請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90229
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 許秉寧 | zh_TW |
dc.contributor.advisor | Ping-Ning Hsu | en |
dc.contributor.author | 吳宇軒 | zh_TW |
dc.contributor.author | Yu-Hsuan Wu | en |
dc.date.accessioned | 2023-09-24T16:06:51Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-23 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-08 | - |
dc.identifier.citation | 1. Kubes, P. and C. Jenne. (2018). Immune Responses in the Liver. Annual Review of Immunology, 36(1), 247-277. https://doi.org/10.1146/annurev-immunol-051116-052415
2. Heymann, F. and F. Tacke. (2016). Immunology in the liver — from homeostasis to disease. Nature Reviews Gastroenterology & Hepatology, 13(2), 88-110. https://doi.org/10.1038/nrgastro.2015.200 3. Thorgersen, E.B., et al. (2019). The Role of Complement in Liver Injury, Regeneration, and Transplantation. Hepatology, 70(2), 725-736. https://doi.org/10.1002/hep.30508 4. Hu, Z.-G., et al. (2021). Emerging recognition of the complement system in hepatic ischemia/reperfusion injury, liver regeneration and recovery (Review). Experimental and Therapeutic Medicine, 21(3). https://doi.org/10.3892/etm.2021.9654 5. Su, G.L., et al. (2000). Kupffer cell activation by lipopolysaccharide in rats: Role for lipopolysaccharide binding protein and toll-like receptor 4. Hepatology, 31(4), 932-936. https://doi.org/10.1053/he.2000.5634 6. Elsegood, C.L., et al. (2015). Kupffer cell–monocyte communication is essential for initiating murine liver progenitor cell–mediated liver regeneration. Hepatology, 62(4), 1272-1284. https://doi.org/10.1002/hep.27977 7. Thomson, A.W. and P.A. Knolle. (2010). Antigen-presenting cell function in the tolerogenic liver environment. Nature Reviews Immunology, 10(11), 753-766. https://doi.org/10.1038/nri2858 8. Gabrilovich, D.I. and S. Nagaraj. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews Immunology, 9(3), 162-174. https://doi.org/10.1038/nri2506 9. Doherty, D.G., et al. (1999). The Human Liver Contains Multiple Populations of NK Cells, T Cells, and CD3+CD56+ Natural T Cells with Distinct Cytotoxic Activities and Th1, Th2, and Th0 Cytokine Secretion Patterns1. The Journal of Immunology, 163(4), 2314-2321. https://doi.org/10.4049/jimmunol.163.4.2314 10. Kenna, T., et al. (2003). NKT Cells from Normal and Tumor-Bearing Human Livers Are Phenotypically and Functionally Distinct from Murine NKT Cells 1. The Journal of Immunology, 171(4), 1775-1779. https://doi.org/10.4049/jimmunol.171.4.1775 11. Kenna, T., et al. (2004). Distinct subpopulations of γδ T cells are present in normal and tumor-bearing human liver. Clinical Immunology, 113(1), 56-63. https://doi.org/10.1016/j.clim.2004.05.003 12. Exley, M.A. and M.J. Koziel. (2004). To be or not to be NKT: Natural killer T cells in the liver. Hepatology, 40(5), 1033-1040. https://doi.org/10.1002/hep.20433 13. Chen, Y. and Z. Tian. (2021). Innate lymphocytes: pathogenesis and therapeutic targets of liver diseases and cancer. Cellular & Molecular Immunology, 18(1), 57-72. https://doi.org/10.1038/s41423-020-00561-z 14. Gorham, J.D., Adaptive Immunity in the Liver, in Liver Immunology: Principles and Practice, M.E. Gershwin, J.M. Vierling, and M.P. Manns, Editors. 2007, Humana Press: Totowa, NJ. p. 61-70. 15. Grivennikov, S.I., et al. (2005). Distinct and Nonredundant In Vivo Functions of TNF Produced by T Cells and Macrophages/Neutrophils. Immunity, 22(1), 93-104. https://doi.org/10.1016/j.immuni.2004.11.016 16. Hata, K., et al. (1990). Isolation, phenotyping, and functional analysis of lymphocytes from human liver. Clinical Immunology and Immunopathology, 56(3), 401-419. https://doi.org/10.1016/0090-1229(90)90160-R 17. Mieli-Vergani, G., et al. (2018). Autoimmune hepatitis. Nature Reviews Disease Primers, 4(1), 18017. https://doi.org/10.1038/nrdp.2018.17 18. Longhi, M.S., et al. (2012). Regulatory T cells in autoimmune hepatitis. Journal of Hepatology, 57(4), 932-933. https://doi.org/10.1016/j.jhep.2012.05.022 19. Longhi, M.S., et al. (2004). Impairment of CD4+CD25+ regulatory T-cells in autoimmune liver disease. Journal of Hepatology, 41(1), 31-37. https://doi.org/10.1016/j.jhep.2004.03.008 20. Longhi, M.S., et al. (2005). Effect of CD4+CD25+ regulatory T-cells on CD8 T-cell function in patients with autoimmune hepatitis. Journal of Autoimmunity, 25(1), 63-71. https://doi.org/10.1016/j.jaut.2005.05.001 21. Longhi, M.S., et al. (2006). Functional Study of CD4+CD25+ Regulatory T Cells in Health and Autoimmune Hepatitis1. The Journal of Immunology, 176(7), 4484-4491. https://doi.org/10.4049/jimmunol.176.7.4484 22. Toyonaga, T., et al. (1994). Chronic active hepatitis in transgenic mice expressing interferon-gamma in the liver. Proceedings of the National Academy of Sciences, 91(2), 614-618. https://doi.org/10.1073/pnas.91.2.614 23. Gorham, J.D., et al. (2001). Genetic Regulation of Autoimmune Disease: BALB/c Background TGF-β1-Deficient Mice Develop Necroinflammatory IFN-γ-Dependent Hepatitis1. The Journal of Immunology, 166(10), 6413-6422. https://doi.org/10.4049/jimmunol.166.10.6413 24. Hussain, M.J., et al. (1994). Cellular expression of tumour necrosis factor-α and interferon-γ in the liver biopsies of children with chronic liver disease. Journal of Hepatology, 21(5), 816-821. https://doi.org/10.1016/S0168-8278(94)80244-0 25. Mack, C.L., et al. (2020). Diagnosis and Management of Autoimmune Hepatitis in Adults and Children: 2019 Practice Guidance and Guidelines From the American Association for the Study of Liver Diseases. Hepatology, 72(2), 671-722. https://doi.org/10.1002/hep.31065 26. Kaplan, M.M. and M.E. Gershwin. (2005). Primary Biliary Cirrhosis. New England Journal of Medicine, 353(12), 1261-1273. https://doi.org/10.1056/nejmra043898 27. Parés, A. and J. Rodés. (2003). Natural history of primary biliary cirrhosis. Clinics in Liver Disease, 7(4), 779-794. https://doi.org/10.1016/S1089-3261(03)00100-4 28. Poupon, R., et al. (1999). Clinical and biochemical expression of the histopathological lesions of primary biliary cirrhosis. Journal of Hepatology, 30(3), 408-412. https://doi.org/10.1016/S0168-8278(99)80098-1 29. Moteki, S., et al. (1996). Epitope mapping and reactivity of autoantibodies to the E2 component of 2-oxoglutarate dehydrogenase complex in primary biliary cirrhosis using recombinant 2-oxoglutarate dehydrogenase complex. Hepatology, 23(3), 436-444. https://doi.org/10.1002/hep.510230307 30. Corpechot, C., et al. (2000). The effect of ursodeoxycholic acid therapy on liver fibrosis progression in primary biliary cirrhosis. Hepatology, 32(6), 1196-1199. https://doi.org/10.1053/jhep.2000.20240 31. Corpechot, C., et al. (2005). The effect of ursodeoxycholic acid therapy on the natural course of primary biliary cirrhosis. Gastroenterology, 128(2), 297-303. https://doi.org/10.1053/j.gastro.2004.11.009 32. Lan, R.Y., et al. (2006). Liver-targeted and peripheral blood alterations of regulatory T cells in primary biliary cirrhosis. Hepatology, 43(4), 729-737. https://doi.org/10.1002/hep.21123 33. Kita, H., et al. (2002). Quantitative and functional analysis of PDC-E2–specific autoreactive cytotoxic T lymphocytes in primary biliary cirrhosis. 109(9), 1231-1240. https://doi.org/10.1172/jci14698 34. Kikuchi, K., et al. (2005). Bacterial CpG induces hyper-IgM production in CD27<sup>+</sup> memory B cells in primary biliary cirrhosis. Gastroenterology, 128(2), 304-312. https://doi.org/10.1053/j.gastro.2004.11.005 35. Kita, H., et al. (2002). Quantitation and phenotypic analysis of natural killer T cells in primary biliary cirrhosis using a human CD1d tetramer. Gastroenterology, 123(4), 1031-1043. https://doi.org/10.1053/gast.2002.36020 36. Ueno, K.U., et al. (2019). THU-025-Pathway-analysis using datasets of GWAS and microarray identified IFNG as the most significant upstream-regulator in primary biliary cholangitis. Journal of Hepatology, 70(1, Supplement), e171. https://doi.org/10.1016/S0618-8278(19)30309-3 37. Bae, H.R., et al. (2016). Chronic expression of interferon-gamma leads to murine autoimmune cholangitis with a female predominance. Hepatology, 64(4), 1189-1201. https://doi.org/https://doi.org/10.1002/hep.28641 38. Syu, B.-J., et al. (2016). Dual Roles of IFN-γ and IL-4 in the Natural History of Murine Autoimmune Cholangitis: IL-30 and Implications for Precision Medicine. Scientific Reports, 6(1), 34884. https://doi.org/10.1038/srep34884 39. Jason and D. Masopust. (2014). Tissue-Resident Memory T Cells. Immunity, 41(6), 886-897. https://doi.org/10.1016/j.immuni.2014.12.007 40. Campbell, J.J., et al. (1998). Chemokines and the Arrest of Lymphocytes Rolling Under Flow Conditions. Science, 279(5349), 381-384. https://doi.org/10.1126/science.279.5349.381 41. Sallusto, F., et al. (1999). Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature, 401(6754), 708-712. https://doi.org/10.1038/44385 42. Sathaliyawala, T., et al. (2013). Distribution and Compartmentalization of Human Circulating and Tissue-Resident Memory T Cell Subsets. Immunity, 38(1), 187-197. https://doi.org/10.1016/j.immuni.2012.09.020 43. Mackay, L.K., et al. (2015). Cutting Edge: CD69 Interference with Sphingosine-1-Phosphate Receptor Function Regulates Peripheral T Cell Retention. The Journal of Immunology, 194(5), 2059-2063. https://doi.org/10.4049/jimmunol.1402256 44. Skon, C.N., et al. (2013). Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nature Immunology, 14(12), 1285-1293. https://doi.org/10.1038/ni.2745 45. Gebhardt, T., et al. (2011). Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature, 477(7363), 216-219. https://doi.org/10.1038/nature10339 46. Hombrink, P., et al. (2016). Programs for the persistence, vigilance and control of human CD8+ lung-resident memory T cells. Nature Immunology, 17(12), 1467-1478. https://doi.org/10.1038/ni.3589 47. Takamura, S., et al. (2016). Specific niches for lung-resident memory CD8+ T cells at the site of tissue regeneration enable CD69-independent maintenance. Journal of Experimental Medicine, 213(13), 3057-3073. https://doi.org/10.1084/jem.20160938 48. Hofmann, M. and H. Pircher. (2011). E-cadherin promotes accumulation of a unique memory CD8 T-cell population in murine salivary glands. Proceedings of the National Academy of Sciences, 108(40), 16741-16746. https://doi.org/10.1073/pnas.1107200108 49. Mackay, L.K., et al. (2013). The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin. Nature Immunology, 14(12), 1294-1301. https://doi.org/10.1038/ni.2744 50. Evrard, M., et al. (2022). Sphingosine 1-phosphate receptor 5 (S1PR5) regulates the peripheral retention of tissue-resident lymphocytes. Journal of Experimental Medicine, 219(1). https://doi.org/10.1084/jem.20210116 51. Mackay, L.K., et al. (2016). Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science, 352(6284), 459-463. https://doi.org/10.1126/science.aad2035 52. Kumar, B.V., et al. (2017). Human Tissue-Resident Memory T Cells Are Defined by Core Transcriptional and Functional Signatures in Lymphoid and Mucosal Sites. Cell Reports, 20(12), 2921-2934. https://doi.org/10.1016/j.celrep.2017.08.078 53. Warren, A., et al. (2006). T lymphocytes interact with hepatocytes through fenestrations in murine liver sinusoidal endothelial cells. Hepatology, 44(5), 1182-1190. https://doi.org/10.1002/hep.21378 54. McNamara, H.A., et al. (2017). Up-regulation of LFA-1 allows liver-resident memory T cells to patrol and remain in the hepatic sinusoids. Science Immunology, 2(9), eaaj1996. https://doi.org/10.1126/sciimmunol.aaj1996 55. Bertolino, P., et al. (2005). Early intrahepatic antigen-specific retention of naïve CD8+ T cells is predominantly ICAM-1/LFA-1 dependent in mice. Hepatology, 42(5), 1063-1071. https://doi.org/https://doi.org/10.1002/hep.20885 56. Eickmeier, I., et al. (2014). Influence of CD8 T cell priming in liver and gut on the enterohepatic circulation. Journal of Hepatology, 60(6), 1143-1150. https://doi.org/10.1016/j.jhep.2014.02.011 57. Booth, J.S., et al. (2014). Characterization and Functional Properties of Gastric Tissue-Resident Memory T Cells from Children, Adults, and the Elderly [Original Research]. Frontiers in Immunology, 5. https://doi.org/10.3389/fimmu.2014.00294 58. Stelma, F., et al. (2017). Human intrahepatic CD69 + CD8+ T cells have a tissue resident memory T cell phenotype with reduced cytolytic capacity. Scientific Reports, 7(1), 6172. https://doi.org/10.1038/s41598-017-06352-3 59. Pallett, L.J., et al. (2017). IL-2high tissue-resident T cells in the human liver: Sentinels for hepatotropic infection. Journal of Experimental Medicine, 214(6), 1567-1580. https://doi.org/10.1084/jem.20162115 60. Shoukry , N.H., et al. (2003). Memory CD8+ T Cells Are Required for Protection from Persistent Hepatitis C Virus Infection. Journal of Experimental Medicine, 197(12), 1645-1655. https://doi.org/10.1084/jem.20030239 61. Fernandez-Ruiz, D., et al. (2016). Liver-Resident Memory CD8+ T Cells Form a Front-Line Defense against Malaria Liver-Stage Infection. Immunity, 45(4), 889-902. https://doi.org/10.1016/j.immuni.2016.08.011 62. Kosaka, A., et al. (2007). AsialoGM1+CD8+ central memory-type T cells in unimmunized mice as novel immunomodulator of IFN-γ-dependent type 1 immunity. International Immunology, 19(3), 249-256. https://doi.org/10.1093/intimm/dxl140 63. Sung, C.-C., et al. (2021). Asialo GM1-positive liver-resident CD8 T cells that express CD44 and LFA-1 are essential for immune clearance of hepatitis B virus. Cellular & Molecular Immunology, 18(7), 1772-1782. https://doi.org/10.1038/s41423-020-0376-0 64. Tagawa, Y., K. Sekikawa, and Y. Iwakura. (1997). Suppression of concanavalin A-induced hepatitis in IFN-gamma(-/-) mice, but not in TNF-alpha(-/-) mice: role for IFN-gamma in activating apoptosis of hepatocytes. The Journal of Immunology, 159(3), 1418-1428. https://doi.org/10.4049/jimmunol.159.3.1418 65. Villegas-Mendez, A., et al. (2011). Heterogeneous and Tissue-Specific Regulation of Effector T Cell Responses by IFN-γ during Plasmodium berghei ANKA Infection. The Journal of Immunology, 187(6), 2885-2897. https://doi.org/10.4049/jimmunol.1100241 66. Nishikado, H., et al. (2011). NK Cell-Depleting Anti-Asialo GM1 Antibody Exhibits a Lethal Off-Target Effect on Basophils In Vivo. The Journal of Immunology, 186(10), 5766-5771. https://doi.org/10.4049/jimmunol.1100370 67. Borst, K., et al. (2020). Selective reconstitution of IFN‑γ gene function in Ncr1+ NK cells is sufficient to control systemic vaccinia virus infection. PLOS Pathogens, 16(2), e1008279. https://doi.org/10.1371/journal.ppat.1008279 68. Yu, K., et al. (2021). Decreased infiltration of CD4+ Th1 cells indicates a good response to ursodeoxycholic acid (UDCA) in primary biliary cholangitis. Pathology - Research and Practice, 217, 153291. https://doi.org/10.1016/j.prp.2020.153291 69. Yu, K.O.A., et al. (2005). Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of α-galactosylceramides. Proceedings of the National Academy of Sciences, 102(9), 3383-3388. https://doi.org/10.1073/pnas.0407488102 70. Chuang, Y.-H., et al. (2008). Natural killer T cells exacerbate liver injury in a transforming growth factor β receptor II dominant-negative mouse model of primary biliary cirrhosis. Hepatology, 47(2), 571-580. https://doi.org/10.1002/hep.22052 71. Ueda, N., et al. (2006). CD1d-restricted NKT cell activation enhanced homeostatic proliferation of CD8+ T cells in a manner dependent on IL-4. International Immunology, 18(9), 1397-1404. https://doi.org/10.1093/intimm/dxl073 72. Martin L. Moore, M.H.C., Kasia Goleniewska, Joan E. Durbin, and R. Stokes PeeblesJr. (2008). Differential Regulation of GM1 and Asialo-GM1 Expression by T Cells and Natural Killer (NK) Cells in Respiratory Syncytial Virus Infection. Viral Immunology, 21(3), 327-339. https://doi.org/10.1089/vim.2008.0003 73. Roggenbuck, D., et al. (2012). Asialoglycoprotein receptor (ASGPR): a peculiar target of liver-specific autoimmunity. Autoimmunity Highlights, 3(3), 119-125. https://doi.org/10.1007/s13317-012-0041-4 74. Hausdorf, G., et al. (2009). Autoantibodies to asialoglycoprotein receptor (ASGPR) measured by a novel ELISA—Revival of a disease-activity marker in autoimmune hepatitis. Clinica Chimica Acta, 408(1), 19-24. https://doi.org/10.1016/j.cca.2009.06.035 75. Löhr, H., et al. (1990). The human hepatic asialoglycoprotein receptor is a target antigen for liver-infiltrating T cells in autoimmune chronic active hepatitis and primary biliary cirrhosis. Hepatology, 12(6), 1314-1320. https://doi.org/10.1002/hep.1840120611 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90229 | - |
dc.description.abstract | 原發性膽汁性膽道炎是一種病程緩慢的自體免疫性肝炎,在病人可以檢測到血清中獨特的抗粒線體抗體、膽管受損以及肝纖維化等病徵。過去的研究顯示,T 細胞在原發性膽汁性膽道炎的發病機制中扮演著重要的角色,同時近期研究發現了一群具有組織駐留的記憶T細胞,對於非淋巴組織對抗病原體非常重要。我們實驗室過去發現利用無唾液酸神經節苷脂的抗體預處理可以抑制刀豆蛋白A誘導的急性肝炎與2-辛酸誘導的原發性膽汁性膽道炎。並且表現無唾液酸神經節苷脂之肝臟駐留CD8 T細胞在刀豆蛋白A誘導的急性肝炎早期活化並分泌促炎細胞素「干擾素γ」。然而,無唾液酸神經節苷脂之肝臟駐留CD8 T細胞如何影響原發性膽汁性膽道炎的早期疾病進展與致病機轉仍不清楚。本研究的結果證實,無唾液酸神經節苷脂的抗體預處理降低了小鼠血清抗粒線體抗體與干擾素γ的產生,降低干擾素γ與纖維化相關基因膠原蛋白(Collagen) I型、III型表現量,以及膽道周圍免疫細胞浸潤與纖維化的現象,顯示無唾液酸神經節苷脂的抗體預處理顯著抑制了2-辛酸誘導的原發性膽汁性膽道炎。由於過去研究認為表現無唾液酸神經節苷脂的細胞為自然殺手細胞 (natural killer cells, NK cells),因此我們利用先天性缺少NK細胞 的NFIL3 KO 小鼠排除 NK 細胞對於實驗可能的影響,發現其結果與野生型小鼠相似,顯示了有一群表現無唾液酸神經節苷脂的非NK 細胞參與著2-辛酸誘導的原發性膽汁性膽道炎。接著我們進一步分析表現無唾液酸神經節苷脂的細胞發現,在肝臟除了NK 細胞外還有一群表現無唾液酸神經節苷脂的CD8 T 細胞,證實了表現無唾液酸神經節苷脂之肝臟駐留CD8 T細胞對於原發性膽汁性膽道炎扮演著重要的角色。此外,我們發現發病後才給與無唾液酸神經節苷脂抗體無法有效改善病況,這意味著表現無唾液酸神經節苷脂之肝臟駐留CD8 T細胞參與了原發性膽汁性膽道炎的早期發病並影響疾病進展。為了探討這群肝臟駐留CD8 T細胞在原發性膽汁性膽道炎的致病機制,進一步使用流式細胞儀分析,我們發現2-辛酸誘導的原發性膽汁性膽道炎的小鼠發病初期可以看到干擾素γ的產生,並且在抗體預處理可以觀察到產生干擾素γ的細胞群明顯減少。最後,我們使用干擾素γ基因剃除小鼠(IFN-γ knockout mice)來以2-辛酸誘導的膽道炎,發現小鼠膽道周圍免疫細胞浸潤與纖維化的現象顯著改善,證明了表現無唾液酸神經節苷脂之肝臟駐留性CD8 T細胞透過分泌干擾素γ來引發自體免疫性膽道炎。 | zh_TW |
dc.description.abstract | Primary biliary cholangitis (PBC) is a form of slowly progressive autoimmune hepatitis characterized by a unique serology of antimitochondrial antibody (AMA), pathology of the bile ducts, and liver fibrosis. Previous studies demonstrated that T cells play an important role in the immunopathogenesis of PBC. Recent research has identifiedstudies have found a distinct T cell population known asconsisting of tissue-resident memory (TRM) cells, which are that is critical for nonlymphoid tissue defense against pathogens. In oOur laboratory, we previously discovered that pretreatment with anti-ASGM1 antibodies can inhibit acute hepatitis induced by Concanavalin A (ConA) and PBC induced by 2-octynoic acid (2-OA). Additionally, we found that liver-resident CD8 T cells expressing ASGM1 arewere found to be activated duringin the early stages of ConA-induced acute hepatitis and secrete the pro-inflammatory cytokine interferon-gamma (IFN-γ). However, the specific impact of ASGM1 liver-resident CD8 T cells on the early progression and pathogenesis of PBC has remaineds unclear. The results of this research confirm that pretreatment with anti-ASGM1 antibodies significantly reduces the production of anti-mitochondrial antibodies and IFN-γ in mouse serum. This reduction is associated with decreased expression of IFN-γ and fibrosis-related genes, such as collagen type I and III, as well as a reduction in immune cell infiltration and fibrosis in the bile duct area. These findings demonstrate that the effective inhibition of 2-OA-induced PBC by the administration of anti-ASGM1 antibodiesy effectively inhibits 2-OA induced PBC. Since previous research suggested that cells expressing ASGM1 are natural killer (NK) cells, we used NFIL3 knockout mice, which lack NK cells, to exclude any potential influence of NK cells on the experiment. Interestingly, the results obtained from NFIL3 KO mice were similar to those from wild-type mice, indicating the involvement of non-NK cells expressing ASGM1 in 2-OA-induced PBC. Furthermore, further analysis of ASGM1-expressing cells in the liver revealed the presence of CD8 T cells in addition to NK cells, . This confirmings the significant role played by ASGM1+ liver-resident CD8 T cells in the development of primary biliary cholangitis. Additionally, we observed that post-disease administration of anti-ASGM1 antibodies failed to effectively improve the condition, suggesting. This suggests that ASGM1+ liver-resident CD8 T cells are involved in the early onset of primary biliary cholangitis and influence disease progression. To investigate the pathogenic mechanisms of these liver-resident CD8 T cells in primary biliary cholangitis, we performed further analysis using flow cytometry was performed. We found an increase in IFN-γ productionthat during the initial stages of 2-OA-induced PBC in mice, there was an increase in IFN-γ production, which was significantly reduced withupon antibody pretreatment. Finally, we used IFN-γ knockout mice to induce cholangitis with 2-OA and observed a significant improvement in immune cell infiltration and fibrosis in the bile duct area. This confirms that ASGM1+ liver-resident CD8 T cells mediate 2-OA-induced cholangitis through the secretion of IFN-γ. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-24T16:06:51Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-24T16:06:51Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 中文摘要 1
Abstract 3 Contents 5 1. Background 7 1.1 Liver immunity 7 1.2 Autoimmune hepatitis 9 1.3 Primary biliary cholangitis (PBC) 10 1.4 Tissue-resident memory T cells (TRM) 12 1.5 Liver-resident memory T cells 14 2. Rationale and specific aims 16 3. Materials and Methods 18 3.1 Materials 18 3.1.1 Mice 18 3.1.2 Antibodies 18 3.1.3 Kits 20 3.1.4 List of primers 20 3.1.5 Chemicals and reagents 21 3.1.6 Buffer 22 3.2 Methods 24 3.2.1 Experimental protocol 24 3.2.2 Intrahepatic lymphocytes (IHLs) depletion in vivo 24 3.2.3 Serum autoantibodies and cytokine levels 24 3.2.4 Histopathology 25 3.2.5 Isolation of lymphocytes from spleen and liver 25 3.2.6 T cell culture and ex vivo activation 26 3.2.7 Flow Cytometry 27 3.2.8 Quantitative real-time PCR analysis 27 3.2.9 Statistical analysis 28 4. Results 29 4.1 Pre-treatment of anti-ASGM1 suppresses 2-OA-immunized primary biliary cholangitis in WT mice. 29 4.2 Anti-ASGM1 antibody pre-treatment suppresses the primary biliary cholangitis in NFIL3 KO mice in an NK cell-independent manner. 31 4.3 Anti-ASGM1 treatment after the onset of the 2-OA-immunized primary biliary cholangitis is ineffective in mice. 33 4.4 ASGM1+ CD8 T cells expressed IFN-γ to promote disease progression in the early stages of primary biliary cholangitis. 35 4.5 IFN-γ knockout mice exhibited suppressed disease activity in 2-OA-induced cholangitis compared to wild-type in mouse model. 36 5. Discussion 37 6. Figures 43 7. Reference 57 | - |
dc.language.iso | en | - |
dc.title | 表現無唾液酸神經節苷脂之肝臟駐留記憶性T細胞 在原發性膽汁性膽道炎發病中的致病機制 | zh_TW |
dc.title | The pathogenic mechanism of ASGM1 CD8 liver resident T cells in Primary Biliary Cholangitis development | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 朱清良;莊雅惠;楊宏志 | zh_TW |
dc.contributor.oralexamcommittee | Ching-Liang Chu;Ya-Hui Chuang;Hung-Chih Yang | en |
dc.subject.keyword | 自體免疫性膽道炎,無唾液酸神經節苷脂,CD8 T細胞,干擾素γ, | zh_TW |
dc.subject.keyword | autoimmune cholangitis,Asialo-GM1,CD8 T cell,Interferon-γ, | en |
dc.relation.page | 64 | - |
dc.identifier.doi | 10.6342/NTU202303381 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-08-08 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 免疫學研究所 | - |
顯示於系所單位: | 免疫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.35 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。