請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90235完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳敏慧 | zh_TW |
| dc.contributor.advisor | Min-Huey Chen | en |
| dc.contributor.author | 莊佩樺 | zh_TW |
| dc.contributor.author | Pei-Hua Chuang | en |
| dc.date.accessioned | 2023-09-24T16:08:24Z | - |
| dc.date.available | 2023-11-10 | - |
| dc.date.copyright | 2023-09-23 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-11 | - |
| dc.identifier.citation | Uncategorized References
1. Kevin Dzobo , et al., Advances in Regenerative Medicine and Tissue Engineering: Innovation and Transformation of Medicine. Stem Cells Int, 2018. 2018. 2. 傷口世界. 淺談組織工程學與再生醫學. 3. Maurizio Bossù, A.P. and D.C. , 1Gianluca Tenore,1Gaetano Ierardo,1Luciano Pacifici,1and Antonella Polimeni1, Today Prospects for Tissue Engineering Therapeutic Approach in Dentistry. The Scientific World Journa, 2014. 2014: p. 9. 4. Ikada, Y., Challenges in tissue engineering. The Royal Society, 2006: p. 589-601. 5. Chen, N.Z.a.X., Biofabrication of Tissue Scaffolds. Advances in Biomaterials Science and Biomedical Applications, 2013. 6. Christopher K.Arakawa, C.A.D., Chapter 19 - Polymer Design and Development. Biology and Engineering of Stem Cell Niches, 2017: p. 295-314. 7. Alicja Kosik-Kozioł, et al., Surface Modification of 3D Printed Polycaprolactone Constructs viaa Solvent Treatment: Impact on Physical and Osteogenic Properties. ACS Biomater. Sci. Eng., 2019(5): p. 318–328. 8. Mojtaba Khorramnezhad, B.A., Mahdokht Akbari,Mahshid Kharaziha, Effect of surface modification on physical and cellular properties of PCL thin film. Colloids and Surfaces B: Biointerfaces, 2021. 200. 9. 中華民國脊髓損傷者聯合會全球資訊網-甚麼是脊隨? ; Available from: http://www.fsci.org.tw/ap/news_view.aspx?bid=21&sn=0ce0af54-5956-4efc-8633-c223a160bed4. 10. What is Spinal Cord Injury (SCI)? ; Available from: https://www.motivation.org.uk/what-is-spinal-cord-injury-sci. 11. 中國醫藥大學附設醫院-認識脊髓損傷與治療方式. Available from: https://www.cmuh.cmu.edu.tw/Department/CustomPage/510. 12. 中華民國脊髓損傷者聯合會全球資訊網-何謂脊隨損傷? ; Available from: http://www.fsci.org.tw/ap/news_view.aspx?bid=21&sn=7f942b84-b433-41c8-b3dd-d56fda195071. 13. M. E. Schwab, a.D.B., Degeneration and regeneration of axons in the lesioned spinal cord. Physical.Rev, 1996. 76: p. 319-370. 14. James W Fawcett , R.A.A., The glial scar and central nervous system repair. Brain Research Bulletin, August 1999. 49(6): p. 377-391. 15. Seiji Okada a, b., *,Masamitsu Hara a,b ,Kazu Kobayakawa b ,Yoshihiro Matsumoto b ,Yasuharu Nakashima b, Astrocyte reactivity and astrogliosis after spinal cord injury. Neuroscience Research, January 2018. 126: p. 39-43. 16. Miller, J.S.a.J.H., Regeneration beyond the glial scar. Nature Reviews Neuroscience 2004. 5: p. 146-156. 17. Dasfne Lee-Liu, G.E.-F., Vıctor S. Tapia, and Juan Larraın*, Spinal Cord Regeneration: Lessons for Mammals fromNon-Mammalian Vertebrates. Wiley Online Libra, 2013. 51(8): p. 529-544. 18. Shilei Ni, T.X., Xingang Li, Xiaodong Zhu, Hongxu Qi,Shanying Huang, Jiangang Wang, Sustained delivery of chondroitinase ABC by poly(propylene carbonate)-chitosan micron fibers promotes axon regeneration and functional recovery after spinal cord hemisection. Brain Research, 2015. 1624: p. 469-478. 19. Giovanni, T.H.H.S.D., The translational landscape in spinal cord injury: focus on neuroplasticity and regeneration. Nature Reviews Neurology, 14 November 2019. 20. Wenrui Qu, B.C., Wentao Shu,Heng Tian,Xiaolan Ou, Xi Zhang, Yinan Wang,and Minfei Wu2,, Polymer-Based Scaffold Strategies for Spinal Cord Repair and Regeneration. Front Bioeng Biotechnol, 2020 21. Chihiro Tohda, T.K., Current and future therapeutic strategies for functional repair of spinal cord injury. Pharmacology & Therapeutics, April 2012. 134 (1): p. 125. 22. Masako Miura, S.G., Mingrui Zhao, +3, and Songtao ShiAuthors Info & Affiliations, SHED: Stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences, 2003. 100(10): p. 5807 - 5812. 23. Moro JS, B.R., Terra TG, Danesi CC. l, Tissue engineering perspectives in dentistry:review of the literature. Tissue engineering perspectives in dentistry, 2018. 66(4): p. 361-367. 24. Christopher S. Ahujaa, b.a.M.F., Concise Review: Bridging the Gap: Novel Neuroregenerative and Neuroprotective Strategies in Spinal Cord Injury. Stem Cells Translations medicine, 2016. 5(7): p. 914-924. 25. 開源科技有限公司. 3D列印機-初學入門指南. 2013; Available from: https://www.opentech.tw/pages/documents/?/intro/C4-1.html. 26. Thielemans, M.L.a.W., Synthesis of polycaprolactone: a review. Chemical Society Reviews, 2009. 38(12): p. 3484-3504. 27. 聚己內酯. Available from: https://baike.baidu.hk/item/%E8%81%9A%E5%B7%B1%E5%85%A7%E9%85%AF/3252846#2. 28. 鏈式聚合(wikiwand). Available from: https://www.wikiwand.com/zh-hk/%E9%8F%88%E5%BC%8F%E8%81%9A%E5%90%88#%E5%8F%83%E8%80%83%E6%96%87%E7%8D%BB. 29. Iroh, J.O., Polymer Data Handbook. 1999, New York: J. E. MarkOxford University Press. 30. K Van de Velde, P.K., Biopolymers: overview of several properties and consequences on their applications. Polymer Testing, 2002. 21(4): p. 433-442. 31. KALRA, R.A.G.A.B., Biodegradable Polymers for the Environment. Science, 2002. 297(5582): p. 803-807. 32. Chemical & Physical properties. Available from: http://www.birminghampolymers.com/. 33. V.R.Sinha K.Bansal, R.K., R.Kumria,A.Trehan, Poly-ϵ-caprolactone microspheres and nanospheres: an overview. International Journal of Pharmaceutics, 2004. 278(1): p. 1-23. 34. Tsuji, Y.I.a.H., Biodegradable polyesters for medical and ecological applications. Macromolecular Rapid Communications, 2000. 21(3): p. 117-132. 35. Christopher XF Lam, S.H.T., Dietmar W Hutmacher, Comparison of the degradation of polycaprolactone and polycaprolactone–(β-tricalcium phosphate) scaffolds in alkaline medium. Polymer International, 2007. 56(6): p. 718-728. 36. Hideto Tsuji, T.I., Norio Fukuda, Surface hydrophilicity and enzymatic hydrolyzability of biodegradable polyesters. I. Effects of alkaline treatment. Polymer International, 2003. 52(5): p. 843-852. 37. Alvin Yeo, E.S., Bina Rai, Swee Hin Teoh, Customizing the degradation and load-bearing profile of 3D polycaprolactone-tricalcium phosphate scaffolds under enzymatic and hydrolytic conditions. Biomedical Materials Research Part B, 2008. 87B(2): p. 562-569. 38. Marcus Himmler 1 2, D.W.S., Lars Dähne 3, Gabriella Egri 3, Thomas A Fuchsluger 1, Electrospun PCL Scaffolds as Drug Carrier for Corneal Wound Dressing Using Layer-by-Layer Coating of Hyaluronic Acid and Heparin. Int J Mol Sci, 2022. 23(5). 39. Xiongfa Ji 1 2, X.Y., Limin Ma 1, Bo Bi 3, Hao Zhu 2, Zehua Lei 2, Wenbin Liu 2, HongXu Pu 2, Jiawei Jiang 2, Xulin Jiang 3, Yu Zhang 1, Jun Xiao 2, Mesenchymal stem cell-loaded thermosensitive hydroxypropyl chitin hydrogel combined with a three-dimensional-printed poly(ε-caprolactone) /nano-hydroxyapatite scaffold to repair bone defects via osteogenesis, angiogenesis and immunomodulation. Theranostics, 2020. 10(2): p. 725-740. 40. Marie-Odile Christen 1, F.V., Polycaprolactone: How a Well-Known and Futuristic Polymer Has Become an Innovative Collagen-Stimulator in Esthetics. Clin Cosmet Investig Dermatol, 2020. 13: p. 31-48. 41. Zhengwei Mao 1, B.W., Lie Ma, Changyou Gao, Jiacong Shen, The influence of polycaprolactone coating on the internalization and cytotoxicity of gold nanoparticles. Nanomedicine, 2007,Sep. 3(3): p. 215-23. 42. Zhenting Yin 1, F.C., Bin Yu 2, Bibo Wang 3, Yuan Hu, Hierarchical Ti3C2Tx@BPA@PCL for flexible polyurethane foam capable of anti-compression, self-extinguishing and flame-retardant. J Colloid Interface Sci, 2022. 15(626): p. 208-220. 43. 林鴻儒, Bio-test of medical use bone material prior to clinical use. 2010: 南台科技大學. 44. 葉名倉. 氫氧化鈉(Sodium hydroxide). 2008/12/11; Available from: https://highscope.ch.ntu.edu.tw/wordpress/?p=4681. 45. Deepak Gupta , A.K.S., Neelakshi Kar , Ashwin Dravid , Jayesh Bellare Modelling and optimization of NaOH-etched 3-D printed PCL for enhanced cellular attachment and growth with minimal loss of mechanical strength. Materials Science and Engineering: C, 2019. 98: p. 602-611. 46. B. D. Boyan, T.W.H., K. Kieswetter, D. Schraub, D. D. Dean, Z. Schwartz, Effect of titanium surface characteristics on chondrocytes and osteoblasts in vitro. JournalCells and Materials, 1995. 5(4): p. 323-335. 47. Grace E. Park a, M.A.P.a., Kinam Park a b, Thomas J. Webster a, Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. Biomaterials, 2005. 26(16): p. 3075-3082. 48. Christopher X. F. Lam, D.W.H., Jan-Thorsten Schantz, Maria Ann Woodruff, Swee Hin Teoh, Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. Biomedical Materials Research Part A, 2008. 90A(3): p. 906-919. 49. Huinan Liu, E.B.S., Thomas J. Webster, Increased osteoblast functions among nanophase titania/poly(lactide-co-glycolide) composites of the highest nanometer surface roughness. Biomedical Materials Research, 2006. 78A(4): p. 798-807. 50. Greene L. A., T.A.S., PC12 Pheochromocytoma Cultures in Neurobiological Research. Advances in Cellular Neurobiology, 1982. 3: p. 373–414. 51. Benita Wiatrak 1, Adriana Kubis-Kubiak 2 and A.P.a.E.B. , PC12 Cell Line: Cell Types, Coating of Culture Vessels, Differentiation and Other Culture Conditions. Cells, 2020. 9(4). 52. Danni Xie1†, T.D., Zhenwei Zhai2,Tao Sun1,2* and Ying Xu3*, The cellular model for Alzheimer's disease research: PC12 cells. Front Mol Neurosci, 2023. 15. 53. De Rios C.L., C.-A.M.F., Villarroya M., López M.G, Chromaffin cells as a model to evaluate mechanisms of cell death and neuroprotective compounds. Pflugers Arch, 2017. 470: p. 187–198. 54. Matsuzaki Y., M.R., Takaki K., Kotani E., Kato Y., Yoshimura R., Endo Y., Whitty C., Pernstich C., Gandhi R., et al, Sustained Neurotrophin Release from Protein Nanoparticles Mediated by Matrix Metalloproteinases Induces the Alignment and Differentiation of Nerve Cells. Biomolecules, 2019. 9(510). 55. Zeng Z., X.J., Zheng W., Artemisinin protects PC12 cells against β-amyloid-induced apoptosis through activation of the ERK1/2 signaling pathway. Redox Biol, 2017(12): p. 625–633. 56. Grau C.M., G.L.A., Use of PC12 Cells and Rat Superior Cervical Ganglion Sympathetic Neurons as Models for Neuroprotective Assays Relevant to Parkinson’s Disease. Breast Cancer, 2012(846): p. 201–211. 57. KRUSS. 楊氏方程. Available from: https://www.kruss-scientific.com/zh-CN/know-how/glossary/youngs-equation. 58. KEYENCE. 接觸式表面粗糙度、形狀量測儀器. 粗糙度熱門 2023; Available from: https://www.keyence.com.tw/ss/products/microscope/roughness/equipment/line_01.jsp. 59. Inc, M.A.T. 傅立葉轉換紅外光譜儀 (FTIR). 2020; Available from: https://www.matek.com/zh-TW/services/index/FTIR. 60. 科邁斯集團. 熱分析-DSC 熱示差掃描分析儀的原理及應用介紹. 08.FEB.2021; Available from: https://www.techmaxasia.com/knowledge-detail/DSC-20210208/. 61. Biosciences, A. Cell-Quant™ AlamarBlue 細胞活力試劑. 2023; Available from: https://www.abpbio.com/product/cell-quant-alamarblue-cell-viability-reagent/. 62. Gorodzha, S.N.S., M A; Surmenev, R A., Fabrication and characterization of polycaprolactone cross- linked and highly-aligned 3-D artificial scaffolds for bone tissue regeneration via electrospinning technology. Materials Science and Engineering, 2015. 98(1): p. 98. 63. Dreamstime, Polycaprolactone PCL biodegradable polyester, chemical structure. Frequently used for biomedical applications and for rapid prototyping. Skeletal formula. 2000-2023. 64. Paweena Uppanan 1, B.T., Wasana Kosorn 1, Pakkanun Kaewkong 1, Wanida Janvikul 1, Enhancement of chondrocyte proliferation, distribution, and functions within polycaprolactone scaffolds by surface treatments. J Biomed Mater Res A, 2015. 103: p. 2322-2332. 65. Jeong Soo Park, J.-M.K., Sung Jun Lee, Se Geun Lee, Young-Keun Jeong, Sung Eun Kim & Sang Cheon Lee, Surface hydrolysis of fibrous poly(ε-caprolactone) scaffolds for enhanced osteoblast adhesion and proliferation. Macromolecular Research volume, 2007. 15(5): p. 424-429 66. Artem Egorov, 2 Bianca Riedel,1 Johannes Vinke,2 Hagen Schmal,1 Ralf Thomann,3 Yi Thomann,3 and Michael Seidenstuecker1,*, The Mineralization of Various 3D-Printed PCL Composites. J Funct Biomater, 2022 Dec. 13(4): p. 238. 67. A. Yeo, W.J.W., H. H. Khoo, S. H. Teoh, Surface modification of PCL-TCP scaffolds improve interfacial mechanical interlock and enhance early bone formation: An in vitro and in vivo characterization. Biomedical Materials Research Part A, 2009. 92A(1): p. 311-321. 68. Hee-Sang Roh a 1, C.-M.L.a., Young-Hyoun Hwang a, Min-Suk Kook b, Seong-Won Yang c, Donghun Lee d, Byung-Hoon Kim a, Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration. Materials Science and Engineering C, 2017. 74(1): p. 525-535. 69. Cancan Xu, a., b Aneetta E. Kuriakose,a,b Danh Truong,a,b Primana Punnakitikashem,a,b Kytai T. Nguyen,a,b and Yi Honga,b,*, Enhancing anti-thrombogenicity of biodegradable polyurethanes through drug molecule incorporation†. J Mater Chem B, 2019. 6(44): p. 7288–7297. 70. Hoda Jahani, F.A.J., Chia-Yu Wu, Saeid Kaviani, Masoud Soleimani, Naghmeh Abbasi, Keng-Liang Ou, Hossein Hosseinkhani, Controlled surface morphology and hydrophilicity of polycaprolactone toward selective differentiation of mesenchymal stem cells to neural like cells. Biomedical Materials Research Part A, 2014. 103(5): p. 1875-1881. 71. Zhiyuan Wang, 2,* Shuaijun Jia,1,2,* Hailiang Xu,1,2 Xiaohui Wang,1,2 Botao Lu,1,2 Weidong Wu,1,2 Dageng Huang,1,2 Lingbo Kong,1,2 Xin Kang,3 Fang Tian,1,2 Lei Zhu,1,2,✉ and Dingjun Hao1,2,✉, A functionalized self-assembling peptide containing E7 and YIGSR sequences enhances neuronal differentiation of spermatogonial stem cells on aligned PCL fibers for spinal cord injury repair. Theranostics, 2022. 12(17): p. 7567–7585. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90235 | - |
| dc.description.abstract | 脊髓損傷(Spinal cord injury, SCI)是一種既嚴重又複雜的神經系統病症, 會造成無法恢復的神經嚴重損壞,導致身體主要的運動、感覺和自主神經功能障礙,嚴重一點的脊髓損傷可能還會影響四肢的活動甚至癱瘓,一輩子都需要別人照顧。以往針對脊髓損傷較常見的治療方法有藥物治療、關節固定、外科手術、復健等,但這些都無法完全治癒脊髓損傷。現今醫療發達,已有一些很有前景的新興治療方法正在被研究中,例如 : 神經再生,而讓神經再生的方法有幹細胞移植、奈米技術、生物材料、組織工程等。
本論文是利用3D列印做出聚己內酯(Polycaprolactone, PCL)支架,再將其表面透過氫氧化鈉做不同程度的鹼化,使PCL支架的親水性增加,讓細胞可以在濕潤的環境生長;使PCL支架表面更加粗糙,讓神經細胞可以更容易攀附生長。 材料分析藉由水接觸角(Contact angle)分析材料親疏水性;微細形狀測定機 (surface profiler)分析材料的粗糙度;傅立葉轉換紅外線光譜儀(FTIR)分析材料表面官能基;差示掃描量熱法(DSC)測量材料隨溫度範圍的熱性質,以及利用光學顯微鏡(Optical Microscope, OM)、金相顯微鏡(Metallographic Microscope)、掃描式電子顯微鏡(Scanning Electron Microscope, SEM)觀察材料表面的結構和形貌。PCL支架之生物相容性分析選用PC12細胞進行測試,用Presto Blue測試細胞在材料上的活性以及用SEM觀察細胞附著在支架上的生長情形。並且用神經生長因子(Nerve Growth Factor, NGF)誘導PC12細胞神經分化1、4、7天後用免疫螢光染色觀察分化出的神經數量、長度差異以及細胞群分布狀況。觀察鹼化不同濃度與時間對材料及神經細胞的影響。 實驗結果顯示,鹼化PCL支架會增加材料表面親水性及粗糙度,支架表面結構會從光滑、平整變為粗糙、凌亂,也多了許多孔洞,且鹼化時間越久或鹼化濃度越高,這些現象會更顯著;FTIR結果顯示鹼化PCL支架會增加水解的極性官能基,使其酸含量變多;DSC結果顯示在鹼化過程中產生結晶的主要原因是溫度的變化;cell viability實驗結果顯示鹼化處理過之PCL材料較適合細胞生長,此外,鹼化濃度越高,作用時間越久的材料更適合細胞生長及貼附;由掃描式電子顯微鏡實驗結果得知細胞隨培養天數增加會從單顆或小群聚的狀態變成大群聚的狀態,且形狀會從一顆一顆粒粒分明的形狀變成細長並且延伸,鹼化濃度高的材料其細胞質具有絲狀延伸物,此延伸物有助於細胞固定在材料表面;神經細胞分化免疫螢光染色結果顯示鹼化處理時間越久或濃度越高之PCL材料使細胞更趨近群聚生長狀態,且也更利於細胞神經分化以及交感神經元(類神經元)長度也會長得較長。 從實驗結果可得結論,鹼化PCL支架會增加材料表面親水性、粗糙度、極性官能基、孔洞等,使表面結構改變,且鹼化時間越久或鹼化濃度越高,這些現象更為顯著;然而,這些改變會使材料更適合神經細胞生長、貼附及分化。本實驗鹼化濃度最高且鹼化時間最久之PCL為PCL-3M-24hr,此材料的親水性是所有材料中最為親水的;粗糙度是所有材料中最為粗糙的,細胞實驗結果也顯示此材料是所有材料中最利於細胞生長、貼附以及最有利於神經分化的。 | zh_TW |
| dc.description.abstract | Spinal cord injury(SCI)is a serious and complex neurological condition that causes severe and irreparable damage to nerves, resulting in major motor, sensory and autonomic dysfunction of the body. If it is more serious, it may affect the activities of the limbs or even paralyze, and it will need others to take care of it for the rest of its life.
In the past, the more common treatment methods for spinal cord injury included drug therapy, joint fixation, surgery, rehabilitation, etc., but none of these could completely cure the spinal cord injury. With the development of medical treatment nowaDays, some promising emerging treatment methods are being studied, such as: nerve regeneration. Methods for nerve regeneration include stem cell transplantation, nanotechnology, biomaterials, tissue engineering, etc. This study mainly that we used 3D printing to make Polycaprolactone(PCL)scaffolds, and to modify the surface of the scaffolds to help the nerves have a better growth environment. The surface of PCL scaffolds were alkalized to varying degrees with sodium hydroxide to increase the hydrophilicity of the PCL scaffolds, allowing cells to grow in a humid environment and making the surface of the PCL scaffolds rougher, allowing nerve cells to grow more easily. The hyphophilicity and hydrophobicity properties of PCL materials were analyzed with contact angle measurement. The surface roughness of the PCL materials were analyzed by Surface profiler. The functional groups on the surface of the PCL materials were analyzed by Fourier Transform Infrared Spectrometer(FTIR). Measuring thermal properties of materials over temperature range with Differential Scanning Calorimeter(DSC), and observing the structure and morphology of the PCLmaterials surface with Optical Microscope(OM), Metallographic Microscope, and Scanning Electron Microscope(SEM). PC12 cells were used to analyze the biocompatibility of PCL scaffolds, and test cell viability with Presto Blue. The growth of cells attached to the scaffold was observed by SEM. Nerve growth factor(NGF)was used to induce PC12 cell neural differentiation for 1, 4, and 7 Days, and immunofluorescent staining was used to observe the number and length of differentiated nerves and the distribution of cell populations. The results showed that the alkalized PCL scaffold would increase the hydrophilicity and roughness of the materials. The surface structure of the scaffolds would change from smooth and flat to rough and messy, and there would be many holes, and the longer the alkalization time or the higher the alkalinization concentration, the phenomenon would be more pronounced . FTIR results showed that alkalized PCL scaffolds would increase the hydrolyzed polar functional groups and increase the acid content. DSC results showed that the main cause of crystallization during alkalization was the change of temperature. Cell viability experiments showed that alkalized PCL materials is more suitable for cell growth. In addition, materials with higher alkalization solution concentration or longer alkalization times would be more suitable for cell growth and attachment. Results of the scanning electron microscope experiment showed that the cells would change from single or small clusters to large clusters with the increase in the number of Days of culture, and the shape would change from a single granular shape to a slender and elongated shape. Materials with a high concentration of alkalization, its cytoplasm has filamentous extensions, which help cells to fix on the surface of the material. Results of immunofluorescent staining on nerve cell differentiation showed that the materials with higher alkalization solution concentration or longer alkalization times, its cells would closer to the cluster growth state, and it was also more conducive to the neural differentiation of cells and the length of sympathetic neurons would be longer. According to the results, it can be concluded that alkalization of PCL scaffolds would increase the surface structure of the material such as hydrophilicity, roughness, polarity functional groups, and pores, and these phenomena would be more significant when the longer of the alkalization time or the higher the alkalization concentration. However, these changes would make the materials more suitable for the growth, attachment and differentiation of nerve cells. The PCL with the highest alkalization concentration and the longest alkalization time in this experiment is PCL-3M-24hr. The hydrophilicity of this material is the most hydrophilic among all materials; the roughness is the roughest among all materials, and the cell experiment also shows that this material is the most conducive to cell growth, attachment and neural differentiation among all materials | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-24T16:08:24Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-24T16:08:24Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iv Abstract vi 目錄 ix 圖目錄 xiii 表目錄 xvii Chapter 1 緒論 1 1.1 前言 1 1.2 研究目的 2 Chapter 2 文獻回顧 3 2.1 脊髓損傷( Spinal cord injury , SCI ) 3 2.1.1 脊髓損傷介紹 3 2.1.2 脊髓損傷目前治療方式 5 2.2 組織工程生物支架 7 2.2.1 生物支架介紹 7 2.2.2 生物支架與SCI 7 2.2.3 用於SCI的生物支架製作方法和材料 8 2.3 熔融沉積成型3D列印技術(Fused deposition modeling, FDM) 8 2.4 聚己內酯(Polycaprolactone, PCL) 9 2.4.1 聚己內酯的製程與結構 9 2.4.2聚己內酯的物化性質 10 2.4.3聚己內酯生物特性和優點 10 2.4.4聚己內酯缺點 11 2.4.5聚己內酯的應用 11 2.5 氫氧化鈉鹼化溶液水解PCL 11 2.6 PC12細胞 12 Chapter 3 實驗材料與方法 13 3.1 實驗材料與藥品 13 3.2 實驗儀器 15 3.3 實驗概念圖 17 3.4 實驗流程圖 18 3.5 PCL 生物支架 19 3.5.1 PCL生物支架的製作 19 3.5.2 PCL 生物支架鹼化處理 19 3.6 PCL 生物支架物理 & 化學性測量 20 3.6.1 靜態表面接觸角分析 (Contact angle) 20 3.6.2 微細形狀測定儀 (Surface profiler) 21 3.6.3 傅立葉轉換紅線光譜分析 (Fourier Transform Infrared Spectrometer,FTIR) 21 3.6.4 示差掃描熱分析儀 (Differential Scanning Calorimeter,DSC) 22 3.6.5 光學顯微鏡 (Optical microscopes,OM) 23 3.6.6 掃描式電子顯微鏡 (Scanning Electron Microscope,SEM) 23 3.6.7 金相顯微鏡( Metallograghic Microscopy ) 24 3.7 體外生物相容性測試 24 3.7.1 細胞培養 24 3.7.2 生物支架的消毒滅菌及PDL塗佈 24 3.7.3 材料與細胞活性試驗 (Presto Blue Cell Viability Assay) 24 3.7.4 神經細胞分化實驗 25 3.7.5 細胞與神經免疫螢光染色 26 3.7.6 神經分化生長定量分析 26 3.8 統計分析 27 Chapter 4 實驗結果 28 4.1 PCL 生物支架表面特性分析 28 4.1.1靜態表面接觸角分析 ( Contact angle ) 28 4.1.2 微細形狀測定儀 (Surface profiler) 30 4.1.3 傅立葉轉換紅線光譜分析 ( FTIR ) 33 4.1.4 示差掃描熱分析儀 ( DSC ) 41 4.1.5光學顯微鏡 ( OM ) 43 4.1.6 掃描式電子顯微鏡 (SEM) 44 4.1.7 金相顯微鏡 48 4.2 體外生物相容性測試 50 4.2.1 材料細胞存活率試驗(Presto blue assay) 50 4.2.2細胞生長型態觀察 53 4.2.3 神經細胞分化免疫螢光染色-細胞分布、神經分化數量及長度 68 Chapter 5 討論 78 5.1 PCL生物支架表面特性分析 78 5.1.1靜態表面接觸角分析(Contact angle) 78 5.1.2 微細形狀測定儀(Surfcorder) 79 5.1.3 傅立葉轉換紅線光譜分析(FTIR) 79 5.1.4 示差掃描熱分析儀(DSC) 80 5.1.5光學顯微鏡(OM) 80 5.1.6 掃描式電子顯微鏡(SEM) 80 5.1.7 金相顯微鏡 81 5.2 體外生物相容性測試 82 5.2.1 材料細胞存活率試驗(Presto blue assay) 82 5.2.2 細胞型態觀察 83 5.2.3 神經細胞分化免疫螢光染色-細胞分布、神經分化數量及長度 85 Chapter 6 結論 87 Chapter 7 未來研究方向 88 參考文獻 90 圖目錄 圖 1 : 30節脊隨神經示意圖 3 圖 2 : 中樞神經系統損傷後星形膠質細胞(astrocytes)的變化。 5 圖 3: 星形細胞變化的可塑性。 6 圖4 : 聚合物複合支架修復脊髓損傷示意圖。 8 圖5 : PCL聚合反應。 9 圖6 :氫氧化鈉與PCL的化學反應。 12 圖 7 : 接觸角的楊氏方程式 20 圖 8 : 微細形狀測定儀簡易圖 21 圖9 : DSC相變化曲線 22 圖 10 : Presto Blue、AlamarBlue細胞活力試劑原理 25 圖11 : 3D列印PCL鹼化各種濃度及時間(0、0.5、1、2、4、8、16、24hr)、未鹼化只泡酒精後之表面水接觸角分析結果圖,未鹼化及泡酒精組別每組都來自於相同組別。 29 圖12 : PCL鹼化濃度1M~3M以及時間 0、0.5、1、2、4、8、16、24hr、未鹼化只泡酒精所有組別表面水接觸角結果折線分析圖。 30 圖13 : 3D列印PCL鹼化各種濃度及時間(0、0.5、1、2、4、8、16、24hr)、未鹼化只泡酒精後之表面粗糙度分析結果圖,未鹼化及泡酒精組別每組都來自於相同組別。 32 圖14 : PCL鹼化濃度1M~3M以及時間 0、0.5、1、2、4、8、16、24hr、未鹼化只泡酒精所有組別表面水接觸角結果折線分析圖。 33 圖 15 : 鹼化濃度1M及時間 0、0.5、1、2、4、8、16、24hr、未鹼化只泡酒精之FTIR光譜圖。 35 圖16 : PCL化學結構 36 圖17 : PCL經NaOH鹼化化學反應式 37 圖18 : 鹼化濃度1M及時間 0、0.5、1、2、4、8、16、24hr、未鹼化只泡酒精之FTIR光譜圖。 38 圖19 : 鹼化濃度1M及時間 0、0.5、1、2、4、8、16、24hr之FTIR光譜圖。 39 圖20 : 鹼化濃度3M及時間 0、0.5、1、2、4、8、16、24hr之FTIR光譜圖。( 40 圖21 : FTIR三個數據各組之比較,X-鹼化的濃度和時間組別,Y-與normal組比較差異的百分比。 41 圖22 : PCL DSC結果。 42 圖23 :立體網格狀PCL表面之OM圖 43 圖24 :不同比例及在RPMI medim中培養不同天數之平面未鹼化(normal組) PCL SEM圖 45 圖25 : 不同比例及在RPMI medim中培養不同天數之平面鹼化(3M24hr)之PCL SEM圖 46 圖26 : 圖24、25在5000X視野下之RPMI medim中培養不同天數之平面未鹼化(normal組)與鹼化(3M24hr) PCL SEM圖。 47 圖27 : 50X視野下平面且泡酒精 48 圖28 : 50X視野下平面未鹼化(normal)之PCL金象顯微鏡圖。 48 圖29:50X視野下平面鹼化濃度1~3M及鹼化時間0.5~2小時之PCL金象顯微鏡圖。 49 圖30 : 50X視野下平面鹼化濃度1~3M及鹼化時間0.5~2小時之PCL金象顯微鏡圖。 50 圖31 : PC12細胞培養於鹼化時間4hr、鹼化濃度1~3M及未鹼化之PCL flat scaffolds上經過1、4、7天以Presto Blue Cell Vibility Assay進行生長測試結果。 52 圖 32 : PC12細胞培養於鹼化時間24hr、鹼化濃度1~3M及未鹼化之PCL flat scaffolds上經過1、4、7天以Presto Blue Cell Vibility Assay進行生長測試結果。 52 圖 33 : PC12細胞培養於濃度3M、鹼化時間0.5、1、4、16、24hr及未鹼化之PCL flat scaffolds上經過1、4、7天以Presto Blue Cell Vibility Assay進行生長測試結果。 53 圖34 : PC12神經細胞培養於未鹼化之平面PCL以及TCPS的第一天SEM圖 56 圖35 : PC12神經細胞培養於鹼化時間4hr以及不同鹼化濃度的平面PCL第一天的不同倍率SEM。 57 圖36 : PC12神經細胞培養於鹼化時間4hr以及不同鹼化濃度的平面PCL第一天的不同倍率SEM圖 58 圖37 : PC12神經細胞培養於鹼化濃度3M以及不同鹼化時間的平面PCL第一天的不同倍率SEM圖。 59 圖 38 : PC12神經細胞培養於未鹼化之平面PCL以及TCPS的第四天SEM圖。 60 圖39 :PC12神經細胞培養於鹼化時間4hr以及不同鹼化濃度的平面PCL第四天的不同倍率SEM。 61 圖40 : PC12神經細胞培養於鹼化時間24hr以及不同鹼化濃度的平面PCL第四天的不同倍率SEM。 62 圖41: PC12神經細胞培養於鹼化濃度3M以及不同鹼化時間的平面PCL第四天的不同倍率SEM圖。 63 圖42 : PC12神經細胞培養於未鹼化之平面PCL以及TCPS的第七天SEM圖。 64 圖43 : PC12神經細胞培養於鹼化時間4hr以及不同鹼化濃度的平面PCL第七天的不同倍率SEM。 65 圖44 : PC12神經細胞培養於鹼化時間24hr以及不同鹼化濃度的平面PCL第七天的不同倍率SEM。 66 圖45 : PC12神經細胞培養於鹼化濃度3M以及不同鹼化時間的平面PCL第七天的不同倍率SEM圖。 67 圖46 : 未放材料之TCPS組之細胞群分布圖。 70 圖47 :未鹼化之PCL之細胞群分布圖。 70 圖48 : 鹼化4小時、鹼化不同濃度之PCL細胞群分布圖。 71 圖49 : 鹼化24小時、鹼化不同濃度之PCL細胞群分布圖。 71 圖50 :鹼化濃度3M、鹼化不同時間之PCL細胞群分布圖。 72 圖51 : 鹼化4小時、鹼化不同濃度之PCL神經分化數量結果。 74 圖52 : 鹼化24小時、鹼化不同濃度之PCL神經分化數量結果。 74 圖53 : 濃度3M、鹼化不同時間之PCL神經分化數量結果。 75 圖54 : 鹼化4小時、鹼化不同濃度之PCL神經分化長度結果。 76 圖55 : 鹼化24小時、鹼化不同濃度之PCL神經分化長度結果。 77 圖56 : 濃度3M、鹼化不同時間之PCL神經分化數量結果。 77 圖57 : PCL支架和PCL/HAp/MgO支架在氧和氮等離子體處理前後的FE-SEM圖像。 81 圖58 : SEM 顯微照片顯示在 (A)cell seeding 4小時、(C) cell seeding 8小時、(E) cell seeding 3天候,初始細胞附著及其在未處理的 PCL 表面上的增殖;在(B) cell seeding 4 小時後,(D) cell seeding 8 小時,(F) cell seeding 3 天後,在經過處理的PCL表面。 84 圖59 :在3D支架上培養30 分鐘的前成骨細胞MC3T3-E1細胞形態的SEM圖像。 85 圖60: Nap-E7-YIGSR 肽修飾增強了SSC向神經元的分化效率。21天后通過 GFRα-1(SSC 標記,綠色)和PCL膠片、(AC)對照組、(DF)Nap-E7組和(GI)Nap-E7-YIGSR組培養的SSC的代表性免疫熒光圖像。(J)定量Tuj-1(神經元標記,紅色染色) ( N =6,*** p < 0.001)。(LMN)未塗層或塗有Nap-E7或Nap-E7-YIGSR的對齊PCL纖維表面上的 SSC及其分化神經元的形態 86 圖61 :實驗流程圖,包含未來規劃動物實驗部分。 89 表目錄 表格1 : PCL的性質 10 表格 2 :本實驗使用的實驗儀器名稱、製造商、規格型號 15 表格3 : Characteristic Major absorptions infrared bands of PCL 36 表格 4 :三組PCL之DCS結果。 43 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 神經再生 | zh_TW |
| dc.subject | 脊髓損傷 | zh_TW |
| dc.subject | PC12細胞 | zh_TW |
| dc.subject | 氫氧化鈉改質 | zh_TW |
| dc.subject | 生物支架 | zh_TW |
| dc.subject | 聚己內酯 | zh_TW |
| dc.subject | 3D列印 | zh_TW |
| dc.subject | Neuroregeneration | en |
| dc.subject | Spinal Cord Injury(SCI) | en |
| dc.subject | 3D printing | en |
| dc.subject | Polycaprolactone(PCL) | en |
| dc.subject | Biological scaffolds | en |
| dc.subject | NaOH | en |
| dc.subject | PC12 | en |
| dc.title | 探討鹼化改質3D列印聚己內酯之材料於神經分化以做為治療脊髓損傷之應用 | zh_TW |
| dc.title | Investigating the Application of Alkaline Modified 3D Printed Polycaprolactone for Neural Differentiation as an Application in the Treatment of Spinal Cord Injury | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 周涵怡 | zh_TW |
| dc.contributor.coadvisor | Han-Yi Chou | en |
| dc.contributor.oralexamcommittee | 劉瑋文;劉宏輝 | zh_TW |
| dc.contributor.oralexamcommittee | Wei-Wen Liu;Horng-Huei Liou | en |
| dc.subject.keyword | 脊髓損傷,神經再生,3D列印,聚己內酯,生物支架,氫氧化鈉改質,PC12細胞, | zh_TW |
| dc.subject.keyword | Spinal Cord Injury(SCI),Neuroregeneration,3D printing,Polycaprolactone(PCL),Biological scaffolds,NaOH,PC12, | en |
| dc.relation.page | 95 | - |
| dc.identifier.doi | 10.6342/NTU202300935 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-11 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 口腔生物科學研究所 | - |
| dc.date.embargo-lift | 2024-11-20 | - |
| 顯示於系所單位: | 口腔生物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 13.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
