Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9023
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳益群(Yi-Chun Wu)
dc.contributor.authorChun-Yi Choen
dc.contributor.author卓峻逸zh_TW
dc.date.accessioned2021-05-20T20:06:53Z-
dc.date.available2009-08-18
dc.date.available2021-05-20T20:06:53Z-
dc.date.copyright2009-08-18
dc.date.issued2009
dc.date.submitted2009-08-11
dc.identifier.citationAmbros, V. and Horvitz, H. R. (1984). Heterochronic mutants of the nematode Caenorhabditis elegans. Science 226, 409-16.
Ancelin, K., Lange, U. C., Hajkova, P., Schneider, R., Bannister, A. J., Kouzarides, T. and Surani, M. A. (2006). Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells. Nat Cell Biol 8, 623-30.
Antebi, A., Yeh, W. H., Tait, D., Hedgecock, E. M. and Riddle, D. L. (2000). daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans. Genes Dev 14, 1512-27.
Ayala, R., Shu, T. and Tsai, L. H. (2007). Trekking across the brain: the journey of neuronal migration. Cell 128, 29-43.
Bethke, A., Fielenbach, N., Wang, Z., Mangelsdorf, D. J. and Antebi, A. (2009). Nu-clear hormone receptor regulation of microRNAs controls developmental progression. Science 324, 95-8.
Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
Chan, S. S. Y., Zheng, H., Su, M. W., Wilk, R., Killeen, M. T., Hedgecock, E. M. and Culotti, J. G. (1996). UNC-40, a C. elegans Homolog of DCC (Deleted in Colo-rectal Cancer), Is Required in Motile Cells Responding to UNC-6 Netrin Cues. 87, 187-195.
Cram, E. J., Shang, H. and Schwarzbauer, J. E. (2006). A systematic RNA interfer-ence screen reveals a cell migration gene network in C. elegans. J Cell Sci 119, 4811-4818.
Ferrell, J. E. (2002). Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Current Opinion in Cell Biology 14, 140-148.
Fielenbach, N. and Antebi, A. (2008). C. elegans dauer formation and the molecular basis of plasticity. Genes & Development 22, 2149-2165.
Fielenbach, N., Guardavaccaro, D., Neubert, K., Chan, T., Li, D., Feng, Q., Hutter, H., Pagano, M. and Antebi, A. (2007). DRE-1: an evolutionarily conserved F box pro-tein that regulates C. elegans developmental age. Dev Cell 12, 443-55.
Gerisch, B. and Antebi, A. (2004a). Hormonal signals produced by DAF-9/cytochrome P450 regulate C. elegans dauer diapause in response to environmental cues. Develop-ment 131, 1765-1776.
Gerisch, B. and Antebi, A. (2004b). Hormonal signals produced by DAF-9/cytochrome P450 regulate C. elegans dauer diapause in response to environmental cues. Develop-ment 131, 1765-76.
Gerisch, B., Weitzel, C., Kober-Eisermann, C., Rottiers, V. and Antebi, A. (2001). A Hormonal Signaling Pathway Influencing C. elegans Metabolism, Reproductive Devel-opment, and Life Span. 1, 841-851.
Ghosh, N., Gyory, I., Wright, G., Wood, J. and Wright, K. L. (2001). Positive regu-latory domain I binding factor 1 silences class II transactivator expression in multiple myeloma cells. J Biol Chem 276, 15264-8.
Griffiths-Jones, S. (2004). The microRNA Registry. Nucl. Acids Res. 32, D109-111.
Griffiths-Jones, S., Grocock, R. J., van Dongen, S., Bateman, A. and Enright, A. J. (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucl. Acids Res. 34, D140-144.
Griffiths-Jones, S., Saini, H. K., van Dongen, S. and Enright, A. J. (2008). miRBase: tools for microRNA genomics. Nucl. Acids Res. 36, D154-158.
Gyory, I., Fejer, G., Ghosh, N., Seto, E. and Wright, K. L. (2003). Identification of a functionally impaired positive regulatory domain I binding factor 1 transcription rep-ressor in myeloma cell lines. J Immunol 170, 3125-33.
Gyory, I., Wu, J., Fejer, G., Seto, E. and Wright, K. L. (2004). PRDI-BF1 recruits the histone H3 methyltransferase G9a in transcriptional silencing. Nat Immunol 5, 299-308.
Hedgecock, E. M., Culotti, J. G. and Hall, D. H. (1990). The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 4, 61-85.
Huang, S., Shao, G. and Liu, L. (1998). The PR domain of the Rb-binding zinc finger protein RIZ1 is a protein binding interface and is related to the SET domain functioning in chromatin-mediated gene expression. J Biol Chem 273, 15933-9.
Ishii, N., Wadsworth, W. G., Stern, B. D., Culotti, J. G. and Hedgecock, E. M. (1992). UNC-6, a laminin-related protein, guides cell and pioneer axon migrations in C. elegans. Neuron 9, 873-881.
Itoh, B., Hirose, T., Takata, N., Nishiwaki, K., Koga, M., Ohshima, Y. and Okada, M. (2005). SRC-1, a non-receptor type of protein tyrosine kinase, controls the direction of cell and growth cone migration in C. elegans. Development 132, 5161-5172.
Jeon, M., Gardner, H. F., Miller, E. A., Deshler, J. and Rougvie, A. E. (1999). Simi-larity of the C. elegans developmental timing protein LIN-42 to circadian rhythm pro-teins. Science 286, 1141-6.
Jia, K., Albert, P. S. and Riddle, D. L. (2002). DAF-9, a cytochrome P450 regulating C. elegans larval development and adult longevity. Development 129, 221-231.
John, S. A. and Garrett-Sinha, L. A. (2008). Blimp1: A conserved transcriptional rep-ressor critical for differentiation of many tissues. Exp Cell Res.
Kamath, R. S., Martinez-Campos, M., Zipperlen, P., Fraser, A. G. and Ahringer, J. (2000). Effectiveness of specific RNA-mediated interference through ingested dou-ble-stranded RNA in Caenorhabditis elegans. Genome Biology 2, research0002.1 - re-search0002.10.
Keller, A. D. and Maniatis, T. (1992). Only two of the five zinc fingers of the eu-karyotic transcriptional repressor PRDI-BF1 are required for sequence-specific DNA binding. Mol Cell Biol 12, 1940-9.
Keller, R. (2005). Cell migration during gastrulation. Current Opinion in Cell Biology 17, 533-541.
Kimble, J. and Hirsh, D. (1979). The postembryonic cell lineages of the hermaphro-dite and male gonads in Caenorhabditis elegans. Developmental Biology 70, 396-417.
Lee, M., Cram, E. J., Shen, B. and Schwarzbauer, J. E. (2001). Roles for beta pat-3 Integrins in Development and Function of Caenorhabditis elegans Muscles and Gonads. J. Biol. Chem. 276, 36404-36410.
Leung-Hagesteijn, C., Spence, A. M., Stern, B. D., Zhou, Y., Su, M.-W., Hedgecock, E. M. and Culotti, J. G. (1992). UNC-5, a transmembrane protein with immunoglobu-lin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C. elegans. Cell 71, 289-299.
Li, X., Zhao, X., Fang, Y., Jiang, X., Duong, T., Fan, C., Huang, C.-C. and Kain, S. R. (1998). Generation of Destabilized Green Fluorescent Protein as a Transcription Re-porter. J. Biol. Chem. 273, 34970-34975.
Lundquist, E. A., Reddien, P. W., Hartwieg, E., Horvitz, H. R. and Bargmann, C. I. (2001). Three C. elegans Rac proteins and several alternative Rac regulators control axon guidance, cell migration and apoptotic cell phagocytosis. Development 128, 4475-88.
Luster, A. D., Alon, R. and von Andrian, U. H. (2005). Immune cell migration in in-flammation: present and future therapeutic targets. Nat Immunol 6, 1182-90.
Meighan, C. M. and Schwarzbauer, J. E. (2007). Control of C. elegans hermaphrodite gonad size and shape by vab-3/Pax6-mediated regulation of integrin receptors. Genes & Development 21, 1615-1620.
Merz, D. C., Alves, G., Kawano, T., Zheng, H. and Culotti, J. G. (2003). UNC-52/Perlecan affects gonadal leader cell migrations in c. elegans hermaphrodites through alterations in growth factor signaling. Developmental Biology 256, 174-187.
Nishiwaki, K. (1999). Mutations affecting symmetrical migration of distal tip cells in Caenorhabditis elegans. Genetics 152, 985-97.
Reddien, P. W. and Horvitz, H. R. (2000). CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nat Cell Biol 2, 131-6.
Ren, B., Chee, K. J., Kim, T. H. and Maniatis, T. (1999). PRDI-BF1/Blimp-1 repres-sion is mediated by corepressors of the Groucho family of proteins. Genes Dev 13, 125-37.
Rougvie, A. E. (2005). Intrinsic and extrinsic regulators of developmental timing: from miRNAs to nutritional cues. Development 132, 3787-98.
Rougvie, A. E. and Ambros, V. (1995). The heterochronic gene lin-29 encodes a zinc finger protein that controls a terminal differentiation event in Caenorhabditis elegans. Development 121, 2491-500.
Shostak, Y., Van Gilst, M. R., Antebi, A. and Yamamoto, K. R. (2004). Identification of C. elegans DAF-12-binding sites, response elements, and target genes. Genes Dev 18, 2529-44.
Su, M., Merz, D. C., Killeen, M. T., Zhou, Y., Zheng, H., Kramer, J. M., Hedgecock, E. M. and Culotti, J. G. (2000). Regulation of the UNC-5 netrin receptor initiates the first reorientation of migrating distal tip cells in Caenorhabditis elegans. Development 127, 585-94.
Tennessen, J. M., Gardner, H. F., Volk, M. L. and Rougvie, A. E. (2006). Novel het-erochronic functions of the Caenorhabditis elegans period-related protein LIN-42. Dev Biol 289, 30-43.
Wadsworth, W. G. (2002). Moving around in a worm: netrin UNC-6 and circumferen-tial axon guidance in C. elegans. Trends in Neurosciences 25, 423-429.
Wadsworth, W. G., Bhatt, H. and Hedgecock, E. M. (1996). Neuroglia and Pioneer Neurons Express UNC-6 to Provide Global and Local Netrin Cues for Guiding Migra-tions in C. elegans. 16, 35-46.
Wu, Y. C. and Horvitz, H. R. (1998). C. elegans phagocytosis and cell-migration pro-tein CED-5 is similar to human DOCK180. Nature 392, 501-4.
Yamaguchi, H., Wyckoff, J. and Condeelis, J. (2005). Cell migration in tumors. Cur-rent Opinion in Cell Biology 17, 559-564.
Yu, J., Angelin-Duclos, C., Greenwood, J., Liao, J. and Calame, K. (2000). Tran-scriptional repression by blimp-1 (PRDI-BF1) involves recruitment of histone deacety-lase. Mol Cell Biol 20, 2592-603.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9023-
dc.description.abstract細胞遷移在動物發育過程中扮演很重要的角色。在線蟲(Caenorhabditis elegans)雌雄同體中,兩顆遠頂細胞的遷移是很好的研究模型,它們在幼蟲期會進行三個時期不同方向的遷移,牽引成蟲中兩個對稱U型的性腺的形成。先前研究發現,第二時期的背向遷移發生於L3晚期,是由Netrin受器UNC-5的轉錄啟始所啟動。此外,異時性基因也會參與決定遠頂細胞的時間身分:DAF-12/賀爾蒙受器、DRE-1/F-box蛋白質、LIN-29/鋅指轉錄調控子共同促進第二和第三時期的執行。LIN-42/Period(日光週期蛋白質)則防止第二和第三時期過早於L2執行。我們實驗室先前分離並分析了dpy-24突變,發現其會提早DTC第二時期的背向遷移;DPY-24蛋白質是一鋅指轉錄調控子,含有一個PR domain和五個鋅指,只會在遷移的第一時期表現在DTC中,並且會抑制unc-5的轉錄。在進入第二時期時,daf-12、dre-1、lin-29共同作用造成dpy-24表現量的下降。然而,DPY-24如何抑制unc-5的轉錄以及DPY-24的表現量如何被降低仍然未被探討清楚。在我的研究中,透過結構與功能分析,發現DPY-24的PR domain、鋅指、以及其以外的區域對於DPY-24在遠頂細胞中的功能都是重要的。我更進一步發現,DPY-24的鋅指在EMSA (Electrophoretic Mobility Shift Assay)實驗中可直接透過兩個接合位置與unc-5啟動子接合,表示DPY-24可能直接抑制unc-5的轉錄。此外,DAF-12和LIN-29的鋅指也都具有接合到unc-5啟動子的能力,而當daf-12和lin-29都突變後,unc-5的轉錄即消失了,表示DAF-12和LIN-29可能透過接合到unc-5啟動子來直接啟動unc-5的轉錄。至於dpy-24本身的調控,透過表現綠色螢光蛋白的基因轉殖線蟲,偵測dpy-24在各個基因表現階層的變化量,發現DAF-12和LIN-29共同抑制dpy-24的轉錄,而DRE-1則降低DPY-24蛋白質的穩定性;此外,dpy-24表現也會被自己的3’UTR所抑制。最後,我發現dpy-24在第一時期的轉錄需要LIN-42,並且dpy-24會透過正回饋機制維持自己的轉錄活化。這些實驗結果有助於我們了解細胞遷移中的時間調控機制。亦即在遠頂細胞遷移的第一時期,LIN-42啟動dpy-24的轉錄,進而抑制lin-29和unc-5的轉錄來避免遠頂細胞過早的背向遷移。在第二時期,DAF-12和LIN-29在轉錄層次降低DPY-24的表現量,而DRE-1則在後轉譯層次降解DPY-24;這些機制疏解了DPY-24對於unc-5的抑制,並且容許LIN-29和DAF-12啟動unc-5的轉錄,最終導致遠頂細胞的背向遷移。zh_TW
dc.description.abstractCell migration plays an essential role during animal development. In the hermaphrodite of Caenorhabditis elegans, two distal tip cells (DTCs) undergo three sequential phases of linear migration during larval stages and lead the formation of bi-lobed U-shaped gonad arm. Previous studies have shown that the initiation of the ventral-to-dorsal phase Ⅱ migration occurs in the late L3 stage and is controlled by the transcriptional up-regulation of the dorsal guidance receptor UNC-5. On the other hand, the heterochronic genes control the temporal identity of DTCs: DAF-12/nuclear hormone receptor, DRE-1/F-box protein, and LIN-29/zinc finger transcription factor function redundantly to promote phase Ⅱ and phase Ⅲ migration in the L3 stage. In contrast, LIN-42/Period prevents phase Ⅱ and phase Ⅲ to occur precociously in L2. Our laboratory has previously isolated and characterized a dpy-24 mutation, which results in precocious DTC dorsal turn in early L3 stage. Previous studies have shown that dpy-24 represses the transcription of unc-5 to prevent precocious DTC dorsal turn. DPY-24 contains one PR domain and five zinc fingers and is detected in DTCs prior to, but not during or after, dorsal phase Ⅱ migration. In late L3, lin-29, dre-1, and daf-12 function redundantly to down-regulate the dpy-24 level to promote DTC dorsal turn. However, how DPY-24 represses unc-5 transcription and how the DPY-24 level is maintained during phase Ⅰ and is down-regulated during the phase Ⅰ to Ⅱ transition have not been explored. My structural and functional analysis of DPY-24 reveals that the PR and zinc finger domains and the region outside of these domains are required for its complete function in regulating DTC migration. Furthermore, I demonstrated that DPY-24 zinc fingers are able to bind to unc-5 promoter in EMSA (electrophoretic mobility shift assay), suggesting that DPY-24 may repress unc-5 transcription directly. In addition, DAF-12 and LIN-29 each can bind to the unc-5 promoter and when both are mutated, no unc-5 transcription is observed. Therefore, DAF-12 and LIN-29 may activate unc-5 transcription by directly binding to its promoter. As for temporal regulation of dpy-24, I generated transgenic worms carrying dpy-24::GFP reporters and found that DAF-12 and LIN-29 repress dpy-24 transcription, and DRE-1 decreases DPY-24 protein stability. Furthermore, dpy-24 expression is also repressed through its 3’UTR. Finally, dpy-24 transcription during phase Ⅰ is activated by LIN-42 and maintained by a positive feedback loop. These results elucidate the molecular mechanism of temporal regulation during cell migration. In phase Ⅰ, LIN-42 activates dpy-24 transcription, which in turn blocks lin-29 and unc-5 transcription and hence prevents DTC from dorsalward turning. In phase Ⅱ, DPY-24 is down-regulated by LIN-29 and DAF-12 at the transcriptional level and by DRE-1 at the post-translational level, which relieves the repression of unc-5 by DPY-24 and allows LIN-29 and DAF-12 to activate unc-5 transcription, leading to DTC dorsal turn.en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:06:53Z (GMT). No. of bitstreams: 1
ntu-98-R96b43006-1.pdf: 3742699 bytes, checksum: b7332be751f97ed716e04c4ede88aa6b (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員會審定書 ..........................................................................................................i
誌謝 .................................................................................................................................ii
中文摘要..........................................................................................................................iii
英文摘要 .........................................................................................................................v
Table of Contents .............................................................................................................1
Introduction ......................................................................................................................4
Materials and Methods .....................................................................................................8
Nematode strains ......................................................................................................8
Constructs .................................................................................................................8
Purification of recombinant proteins ......................................................................11
EMSA (Electrophoretic mobility shift assay) .........................................................11
Transgenic worms ...................................................................................................13
RNA interference (RNAi) .......................................................................................13
Results ............................................................................................................................15
DPY-24 acts cell-autonomously and requires multiple domains for its complete function in regulating DTC migration. ..................................................................15
DPY-24 zinc fingers bind to unc-5 promoter through D1 and D2 binding sites. .......................................................................................................................16
DAF-12 and LIN-29 can bind to unc-5 promoter. ................................................17
dpy-24 is down-regulated at the transcriptional level by DAF-12 and LIN-29. ...18
DPY-24 protein stability is decreased by DRE-1. .................................................20
dpy-24 may be down-regulated by microRNA. ....................................................21
dpy-24 transcription is activated by lin-42 and maintained by a positive feed-back. .......................................................................................................................21
Discussion ......................................................................................................................23
dpy-24 may repress unc-5 transcription and regulate DTC migration by different mechanisms in the anterior and posterior DTCs. ..................................................23
The heterochronic circuit in DTC migration converges on the regulation of dpy-24 level. ......................................................................................................................24
dpy-24 may be repressed by miRNA, which may be activated by liganded DAF-12. .................................................................................................................26
Multiple but sequential down-regulations of the dpy-24 level decide the timing of DTC dorsal turn. ....................................................................................................27
The switch-like behavior of DTC dorsal migration is contributed by a positive feedback loop involving dpy-24. ...........................................................................28
References …………………………………………………………………………......29
Figures ………………………………………………………………………………....33
Fig. 1 dpy-24 mutation causes precocious DTC dorsal turn ..................................33
Fig. 2 DPY-24 zinc fingers can bind directly to unc-5 promoter through D1 and D2 ..........................................................................................................................34
Fig. 3 DAF-12 and LIN-29 bind directly to unc-5 promoter in EMSA ................35
Fig. 4 Transcriptional regulation of dpy-24 ...........................................................37
Fig. 5 DRE-1 decreases DPY-24 stability after dorsal turn. ..................................38
Fig. 6 dpy-24 may be repressed by miRNA at late-L2 stage .................................39
Fig. 7 DTC dorsal turn is controlled by a complex network .................................40
Tables ……………………………..………………………………..…………….….....41
Table 1 Functional analysis of the DPY-24 zinc fingers and PR domain ..............41
Table 2 Down-regulation of the dpy-24 level by daf-12, lin-29, and dre-1 ...........42
Table 3 dpy-24 is down-regulated at post-transcriptional level at late L2 stage ...43
Table 4 dpy-24 is positively regulated by lin-42 and dpy-24 itself .......................44
Supplementary data ........................................................................................................45
Fig. S1 Potential miRNA binding sites in dpy-24 3’UTR .....................................45
Table S1. Conserved dpy-24 binding sites in C. elegans genome .........................46
dc.language.isoen
dc.title線蟲遠頂細胞遷移中dpy-24的功能探討及其異時性調控zh_TW
dc.titleFunctional study of dpy-24 and its heterochronic regulation in distal tip cell migration in Caenorhabditis elegansen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee汪宏達(Horng-Dar Wang),陳昌熙(Chang-Shi Chen)
dc.subject.keyword遠頂細胞,細胞遷移,時間調控,dpy-24,異時性基因,zh_TW
dc.subject.keywordDTC (distal tip cell),cell migration,temporal regulation,dpy-24,heterochronic gene,en
dc.relation.page48
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-08-11
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf3.65 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved