Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90237
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor方啓泰zh_TW
dc.contributor.advisorChi-Tai Fangen
dc.contributor.author張哲皓zh_TW
dc.contributor.authorChe-Hao Changen
dc.date.accessioned2023-09-24T16:08:55Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-23-
dc.date.issued2023-
dc.date.submitted2023-08-04-
dc.identifier.citation1. Johns Hopkins University & Medicine. Coronavirus Resource Center, Global Map. Oct 27, 2022. Available from: https://coronavirus.jhu.edu/map.html
2. WHO Director-General's opening remarks at media briefing –October 19, 2022. Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-media-briefing---19-october-2022
3. European Centre for Disease Prevention and Control. New Omicron sub-lineage likely to cause further increase in covid-19 cases. Oct 21, 2022. Available from: https://www.ecdc.europa.eu/en/news-events/new-omicron-sub-lineage-likely-cause-further-increase-covid-19-cases
4. Morens DM, Folkers GK, Fauci AS. The concept of classical herd immunity may not apply to COVID-19. J Infect Dis 2022; 226(2): 195-198.
5. World Health Organization. Tracking SARS-CoV-2 variants. Oct 24, 2022. Available from: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
6. Liu Y, Rocklöv J. The reproductive number of the Delta variant of SARS-CoV-2 is far higher compared to the ancestral SARS-CoV-2 virus. J Travel Med 2021; 28(7): taab124.
7. Burki TK. Omicron variant and booster COVID-19 vaccines. Lancet Resp Med 2022; 10(2): e17.
8. Wang Q, et al. Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5. Nature 2022; 608(7923): 603-608.
9. Hammond J, et al. Oral nirmatrelvir for high-risk, nonhospitalized adults with Covid-19. N Engl J Med 2022; 386(15): 1397-1408.
10. National Institute of Health. COVID-19 Treatment Guidelines, Ritonavir-Boosted Nirmatrelvir (Paxlovid). Sep 26, 2022. Available from: https://www.covid19treatmentguidelines.nih.gov/therapies/antiviral-therapy/ritonavir-boosted-nirmatrelvir--paxlovid-/.
11. Bernal AJ, et al., Molnupiravir for oral treatment of Covid-19 in nonhospitalized patients. N Engl J Med 2021; 386(6): 509-520.
12. Zhou S, et al. β-d-N4-hydroxycytidine inhibits SARS-CoV-2 through lethal mutagenesis but is also mutagenic to mammalian cells. J Infect Dis 2021; 224(3): 415-419.
13. Wong, C.K.H., et al., Real-world effectiveness of molnupiravir and nirmatrelvir plus ritonavir against mortality, hospitalisation, and in-hospital outcomes among community-dwelling, ambulatory patients with confirmed SARS-CoV-2 infection during the omicron wave in Hong Kong: an observational study. Lancet, 2022. 400(10359): p. 1213-1222.
14. Centers for Disease Control and Prevention. NCHS Home. Nearly One in Five American Adults Who Have Had COVID-19 Still Have Long COVID. Jun 22, 2022. Available from: https://www.cdc.gov/nchs/pressroom/nchs_press_releases/2022/20220622.htm
15. Xie, Y., T. Choi, and Z. Al-Aly, Association of Treatment With Nirmatrelvir and the Risk of Post–COVID-19 Condition. JAMA Internal Medicine, 2023. 183(6): p. 554-564.
16. 行政院衛生福利部疾病管制署:新型冠狀病毒SARS-CoV-2 感染臨床處置指引2022年9月7日第二十版。 Available from: https://www.cdc.gov.tw/File/Get/xPGgnorFhF_7Xx-PuKDRDg
17. 行政院衛生福利部疾病管制署:傳染病統計資料查詢系統。Available from: https://nidss.cdc.gov.tw/
18. 行政院衛生福利部疾病管制署:嚴重特殊傳染性肺炎-新聞稿。Available from: https://www.cdc.gov.tw/Category/NewsPage/EmXemht4IT-IRAPrAnyG9A
19. Facebook:疾病管制署 – 1922 防疫達人。Available from: https://www.facebook.com/TWCDC
20. 行政院衛生福利部疾病管制署:嚴重特殊傳染性肺炎- COVID-19 疫苗統計資料。 Available from: https://www.cdc.gov.tw/En/Category/Page/9jFXNbCe-sFK9EImRRi2Og
21. 張尹瑄:SARS-CoV-2 Omicron BA.2變異株群體免疫:數理模式研究. 國立臺灣大學公共衛生學院流行病學與預防醫學研究所碩士論文 (2022)
22. 行政院衛生福利部疾病管制署:嚴重特殊傳染性肺炎-新聞稿-今年採購第一批Moderna次世代BA.4/5雙價疫苗70.3萬劑將於11/10上午抵臺。Available from: https://www.cdc.gov.tw/Bulletin/Detail/eNALPvi9yoKRa847dKm25Q?typeid=9
23. The Ecomomists: Tracking covid-19 excess deaths across countries. Oct 20, 2021. Available from: https://www.economist.com/graphic-detail/coronavirus-excess-deaths-tracker
24. 行政院衛生福利部:111年國人死因統計結果。Available from: https://www.mohw.gov.tw/cp-16-74869-1.html
25. Asadi-Pooya, A.A., et al., Risk Factors Associated with Long COVID Syndrome: A Retrospective Study. Iran J Med Sci, 2021. 46(6): p. 428-436.
26. CBS News. Pfizer's Paxlovid still free, for now, after FDA grants full approval to COVID drug. May 25, 2023. Available from: https://www.cbsnews.com/news/pfizers-paxlovid-fda-approval-cost/
27. Past SARS-CoV-2 infection protection against re-infection: a systematic review and meta-analysis. Lancet, 2023. 401(10379): p. 833-842.
28. Altarawneh, H.N., et al., Protective Effect of Previous SARS-CoV-2 Infection against Omicron BA.4 and BA.5 Subvariants. New England Journal of Medicine, 2022. 387(17): p. 1620-1622.
29. Tan, C.Y., et al., Protective immunity of SARS-CoV-2 infection and vaccines against medically attended symptomatic omicron BA.4, BA.5, and XBB reinfections in Singapore: a national cohort study. Lancet Infect Dis, 2023.
30. Rothberg, M.B., et al., Protection Against the Omicron Variant Offered by Previous Severe Acute Respiratory Syndrome Coronavirus 2 Infection: A Retrospective Cohort Study. Clin Infect Dis, 2023. 76(3): p. e142-e147.
31. Winchester, N.E., et al., Protection Conferred by Delta and BA.1/BA.2 Infection Against BA.4/BA.5 Infection and Hospitalization: A Retrospective Cohort Study. J Infect Dis, 2023. 227(6): p. 800-805.
32. Morawiec, E., et al., Reinfections from SARS-CoV-2: A Retrospective Study from the Gyncentrum Genetic Laboratory in Sosnowiec, Poland, April 2020 to July 2022. Med Sci Monit, 2023. 29: p. e939452.
33. Vicentini, M., et al., Risk of SARS-CoV-2 reinfection by vaccination status, predominant variant and time from prior infection: a cohort study, Reggio Emilia province, Italy, February 2020 to February 2022. Euro Surveill, 2023. 28(13).
34. Bowe, B., Y. Xie, and Z. Al-Aly, Acute and postacute sequelae associated with SARS-CoV-2 reinfection. Nat Med, 2022. 28(11): p. 2398-2405.
35. Medić, S., et al., Risk and severity of SARS-CoV-2 reinfections during 2020-2022 in Vojvodina, Serbia: A population-level observational study. Lancet Reg Health Eur, 2022. 20: p. 100453.
36. Medic, S., et al., Incidence, Risk, and Severity of SARS-CoV-2 Reinfections in Children and Adolescents Between March 2020 and July 2022 in Serbia. JAMA Netw Open, 2023. 6(2): p. e2255779.
37. Mensah, A.A., et al., Disease severity during SARS-COV-2 reinfection: a nationwide study. J Infect, 2022. 84(4): p. 542-550.
38. Deng, J., et al., Severity and Outcomes of SARS-CoV-2 Reinfection Compared with Primary Infection: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health, 2023. 20(4).
39. Lacy, J., et al., Protective effect of a first SARS-CoV-2 infection from reinfection: a matched retrospective cohort study using PCR testing data in England. Epidemiol Infect, 2022. 150: p. e109.
40. Hurtado, I.C., et al., Reinfection by SARS CoV2 in Valle Del Cauca, Colombia: A Descriptive Retrospective Study. Inquiry, 2022. 59: p. 469580221096528.
41. Erbaş İ, C., et al., Evaluation of possible COVID-19 reinfection in children: A multicenter clinical study. Arch Pediatr, 2023. 30(3): p. 187-191.
42. Menegale, F., et al., Evaluation of Waning of SARS-CoV-2 Vaccine–Induced Immunity: A Systematic Review and Meta-analysis. JAMA Network Open, 2023. 6(5): p. e2310650-e2310650.
43. Ferdinands, J.M., et al., Waning of vaccine effectiveness against moderate and severe covid-19 among adults in the US from the VISION network: test negative, case-control study. BMJ, 2022. 379: p. e072141.
44. Kirsebom, F.C.M., et al., COVID-19 vaccine effectiveness against the omicron (BA.2) variant in England. The Lancet. Infectious diseases, 2022. 22(7): p. 931-933.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90237-
dc.description.abstract背景與研究目標:由於 SARS-CoV-2 Omicron BA.5 variants 與後續新 Omicron 變異株「免疫逃脫」的特性,導致 COVID-19 疫情至今仍難以被清除。我國防疫政策目前已全面調整為輕症免通報免隔離,將防疫工作著重於減少額外的重症數及死亡發生。我國過去主要推行疫苗接種政策以預防確診者發展為重症,然經過數波疫情後,過去接種疫苗的保護力已經逐漸衰退,民眾接種疫苗的意願也不如從前。口服抗病毒藥物是另一有效降低重症風險的方式,然而,目前公費口服抗病毒藥物的開立嚴格限制在具重症危險因子者,認證過程繁複,過去許多確診者因不清楚自己是否符合領用條件而延誤就醫,錯過黃金治療時間。如能提供所有通報之確診者抗病毒藥物,應能提升民眾通報意願,使原先符合領用條件的病人均能拿到口服抗病毒藥物,也降低其餘通報確診者的重症風險,有望降低整體重症及死亡率,但目前尚缺乏具有實證數據佐證的數理模式研究。本研究擬依據臺灣 2022 年至 2023 年的四波 COVID-19疫情流行數據,建立 COVID-19 傳播數理模型,以分析對所有 COVID-19 確診者全面提供抗病毒藥物治療的預期成效,提供我國防治政策參考。

方法:本研究分為系統性文獻回顧及數理建模兩部分。系統性文獻回顧以特定關鍵字探索相關文獻,透過統整實證研究資料,設定合乎2023年新Omicron變異株傳播特性的數理模型。數理建模部分擬建立 SARS-CoV-2 Omicron BA.5 變異株及後續新Omicron 變異株之 SEIRS 傳播數理模型。模型考慮自然免疫、疫苗免疫、及綜合免疫的免疫衰退,以四個單純混合模型(Homogeneous-mixing model)分別擬合臺灣自 2022/4/1 - 2023/6/25 的四波(BA.2、BA.5、BQ.1、XBB) COVID-19 疫情。以此為基礎,預測臺灣 2023 年下半年疫情走勢,並評估全面提供 COVID- 19 通報確診者抗病毒藥物相較現今給藥策略之效益,主分析評估可直接或間接預防的 COVID-19 重症病例數及死亡人數,次分析則評估可預防的新發 Long-COVID 個案數,敏感度分析考慮可能新出現的 SARS-CoV-2 變異株,模擬疫苗保護力存在變異的情境,另外也考慮新變異株可能具備較強的免疫逃脫能力的情境,以評估不同情境下全面提供抗病毒藥物的效益。

結果:本研究預測在現今給藥政策下,2023 年全年將有 61,518 例 COVID-19 確診者發展為重症,於 2023 年下半年平均每日新發約 190 例重症。全面提供口服抗病毒藥物的介入後,可望大幅降低 2023 年重症數至 23,406 例,2023 年下半年平均每日重症數降至約 70 例。全面提供口服抗病毒藥物相較於對照情境,可望降低 61.9 % 重症及 62.4 % 死亡。此外,本研究估計 2023 年全年將有 12,607,188 例確診者於康復後仍有 COVID-19 相關症狀。在全面提供口服抗病毒藥物的介入情境下,可降低約 29.5 % 的新發 Long-COVID 個案,使 2023 年的預期新發 Long-COVID 數降至 8,886,132 例。敏感度分析顯示,若疫苗對於新變異株之保護力存在變異(± 10 %),全面提供抗病毒藥物仍可提供與原先相似的保護力。此外,若新變異株具有強大免疫逃脫能力,則全面提供抗病毒藥物對重症的保護力將顯著提升,能大幅下降因大量新發感染引起的重症、死亡、及 Long-COVID 。成本效益分析顯示,若全面提供抗病毒藥物的政策下 Paxlovid 的單位藥價降至 5.3 美元,則每減少一例重症所需花費為 3,983 美元。

結論:對每位 COVID-19 確診者全面提供口服抗病毒藥物治療可望大幅度降低染疫後重症、死亡、及罹患 Long-COVID 的人數。
zh_TW
dc.description.abstractBackground and Research Objective: Due to the "immune escape" characteristics of the SARS-CoV-2 Omicron BA.5 variants and subsequent new Omicron variants, the COVID-19 pandemic remains difficult to eradicate. COVID-19 prevention policy in Taiwan has currently been adjusted to focus on reducing the number of severe cases and deaths. In the past, Taiwan mainly implemented vaccination policies to prevent COVID-19 cases from developing into severe cases. However, after several waves of outbreaks, the protection provided by past vaccinations has gradually waned, and the public's willingness to get vaccinated has decreased. Oral antiviral drugs represent another effective way to reduce the risk of severe cases. However, currently, the publicly funded prescription of oral antiviral drugs is strictly limited to individuals with severe risk factors, and the certification process is complex. Many confirmed cases in the past have delayed seeking medical attention because they were unsure if they met the eligibility criteria for receiving oral antiviral drugs, missing the optimal treatment time. If all reported confirmed cases could receive antiviral drugs, it should increase the willingness of the public to notify and ensure that patients who meet the criteria can receive oral antiviral drugs, and further reducing the risk of severe cases in other reported confirmed cases. However, currently, there is a lack of evidence-based mathematical models to support this hypothesis. This study aims to establish a mathematical model for COVID-19 transmission based on the epidemic data from Taiwan from 2022 to 2023. The model will be used to analyze the expected effectiveness of providing antiviral drug treatment to all confirmed COVID-19 cases, and providing valuable insights for our country's epidemic prevention and treatment policies.

Methods: This study consist of two parts: a systematic literature review and mathematical modeling. The systematic literature review will use specific keywords to explore relevant literature and integrate empirical research data to establish a mathematical model that aligns with the transmission characteristics of the new Omicron variant in 2023. In the mathematical modeling part, a SEIRS transmission model will be established for both the SARS-CoV-2 Omicron BA.5 variant and subsequent new Omicron variants. The model will consider the decay of immunity from natural infection, vaccination, and hybrid immunity. Four simple homogeneous-mixing models will be used to fit the four waves (BA.2, BA.5, BQ.1, XBB) of COVID-19 epidemics in Taiwan from April 1, 2022, to June 25, 2023. Based on this, the study will predict the trend of the epidemic in the latter half of 2023 and evaluate the benefits of universal antiviral treatment compared to the current treatment strategy. The primary analysis will assess the number of severe COVID-19 cases and deaths that can be directly or indirectly prevented. The secondary analysis will evaluate the number of new Long-COVID cases that can be prevented. Sensitivity analysis will consider the possibility of new SARS-CoV-2 variants emerging, simulate scenarios with varying vaccine efficacy, and also consider scenarios where new variants may possess stronger immune escape capabilities.

Results: This study predicts that under the current medication policy, there will be 61,518 COVID-19 cases developing into severe cases throughout the year 2023, with an average of approximately 190 new severe cases per day in the second half of 2023. However, it is expected that the number of severe cases in 2023 will significantly decrease to 23,406 under the scenario of universal antiviral treatment, with an average of around 70 new severe cases per day in the second half of 2023. Sensitivity analysis indicates that even if there are variations (± 10%) in the effectiveness of vaccines against new variants, the universal antiviral treatment would still provide similar protection as originally estimated. Furthermore, if new variants exhibit strong immune evasion capabilities, the effectiveness of universal antiviral treatment against severe cases would significantly increase, leading to substantial reductions in severe cases, deaths, and Long-COVID cases caused by a large number of new infections. Cost-benefit analysis shows that if the unit price of Paxlovid is reduced to 5.3 USD under the policy of comprehensive antiviral drug provision, the cost required to prevent one severe case would be 3,983 USD.

Conclusion: Providing oral antiviral drug treatment to each confirmed COVID-19 case is expected to significantly reduce the number of severe cases, deaths, and Long-COVID cases after infection.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-24T16:08:55Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-24T16:08:55Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract v
目錄 viii
第一章 背景與研究動機 1
1.1背景與研究動機 1
1.2研究目標 6
第二章 方法 7
2.1 研究倫理 7
2.2研究設計 7
2.2.1系統性文獻回顧 7
2.2.2 SARS-CoV-2 Omicron 傳播數理模型 8
2.3 研究資料性質及來源 10
2.3.1 每日通報病例數、重症數、死亡數 10
2.3.2 疫苗接種率 10
2.3.3 口服抗病毒藥物領用情形 10
2.4 模型參數設定說明 11
2.4.1 基礎傳播參數 11
2.4.2 疫苗保護力及接種人數 11
2.4.3 口服抗病毒藥物效益 12
2.4.4 通報率 13
2.4.5 Long-COVID 14
2.5 擬合臺灣四波 COVID-19 疫情 14
2.5.1 Omicron BA.2 疫情(2022/4/1 - 2022/7/31) 15
2.5.2 Omicron BA.5 疫情(2022/8/1 - 2022/11/30) 16
2.5.3 Omicron BQ.1疫情(2022/12/1 - 2023/3/25) 17
2.5.4 Omicron XBB 疫情(2023/3/26 - 2023/6/25) 18
2.6 模擬介入情境及對照情境 18
2.7 成效評估指標 19
2.8 敏感度分析 19
2.9 成本效益分析 19
2.10 建模軟體 20
第三章 結果 21
3.1系統性文獻回顧 21
3.1.1先前感染COVID-19對於後續重複感染的保護效果 21
3.1.2重複感染COVID-19對後續發生重症與死亡的風險與初次感染的差異 23
3.2 擬合臺灣四波 COVID-19 疫情 25
3.2.1 擬合Omicron BA.2 疫情(2022/4/1 - 2022/7/31) 25
3.2.2 擬合Omicron BA.5 疫情(2022/8/1 - 2022/11/30) 26
3.2.3 擬合Omicron BQ.1疫情(2022/12/1 - 2023/3/25) 26
3.2.4 擬合Omicron XBB 疫情(2023/3/26 - 2023/6/25) 27
3.3 全面提供抗病毒藥物預期效益 27
3.4 敏感度分析 28
3.5 成本效益分析 29
第四章 討論 30
4.1 主要發現 30
4.2 實務面的效益與侷限 30
4.3 經濟層面考量 31
4.4 研究優勢與限制 32
4.5 結論與建議 33
Acknowledgement 34
參考文獻 35
圖一、SEIRS 傳播數理模型架構 39
A. 架構圖 39
B. 抗病毒藥物效果 39
圖二、擬合臺灣Omicron BA.2 疫情(2022/4/1 - 2022/7/31) 40
A. 每日新增通報確診數 40
B. 每日新增通報重症數 40
C. 每日新增通報死亡數 41
圖三、擬合Omicron BA.5 疫情(2022/8/1 - 2022/11/30)之每日新增通報重症數 41
圖四、擬合Omicron BQ.1 疫情(2022/12/1 - 2023/3/25)之每日新增通報重症數 42
圖五、擬合Omicron XBB 疫情(2023/3/26 - 2023/6/25)之每日新增通報重症數 42
圖六、全面提供抗病毒藥物預期成效 43
A. 每日新增重症數 43
B. 每日新增死亡數 43
C. 每日新增 Long-COVID 數 44
圖七、敏感度分析 44
A. 每日減少重症數(疫苗保護力 ± 10%) 44
B. 每日減少死亡數(疫苗保護力 ± 10%) 45
C. 每日減少 Long-COVID數(疫苗保護力 ± 10%) 45
D. 每日減少重症數(免疫逃脫能力加強) 46
E. 每日減少死亡數(免疫逃脫能力加強) 46
F. 每日減少 Long-COVID 數(免疫逃脫能力加強) 47
表一、引用張尹瑄學姊建立的SARS-CoV-2 Omicron BA.2 模型參數 [21] 48
表二、其他模型參數 50
表三、敏感度分析 53
A. 每日減少重症數 53
B. 每日減少死亡數 53
C. 每日減少 Long-COVID 數 54
-
dc.language.isozh_TW-
dc.title全面提供抗病毒藥物治療預期成效:數理模式研究zh_TW
dc.titleImpact of Universal Antiviral Treatment for COVID-19: A Modeling Studyen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王振泰;溫在弘;林菀俞zh_TW
dc.contributor.oralexamcommitteeJen-Tay Wang;Tzai-Hung Wen;Wan-Yu Linen
dc.subject.keywordCOVID-19,SARS-CoV-2,Omicron 變異株,傳播數理模型,口服抗病毒藥物,成本效益分析,zh_TW
dc.subject.keywordCOVID-19,SARS-CoV-2,Omicron variant,Transmission Mathematical model,Oral Antiviral Drugs,Cost-Effectiveness Analysis,en
dc.relation.page54-
dc.identifier.doi10.6342/NTU202302927-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-04-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept流行病學與預防醫學研究所-
dc.date.embargo-lift2028-08-04-
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
1.54 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved