridge dynamics control substrate-induced conformational change in the membrane transporter GlpT. J Mol Biol 378, 828-839. doi: 10.1016/j.jmb.2008.03.029 Lee, S.Y., Park, Y.J., Yu, J.K., Jung, S., Kim, Y., Jeong, S.H., and Arakawa, Y. (2012). Prevalence of acquired fosfomycin resistance among extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae clinical isolates in Korea and IS26-composite transposon surrounding fosA3. J Antimicrob Chemother 67, 2843-2847. doi: 10.1093/jac/dks319 Liao, C.H., Huang, Y.T., and Hsueh, P.R. (2022). Multicenter Surveillance of Capsular Serotypes, Virulence Genes, and Antimicrobial Susceptibilities of Klebsiella pneumoniae Causing Bacteremia in Taiwan, 2017-2019. Front Microbiol 13, 783523. doi: 10.3389/fmicb.2022.783523 Lin, T.L., Yang, F.L., Yang, A.S., Peng, H.P., Li, T.L., Tsai, M.D., Wu, S.H., and Wang, J.T. (2012). Amino acid substitutions of MagA in Klebsiella pneumoniae affect the biosynthesis of the capsular polysaccharide. PLoS One 7, e46783. doi: 10.1371/journal.pone.0046783 Link, A.J., Phillips, D., and Church, G.M. (1997). Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol 179, 6228-6237. doi: 10.1128/jb.179.20.6228-6237.1997 Liu, P., Chen, S., Wu, Z.Y., Qi, M., Li, X.Y., and Liu, C.X. (2020). Mechanisms of fosfomycin resistance in clinical isolates of carbapenem-resistant Klebsiella pneumoniae. J Glob Antimicrob Resist. doi: 10.1016/j.jgar.2019.12.019 Logan, L.K., and Weinstein, R.A. (2017). The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. J Infect Dis 215, S28-s36. doi: 10.1093/infdis/jiw282 Lu, P.L., Hsieh, Y.J., Lin, J.E., Huang, J.W., Yang, T.Y., Lin, L., and Tseng, S.P. (2016). Characterisation of fosfomycin resistance mechanisms and molecular epidemiology in extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates. Int J Antimicrob Agents 48, 564-568. doi: 10.1016/j.ijantimicag.2016.08.013 Ma, Y., Xu, X., Guo, Q., Wang, P., Wang, W., and Wang, M. (2015). Characterization of fosA5, a new plasmid-mediated fosfomycin resistance gene in Escherichia coli. Lett Appl Microbiol 60, 259-264. doi: 10.1111/lam.12366 Michalopoulos, A., Virtzili, S., Rafailidis, P., Chalevelakis, G., Damala, M., and Falagas, M.E. (2010). Intravenous fosfomycin for the treatment of nosocomial infections caused by carbapenem-resistant Klebsiella pneumoniae in critically ill patients: a prospective evaluation. Clin Microbiol Infect 16, 184-186. doi: 10.1111/j.1469-0691.2009.02921.x Morrill, H.J., Pogue, J.M., Kaye, K.S., and Laplante, K.L. (2015). Treatment Options for Carbapenem-Resistant Enterobacteriaceae Infections. Open Forum Infect Dis 2, ofv050. doi: 10.1093/ofid/ofv050 Nordmann, P., and Poirel, L. (2019). Epidemiology and Diagnostics of Carbapenem Resistance in Gram-negative Bacteria. Clin Infect Dis 69, S521-s528. doi: 10.1093/cid/ciz824 Pan, Y.J., Lin, T.L., Lin, Y.T., Su, P.A., Chen, C.T., Hsieh, P.F., Hsu, C.R., Chen, C.C., Hsieh, Y.C., and Wang, J.T. (2015). Identification of capsular types in carbapenem-resistant Klebsiella pneumoniae strains by wzc sequencing and implications for capsule depolymerase treatment. Antimicrob Agents Chemother 59, 1038-1047. doi: 10.1128/aac.03560-14 Pan, Y.J., Lin, T.L., Chen, C.C., Tsai, Y.T., Cheng, Y.H., Chen, Y.Y., Hsieh, P.F., Lin, Y.T., and Wang, J.T. (2017). Klebsiella Phage ΦK64-1 Encodes Multiple Depolymerases for Multiple Host Capsular Types. J Virol 91. doi: 10.1128/jvi.02457-16 Podschun, R., and Ullmann, U. (1998). Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11, 589-603. doi: Pontikis, K., Karaiskos, I., Bastani, S., Dimopoulos, G., Kalogirou, M., Katsiari, M., Oikonomou, A., Poulakou, G., Roilides, E., and Giamarellou, H. (2014). Outcomes of critically ill intensive care unit patients treated with fosfomycin for infections due to pandrug-resistant and extensively drug-resistant carbapenemase-producing Gram-negative bacteria. Int J Antimicrob Agents 43, 52-59. doi: 10.1016/j.ijantimicag.2013.09.010 Takahata, S., Ida, T., Hiraishi, T., Sakakibara, S., Maebashi, K., Terada, S., Muratani, T., Matsumoto, T., Nakahama, C., and Tomono, K. (2010). Molecular mechanisms of fosfomycin resistance in clinical isolates of Escherichia coli. Int J Antimicrob Agents 35, 333-337. doi: 10.1016/j.ijantimicag.2009.11.011 Tseng, S.P., Wang, S.F., Kuo, C.Y., Huang, J.W., Hung, W.C., Ke, G.M., and Lu, P.L. (2015). Characterization of Fosfomycin Resistant Extended-Spectrum beta-Lactamase-Producing Escherichia coli Isolates from Human and Pig in Taiwan. PLoS One 10, e0135864. doi: 10.1371/journal.pone.0135864 Tseng, S.P., Wang, S.F., Ma, L., Wang, T.Y., Yang, T.Y., Siu, L.K., Chuang, Y.C., Lee, P.S., Wang, J.T., Wu, T.L., Lin, J.C., and Lu, P.L. (2017). The plasmid-mediated fosfomycin resistance determinants and synergy of fosfomycin and meropenem in carbapenem-resistant Klebsiella pneumoniae isolates in Taiwan. J Microbiol Immunol Infect 50, 653-661. doi: 10.1016/j.jmii.2017.03.003 Venturini, C., Petrovic Fabijan, A., Fajardo Lubian, A., Barbirz, S., and Iredell, J. (2022). Biological foundations of successful bacteriophage therapy. EMBO Mol Med 14, e12435. doi: 10.15252/emmm.202012435 Wu, C.L. (2020). Searching for adherent-invasive Escherichia coli phage receptor and mechanism(s) mediating low level fosfomycin resistance in Klebsiella pneumoniae (Master's thesis). College of Medicine, National Taiwan University, Taipei, Taiwan. Wang, B., Pan, F., Wang, C., Zhao, W., Sun, Y., Zhang, T., Shi, Y., and Zhang, H. (2020). Molecular epidemiology of Carbapenem-resistant Klebsiella pneumoniae in a paediatric hospital in China. Int J Infect Dis 93, 311-319. doi: 10.1016/j.ijid.2020.02.009 Wei, T., Zou, C., Qin, J., Tao, J., Yan, L., Wang, J., Du, H., Shen, F., Zhao, Y., and Wang, H. (2022). Emergence of Hypervirulent ST11-K64 Klebsiella pneumoniae Poses a Serious Clinical Threat in Older Patients. Front Public Health 10, 765624. doi: 10.3389/fpubh.2022.765624 Xu, S., Fu, Z., Zhou, Y., Liu, Y., Xu, X., and Wang, M. (2017). Mutations of the Transporter Proteins GlpT and UhpT Confer Fosfomycin Resistance in Staphylococcus aureus. Front Microbiol 8, 914. doi: 10.3389/fmicb.2017.00914 Yang, T.Y., Lu, P.L., and Tseng, S.P. (2019). Update on fosfomycin-modified genes in Enterobacteriaceae. J Microbiol Immunol Infect 52, 9-21. doi: 10.1016/j.jmii.2017.10. Yang, Q., Jia, X., Zhou, M., Zhang, H., Yang, W., Kudinha, T., and Xu, Y. (2020). Emergence of ST11-K47 and ST11-K64 hypervirulent carbapenem-resistant Klebsiella pneumoniae in bacterial liver abscesses from China: a molecular, biological, and epidemiological study. Emerg Microbes Infect 9, 320-331. doi: 10.1080/22221751.2020.1721334 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90250 | - |
| dc.description.abstract | 碳青黴烯抗藥性克雷伯氏肺炎桿菌(carbapenem resistant Klebsiella pneumoniae)造成全世界臨床上極大的問題。磷黴素(fosfomycin)是少數的治療選擇之一。然而碳青黴烯抗藥性克雷伯氏肺炎桿菌對磷黴素的抗藥性也被觀察到。在本研究中,我們目標為找出碳青黴烯抗藥性克雷伯氏肺炎桿菌對磷黴素抗藥的機轉。我們蒐集台灣四家醫學中心2010年至2018年間對磷黴素抗藥性的克雷伯氏肺炎桿菌。我們將磷黴素抗藥性相關的基因擴增並且定序。並且利用碳水化合物攝取試驗以及基因突變試驗以確認基因突變與抗藥性的關聯。我們總共蒐集到了40株磷黴素抗藥性的碳青黴烯抗藥性克雷伯氏肺炎桿菌做分析,其中14株為低度抗藥性(最小抑菌濃度256-512mg/dl),26株為高度抗藥性(最小抑菌濃度大等於1024mg/dl)。其中位於染色體上fosAKP點突變I91V在40株碳青黴烯抗藥性克雷伯氏肺炎桿菌當中的39株被發現。基因突變試驗發現I91V使得克雷伯氏肺炎桿菌對磷黴素最小抑菌濃度增加8倍,並且是低度抗藥性菌株唯一被找到的機轉。在26高度抗藥性株中同時找到了額外的機轉。多種不同的基因突變導致G3P和G6P運輸蛋白的缺陷在其中19株被找到,其中有三種造成過去未被發現過的氨基酸替換。(glpT E299D, glpT D274V and uhpC A393V)。其中7株發現質體中帶有的fosA3磷黴素分解酶基因。在本研究中,我們發現染色體上fosAKP點突變I91V造成低度抗藥性,而額外的磷黴素運輸蛋白(19/26, 73.1%)缺陷及磷黴素分解酶(7/26, 26.9%)造成了高度抗藥性。 | zh_TW |
| dc.description.abstract | Infections caused by carbapenem-resistant Klebsiella pneumoniae (CRKP) are of significant clinical concern worldwide. Fosfomycin is one of the limited treatment options for CRKP. However, resistance to fosfomycin in CRKP has been observed. In this study, we aimed to investigate the fosfomycin resistance mechanism of CRKP. Fosfomycin-resistant Klebsiella pneumoniae isolates were collected from four medical centers in Taiwan from 2010 to 2018. The genes that contributed to fosfomycin resistance were amplified and sequenced. Carbohydrate utilization assays and mutagenesis studies were performed to determine the mechanisms underlying fosfomycin resistance. Forty fosfomycin-resistant CRKP strains were collected and used for further analysis. Fourteen strains exhibited low-level resistance (MIC = 256–512 mg/dl), while 26 strains showed high-level resistance (MIC ≥ 1024 mg/dl). Chromosomal fosAKP I91V was detected in 39/40 fosfomycin-resistant CRKP strains. We observed that amino acid substitution of chromosomal fosAKP I91V increased the MIC of fosfomycin by approximately 8 folds, and this was the only mechanism elucidated for low-level fosfomycin resistance. Among the 26 high-level resistance strains, fosAKP I91V combined with transporter deficiencies (18/26, 69.2%) was the most common resistant mechanism, and one strain showed transporter deficiency only. Plasmid-borne fosA3 accounted for 27.0% (7/26) of high-level resistance. Various G3P and G6P transporter gene mutations, including three novel single amino acid mutations (glpT E299D, glpT D274V, and uhpC A393V) were detected in 19 strains. No murA mutation was found in this study. Our study highlights the need for new therapeutic agents for CRKP infections in Taiwan. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-24T16:12:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-24T16:12:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 .........................................................ii
致謝.......................................................................iii 中文摘要 .................................................................................iv Abstract .................................................................................. v Index .....................................................................................vi Tables index...........................................................................viii Figures index....................................................................................viii 1 Introduction..........................................................................1 1.1 Background..........................................................................1 1.2 Treatment options for CRKP .....................................................2 1.3 Usage and mechanisms of fosfomycin ...........................................3 1.4 Resistance of fosfomycin..............................................5 1.5 Bacteriophage therapy and importance of capsular types...............7 1.6 Previous works..................................................................7 1.7 Research Aims ............................................................... 8 2 Study Design and Methods .................................................................. 9 2.1 The bacterial strains ............................................................... 9 2.1.1 Clinical strains of CRKP......................................................9 2.1.2 Production of competent cells..............................................9 2.2 Antimicrobial susceptibility testing .............................................. 11 2.3 Sequence analysis of capsular types and fosfomycin resistance genes .......................12 2.4 Analysis of carbapenem resistance gene.......................................13 2.5 Multilocus sequence typing ..........................................................14 2.6 Plasmid transformation ................................................................. 15 2.7 Sole carbohydrates growth assay .................................................. 16 2.8 Site-Directed Mutagenesis............................................................17 2.9 mRNA expression.........................................................................18 2.10 Pulse Field Gel Electrophoresis..................................................19 3. Results......................................................................21 3.1 Antibiotic susceptibility and capsular types .................................21 3.2 Transporter genes.................................................22 3.2.1 Transporter deficiencies exam .................................... 22 3.2.2 Genotype and phenotype studies of glpT system ..............22 3.2.3 Genotype and phenotype studies of uhpT system..............23 3.2.4 Mutagenesis studies for transporter system ....................... 24 3.3 Enzyme-mediated resistance................................................25 3.3.1 Plasmid mediated resistance .................................. 25 3.3.2 Chromosomal fosA mediated resistance............................26 3.4 Analysis of clones...........................................................27 4. Discussion......................................................28 4.1 Interpretations ..................................................................... 28 4.2 Strengths and limitations .....................................................34 4.3 Conclusions.........................................................................34 References ......................................................... 56 Declaration for publications incorporated in the dissertation.....................63 Supplementary data.........................................................64 | - |
| dc.language.iso | en | - |
| dc.subject | 克雷伯氏肺炎桿菌 | zh_TW |
| dc.subject | 磷黴素 | zh_TW |
| dc.subject | 抗生素抗藥性 | zh_TW |
| dc.subject | Fosfomycin | en |
| dc.subject | Antibiotics resistance | en |
| dc.subject | Klebsiella pneumoniae | en |
| dc.title | 染色體之fosA與運輸蛋白在碳青黴烯抗藥性克雷伯氏肺炎桿菌造成之磷黴素抗藥性 | zh_TW |
| dc.title | Transporter Genes and Chromosomal fosA Associated with Fosfomycin Resistance in Carbapenem-Resistant Klebsiella pneumoniae | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 林妙霞;張書蓉;董馨蓮;賴信志 | zh_TW |
| dc.contributor.oralexamcommittee | Miao-Hsia Lin;Shu-Jung Chang;Shin-Lian Doong;Hsin-Chih Lai | en |
| dc.subject.keyword | 磷黴素,克雷伯氏肺炎桿菌,抗生素抗藥性, | zh_TW |
| dc.subject.keyword | Fosfomycin,Klebsiella pneumoniae,Antibiotics resistance, | en |
| dc.relation.page | 65 | - |
| dc.identifier.doi | 10.6342/NTU202303850 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-10 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 微生物學研究所 | - |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 18.49 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
