Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90239Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳保中 | zh_TW |
| dc.contributor.advisor | Pau-Chung Chen | en |
| dc.contributor.author | 黃序立 | zh_TW |
| dc.contributor.author | Hsu-Li Huang | en |
| dc.date.accessioned | 2023-09-24T16:09:30Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-23 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | Akhtari, F. S., Lloyd, D., Burkholder, A., Tong, X., House, J. S., Lee, E. Y., Buse, J., Schurman, S. H., Fargo, D. C., Schmitt, C. P., Hall, J., & Motsinger-Reif, A. A. (2022). Questionnaire-based polyexposure assessment outperforms polygenic scores for classification of type 2 diabetes in a multiancestry cohort. Diabetes Care, dc220295. Advance online publication. https://doi.org/10.2337/dc22-0295
Amin, M. B., Greene, F. L., Edge, S. B., Compton, C. C., Gershenwald, J. E., Brookland, R. K., Meyer, L., Gress, D. M., Byrd, D. R., & Winchester, D. P. (2017). The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging. CA: a cancer journal for clinicians, 67(2), 93–99. https://doi.org/10.3322/caac.21388 Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321-357. https://doi.org/10.1613/jair.953 Cheng, E. S., Weber, M., Steinberg, J., & Yu, X. Q. (2021). Lung cancer risk in never-smokers: An overview of environmental and genetic factors. Chinese Journal of Cancer Research, 33(5), 548–562. https://doi.org/10.21147/j.issn.1000-9604.2021.05.02 Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC genomics, 21, 1-13. https://doi.org/10.1186/s12864-019-6413-7 Chien, L. H., Chen, C. H., Chen, T. Y., Chang, G. C., Tsai, Y. H., Hsiao, C. F., Chen, K. Y., Su, W. C., Wang, W. C., Huang, M. S., Chen, Y. M., Chen, C. Y., Liang, S. K., Chen, C. Y., Wang, C. L., Lee, M. H., Chung, R. H., Tsai, F. Y., Hu, J. W., Katki, H. A., … Hsiung, C. A. (2020). Predicting lung cancer occurrence in never-smoking females in Asia: TNSF-SQ, a prediction model. Cancer Epidemiology, Biomarkers & Prevention: A Publication of The American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology, 29(2), 452–459. https://doi.org/10.1158/1055-9965.EPI-19-1221 Corrales, L., Rosell, R., Cardona, A. F., Martín, C., Zatarain-Barrón, Z. L., & Arrieta, O. (2020). Lung cancer in never smokers: The role of different risk factors other than tobacco smoking. Critical Reviews in Oncology/Hematology, 148, 102895. https://doi.org/10.1016/j.critrevonc.2020.102895 Directorate-General of Budget, Accounting and Statistics, Executive Yuan, Taiwan. (2022). Report on the Survey of Family Income and Expenditure,2021. Retrieved from https://ws.dgbas.gov.tw/win/fies/doc/result/110.pdf. Accessed May 1, 2023. Feng, M., Yang, X., Ma, Q., & He, Y. (2017). Retrospective analysis for the false positive diagnosis of PET-CT scan in lung cancer patients. Medicine, 96(42), e7415. https://doi.org/10.1097/MD.0000000000007415 Feng, X., Wu, W. Y., Onwuka, J. U., Haider, Z., Alcala, K., Smith-Byrne, K., Zahed, H., Guida, F., Wang, R., Bassett, J. K., Stevens, V., Wang, Y., Weinstein, S., Freedman, N. D., Chen, C., Tinker, L., Nøst, T. H., Koh, W. P., Muller, D., Colorado-Yohar, S. M., … Johansson, M. (2023). Lung cancer risk discrimination of prediagnostic proteomics measurements compared with existing prediction tools. Journal of the National Cancer Institute, djad071. Advance online publication. https://doi.org/10.1093/jnci/djad071 Goutte, C., & Gaussier, E. (2005). A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In Advances in Information Retrieval: 27th European Conference on IR Research, ECIR 2005, Santiago de Compostela, Spain, March 21-23, 2005. Proceedings 27 (pp. 345-359). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-31865-1_25 Health Promotion Administration, Ministry of Health and Welfare, Taiwan. (2022). Taiwan Cancer Registry Annual Report, 2020. Retrieved from https://www.hpa.gov.tw/File/Attach/16434/File_21196.pdf. Accessed May 1, 2023. Hill, W., Lim, E. L., Weeden, C. E., Lee, C., Augustine, M., Chen, K., Kuan, F. C., Marongiu, F., Evans, E. J., Jr, Moore, D. A., Rodrigues, F. S., Pich, O., Bakker, B., Cha, H., Myers, R., van Maldegem, F., Boumelha, J., Veeriah, S., Rowan, A., Naceur-Lombardelli, C., … Swanton, C. (2023). Lung adenocarcinoma promotion by air pollutants. Nature, 616(7955), 159–167. https://doi.org/10.1038/s41586-023-05874-3 Lababede, O., & Meziane, M. A. (2018). The Eighth Edition of TNM Staging of Lung Cancer: Reference Chart and Diagrams. The oncologist, 23(7), 844–848. https://doi.org/10.1634/theoncologist.2017-0659 Ledford H. (2023). How air pollution causes lung cancer - without harming DNA. Nature, 616(7957), 419–420. https://doi.org/10.1038/d41586-023-00989-z Lerman, P. M. (1980). Fitting segmented regression models by grid search. Journal of the Royal Statistical Society Series C: Applied Statistics, 29(1), 77-84. https://doi.org/10.2307/2346413 Liao, W., Coupland, C. A. C., Burchardt, J., Baldwin, D. R., DART initiative, Gleeson, F. V., & Hippisley-Cox, J. (2023). Predicting the future risk of lung cancer: development, and internal and external validation of the CanPredict (lung) model in 19·67 million people and evaluation of model performance against seven other risk prediction models. The Lancet. Respiratory Medicine, S2213-2600(23)00050-4. Advance online publication. https://doi.org/10.1016/S2213-2600(23)00050-4 Lu, T., Zhan, C., Huang, Y., Zhao, M., Yang, X., Ge, D., Shi, Y., & Wang, Q. (2019). Small pulmonary granuloma is often misdiagnosed as lung cancer by positron emission tomography/computer tomography in diabetic patients. Interactive Cardiovascular and Thoracic Surgery, 28(3), 394–398. https://doi.org/10.1093/icvts/ivy263 Luo, Y. H., Chiu, C. H., Scott Kuo, C. H., Chou, T. Y., Yeh, Y. C., Hsu, H. S., Yen, S. H., Wu, Y. H., Yang, J. C., Liao, B. C., Hsia, T. C., & Chen, Y. M. (2021). Lung Cancer in Republic of China. Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer, 16(4), 519–527. https://doi.org/10.1016/j.jtho.2020.10.155 McWilliams, A., Tammemagi, M. C., Mayo, J. R., Roberts, H., Liu, G., Soghrati, K., Yasufuku, K., Martel, S., Laberge, F., Gingras, M., Atkar-Khattra, S., Berg, C. D., Evans, K., Finley, R., Yee, J., English, J., Nasute, P., Goffin, J., Puksa, S., Stewart, L., … Lam, S. (2013). Probability of cancer in pulmonary nodules detected on first screening CT. The New England Journal of Medicine, 369(10), 910–919. https://doi.org/10.1056/NEJMoa1214726 Smith, M. A., Battafarano, R. J., Meyers, B. F., Zoole, J. B., Cooper, J. D., & Patterson, G. A. (2006). Prevalence of benign disease in patients undergoing resection for suspected lung cancer. The Annals of Thoracic Surgery, 81(5), 1824–1829. https://doi.org/10.1016/j.athoracsur.2005.11.010 Sun, S., Schiller, J. H., & Gazdar, A. F. (2007). Lung cancer in never smokers--a different disease. Nature reviews. Cancer, 7(10), 778–790. https://doi.org/10.1038/nrc2190 Tammemägi, M. C., Church, T. R., Hocking, W. G., Silvestri, G. A., Kvale, P. A., Riley, T. L., Commins, J., & Berg, C. D. (2014). Evaluation of the lung cancer risks at which to screen ever- and never-smokers: screening rules applied to the PLCO and NLST cohorts. PLoS Medicine, 11(12), e1001764. https://doi.org/10.1371/journal.pmed.1001764 Toomes, H., Delphendahl, A., Manke, H. G., & Vogt-Moykopf, I. (1983). The coin lesion of the lung. A review of 955 resected coin lesions. Cancer, 51(3), 534–537. https://doi.org/10.1002/1097-0142(19830201)51:3<534::aid-cncr2820510328>3.0.co;2-b Patel, C. J., Bhattacharya, J., & Butte, A. J. (2010). An Environment-Wide Association Study (EWAS) on type 2 diabetes mellitus. PloS One, 5(5), e10746. https://doi.org/10.1371/journal.pone.0010746 Wang, T. H., Huang, K. Y., Chen, C. C., Chang, Y. H., Chen, H. Y., Hsueh, C., Liu, Y. T., Yang, S. C., Yang, P. C., & Chen, C. Y. (2023). PM2.5 promotes lung cancer progression through activation of the AhR-TMPRSS2-IL18 pathway. EMBO Molecular Medicine, e17014. Advance online publication. https://doi.org/10.15252/emmm.202217014 Ward, E., Jemal, A., Cokkinides, V., Singh, G. K., Cardinez, C., Ghafoor, A., & Thun, M. (2004). Cancer disparities by race/ethnicity and socioeconomic status. CA: a cancer journal for clinicians, 54(2), 78–93. https://doi.org/10.3322/canjclin.54.2.78 Wen, C. P., Tsai, S. P., & Chung, W. S. (2008). A 10-year experience with universal health insurance in Taiwan: measuring changes in health and health disparity. Annals of Internal Medicine, 148(4), 258–267. https://doi.org/10.7326/0003-4819-148-4-200802190-00004 Wu, C. D., Zeng, Y. T., & Lung, S. C. (2018). A hybrid kriging/land-use regression model to assess PM2.5 spatial-temporal variability. The Science of the Total Environment, 645, 1456–1464. https://doi.org/10.1016/j.scitotenv.2018.07.073 Zheng, Y., Chen, Z., Pearson, T., Zhao, J., Hu, H., & Prosperi, M. (2020). Design and methodology challenges of environment-wide association studies: A systematic review. Environmental Research, 183, 109275. https://doi.org/10.1016/j.envres.2020.109275 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90239 | - |
| dc.description.abstract | 研究目的:本研究旨在分析初步診斷為肺癌,但手術切除後證實為良性的肺部病灶之特徵,並比較多元邏輯斯迴歸模型與機器學習模型在區分良性與惡性病灶間的表現。
方法:本研究分析國立臺灣大學醫學院附設醫院的「非吸菸者肺腺癌暴露體探索研究(ExWAS-LANS)」中,自2021年11月至2022年10月間共計473名參與者的資料,透過結構化問卷收集了人口統計、飲食習慣、生活方式、環境因素以及個人與家族醫療史等資訊,並運用多元邏輯斯迴歸模型與四種機器學習模型(包括分類與迴歸樹、隨機森林、支援向量機和類神經網絡),以分析將良性肺病灶誤判為肺癌的相關風險因子。 結果:本研究發現數項風險因子與將良性肺病灶誤判為肺癌顯著相關,如糖尿病病史、較高的家庭所得、居住在較新住房、居住在從未粉刷過的住房、住家附近經常聞到異味以及較高的PM2.5三年累積暴露量等。比較機器學習模型與多元邏輯斯迴歸模型在區分良性肺病灶方面的表現,兩者的F值(F1-score)相當。進一步而言,機器學習模型在區分良性肺病灶上有較高的精確率(precision),而相較之下,多元邏輯斯迴歸模型則有較佳的召回率(recall)。 結論:本研究指出了將未曾吸煙者的良性肺病灶誤判為肺癌的風險因子,並比較了多元邏輯斯迴歸模型與多種機器學習模型的有效性。增進對於前揭風險因子的認識,以開發更精準的預測模型,並在實際臨床情境中驗證模型的有效性,仍值得後續研究。 | zh_TW |
| dc.description.abstract | Objective: The objectives of this study were to characterize pulmonary lesions initially suspected to be lung cancer but ultimately confirmed as benign following surgical resection, and to compare the performance of multiple logistic regression and machine learning models in distinguishing between benign and cancerous lesions.
Methods: Data from 473 participants enrolled in the Exposome-Wide Approach Study of Lung Adenocarcinoma in Never-Smokers (ExWAS-LANS) conducted at National Taiwan University Hospital between November 2021 and October 2022 were analyzed. Factors including demographics, dietary, lifestyle, living environment, as well as personal and family medical history were assessed using structured questionnaires. Multiple logistic regression and machine learning models, including classification and regression tree, random forest, support vector machine, and artificial neural network, were employed to identify factors associated with the misclassification of benign lesions as lung cancer. Results: Several risk factors were significantly associated with the misidentification of benign pulmonary lesions as lung cancer, including comorbidity of diabetes mellitus, higher household income, living in a newer house, inhabiting a never-painted house, reporting unusual odors near the residence, and higher three-year cumulative PM2.5 exposure. Comparing the multiple logistic regression model with machine learning models demonstrated that these models have comparable performance in F1-score for identifying benign cases misclassified as cancer cases. However, upon further analysis, the machine learning models showed a marked advantage in precision for the benign class over the multiple logistic regression model; in contrast, the multiple logistic regression model exhibited a significant upper hand in terms of recall. Conclusion: This study identified factors associated with the misidentification of benign pulmonary lesions as lung cancer in never-smokers and the effectiveness of multiple logistic regression and machine learning models. Further research is warranted to enhance our understanding of these factors, develop more accurate predictive models for clinical implementation, and validate the effectiveness of these models in real-world clinical settings. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-24T16:09:30Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-24T16:09:30Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii Contents v List of Figures vi List of Tables vii Chapter 1 Introduction 1 Chapter 2 Materials and Methods 3 2.1 Study Population 3 2.2 Data Collection 4 2.3 Data Analysis 4 Chapter 3 Results 8 3.1 Characteristics of Participants 8 3.2 Unadjusted Odds Ratios of Potential Predictors 9 3.3 Multiple Logistic Regression Model 10 3.4 Machine Learning Models 10 Chapter 4 Discussion 12 Chapter 5 Conclusion 17 Figures 18 Tables 21 References 32 Appendix 39 | - |
| dc.language.iso | en | - |
| dc.subject | 肺癌 | zh_TW |
| dc.subject | 未曾吸煙者 | zh_TW |
| dc.subject | 良性肺病灶 | zh_TW |
| dc.subject | 多元邏輯斯迴歸 | zh_TW |
| dc.subject | 機器學習模型 | zh_TW |
| dc.subject | Benign pulmonary lesions | en |
| dc.subject | Never-smoker | en |
| dc.subject | Multiple logistic regression | en |
| dc.subject | Lung cancer | en |
| dc.subject | Machine learning models | en |
| dc.title | 區辨未曾吸菸者之良性肺病灶與早期肺癌:以術前結構化問卷為方法 | zh_TW |
| dc.title | Distinguishing Benign Pulmonary Lesions Misidentified as Early-Stage Lung Cancer in Never-Smokers via a Structured Questionnaire Before Resection | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳晉興;盧子彬;張允中;趙木榮 | zh_TW |
| dc.contributor.oralexamcommittee | Jin-Shing Chen;Tzu-Pin Lu;Yeun-Chung Chang;Mu-Rong Chao | en |
| dc.subject.keyword | 肺癌,良性肺病灶,未曾吸煙者,多元邏輯斯迴歸,機器學習模型, | zh_TW |
| dc.subject.keyword | Lung cancer,Benign pulmonary lesions,Never-smoker,Multiple logistic regression,Machine learning models, | en |
| dc.relation.page | 68 | - |
| dc.identifier.doi | 10.6342/NTU202301117 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-10 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
| Appears in Collections: | 環境與職業健康科學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-111-2.pdf | 2.17 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
