請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90224
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 謝明書 | zh_TW |
dc.contributor.advisor | Min-Shu Hsieh | en |
dc.contributor.author | 陳靖 | zh_TW |
dc.contributor.author | Chin Chen | en |
dc.date.accessioned | 2023-09-22T17:55:38Z | - |
dc.date.available | 2023-11-10 | - |
dc.date.copyright | 2023-09-22 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-08 | - |
dc.identifier.citation | Hu, Y., et al., Pulmonary Lymphoepithelioma-Like Carcinoma: A Mini-Review. Onco Targets Ther, 2020. 13: p. 3921-3929.
Bai, J., F. Zhao, and S. Pan, 2019. Sathirareuangchai, S. and K. Hirata, Pulmonary Lymphoepithelioma-like Carcinoma. Arch Pathol Lab Med, 2019. 143(8): p. 1027-1030. Tang, L., et al., The clinicopathological features and prognosis of primary pulmonary lymphoepithelioma-like carcinoma: A systematic review and meta-analysis. PLoS One, 2020. 15(10): p. e0240729. Weng, W., W. Sheng, and L. Wang, Human Papillomavirus-Associated Lymphoepithelioma-Like Carcinoma of the Anal Canal: A Case Report and Literature Review. Front Med (Lausanne), 2021. 8: p. 766960. Begin, L.R., et al., Epstein-Barr virus related lymphoepithelioma-like carcinoma of lung. J Surg Oncol, 1987. 36(4): p. 280-3. Nicholson, A.G., et al., The 2021 WHO Classification of Lung Tumors: Impact of Advances Since 2015. J Thorac Oncol, 2022. 17(3): p. 362-387. Chang, Y.L., et al., PD-L1 is highly expressed in lung lymphoepithelioma-like carcinoma: A potential rationale for immunotherapy. Lung Cancer, 2015. 88(3): p. 254-9. Pang, L.L., et al., Exploration of immunotherapy in advanced pulmonary lymphoepithelioma-like carcinoma. Int J Cancer, 2023. 152(11): p. 2338-2350. Zhong, Y.M., et al., PD-1/PD-L1 combined with LAG3 is associated with clinical activity of immune checkpoint inhibitors in metastatic primary pulmonary lymphoepithelioma-like carcinoma. Front Immunol, 2022. 13: p. 951817. Chau, S.L., et al., Distinct Molecular Landscape of Epstein-Barr Virus Associated Pulmonary Lymphoepithelioma-Like Carcinoma Revealed by Genomic Sequencing. Cancers (Basel), 2020. 12(8). Castro, C.Y., et al., Relationship between Epstein-Barr virus and lymphoepithelioma-like carcinoma of the lung: a clinicopathologic study of 6 cases and review of the literature. Hum Pathol, 2001. 32(8): p. 863-72. Lin, Z., et al., First-line platinum-based chemotherapy and survival outcomes in locally advanced or metastatic pulmonary lymphoepithelioma-like carcinoma. Lung Cancer, 2019. 137: p. 100-107. Ngan, R.K., et al., Clinical role of circulating Epstein-Barr virus DNA as a tumor marker in lymphoepithelioma-like carcinoma of the lung. Ann N Y Acad Sci, 2004. 1022: p. 263-70. Xie, M., et al., Clinical Significance of Plasma Epstein-Barr Virus DNA in Pulmonary Lymphoepithelioma-like Carcinoma (LELC) Patients. J Thorac Oncol, 2018. 13(2): p. 218-227. Kasai, K., et al., Case report of lymphoepithelioma-like carcinoma of the lung--lymphoid population consisting of cytotoxic T cells in resting state. Pathol Res Pract, 1999. 195(11): p. 773-9. Moreira, A.L., et al., A Grading System for Invasive Pulmonary Adenocarcinoma: A Proposal From the International Association for the Study of Lung Cancer Pathology Committee. J Thorac Oncol, 2020. 15(10): p. 1599-1610. Jia, M., et al., Spread Through Air Spaces (STAS) in Lung Cancer: A Multiple-Perspective and Update Review. Cancer Manag Res, 2020. 12: p. 2743-2752. Masuda, R., et al., Tumor budding is a significant indicator of a poor prognosis in lung squamous cell carcinoma patients. Mol Med Rep, 2012. 6(5): p. 937-43. Moon, S.W., et al., Clinical significance of tumor necrosis and viability in non-small cell lung cancer. J Thorac Dis, 2022. 14(4): p. 892-904. Okiror, L., et al., Prognostic factors including lymphovascular invasion on survival for resected non-small cell lung cancer. J Thorac Cardiovasc Surg, 2018. 156(2): p. 785-793. Yeh, Y.-C., et al., Epstein-Barr Virus–Associated Pulmonary Carcinoma: Proposing an Alternative Term and Expanding the Histologic Spectrum of Lymphoepithelioma-like Carcinoma of the Lung. The American Journal of Surgical Pathology, 2019. 43(2): p. 211-219. Chapel, D.B., et al., MTAP immunohistochemistry is an accurate and reproducible surrogate for CDKN2A fluorescence in situ hybridization in diagnosis of malignant pleural mesothelioma. Mod Pathol, 2020. 33(2): p. 245-254. Sasaki, S., et al., Correlation of MTAP Immunohistochemistry With CDKN2A Status Assessed by Fluorescence In Situ Hybridization and Clinicopathological Features in CNS WHO Grade 2 and 3 Meningiomas: A Single Center Cohort Study. J Neuropathol Exp Neurol, 2022. 81(2): p. 117-126. Paijens, S.T., et al., Tumor-infiltrating lymphocytes in the immunotherapy era. Cell Mol Immunol, 2021. 18(4): p. 842-859. Yu, P.C., et al., Association between density of tumor-infiltrating lymphocytes and prognoses of patients with gastric cancer. Medicine (Baltimore), 2018. 97(27): p. e11387. Yin, W., et al., Tumor-infiltrating lymphocytes-based subtypes and genomic characteristics of EBV-associated lymphoepithelioma-like carcinoma. J Pathol, 2022. 257(5): p. 650-662. Feng, H., et al., Prognostic Significance of Gene Signature of Tertiary Lymphoid Structures in Patients With Lung Adenocarcinoma. Front Oncol, 2021. 11: p. 693234. Masuda, R., et al., Lymphatic invasion is a significant indicator of poor patient prognosis in lung squamous cell carcinoma. Mol Med Rep, 2017. 15(4): p. 2067-2073. Tamiya, Y., et al., The impact of tertiary lymphoid structures on clinicopathological, genetic and gene expression characteristics in lung adenocarcinoma. Lung Cancer, 2022. 174: p. 125-132. Kadota, K., et al., Tumor Spread through Air Spaces is an Important Pattern of Invasion and Impacts the Frequency and Location of Recurrences after Limited Resection for Small Stage I Lung Adenocarcinomas. J Thorac Oncol, 2015. 10(5): p. 806-814. Schade, G.R., J.L. Wright, and D.W. Lin, Prognostic Significance of Positive Surgical Margins and Other Implications of Pathology Report, in Prostate Cancer. 2016. p. 295-306. Shah, K.K., B.S. Pritt, and M.P. Alexander, Histopathologic review of granulomatous inflammation. J Clin Tuberc Other Mycobact Dis, 2017. 7: p. 1-12. Lugli, A., et al., Tumour budding in solid cancers. Nat Rev Clin Oncol, 2021. 18(2): p. 101-115. Qian, L., et al., Potential key roles of tumour budding: a representative malignant pathological feature of non-small cell lung cancer and a sensitive indicator of prognosis. BMJ Open, 2022. 12(3): p. e054009. Cheng, Y.Y., et al., CDKN2A and MTAP Are Useful Biomarkers Detectable by Droplet Digital PCR in Malignant Pleural Mesothelioma: A Potential Alternative Method in Diagnosis Compared to Fluorescence In Situ Hybridisation. Front Oncol, 2020. 10: p. 579327. Tsang, C.M., et al., Cyclin D1 overexpression supports stable EBV infection in nasopharyngeal epithelial cells. Proc Natl Acad Sci U S A, 2012. 109(50): p. E3473-82. Appay, R., et al., Somatostatin receptor 2A protein expression characterizes anaplastic oligodendrogliomas with favorable outcome. Acta Neuropathol Commun, 2018. 6(1): p. 89. de Vries, L.H., et al., SSTR2A expression in medullary thyroid carcinoma is correlated with longer survival. Endocrine, 2018. 62(3): p. 639-647. Fodi, C., et al., The immunohistochemical expression of SSTR2A is an independent prognostic factor in meningioma. Neurosurg Rev, 2022. 45(4): p. 2671-2679. Han, S., et al., Somatostatin receptor 2 expression and clinical significance in pulmonary lymphoepithelioma-like carcinoma. Annals of Oncology, 2018. 29. Tao, L., et al., SSTR2a is constantly expressed in lymphoepithelioma-like carcinoma with squamous differentiation other than that with glandular differentiation. J Clin Pathol, 2021. 74(11): p. 704-708. Liu, W., et al., Loss of CDKN2A at chromosome 9 has a poor clinical prognosis and promotes lung cancer progression. Mol Genet Genomic Med, 2020. 8(12): p. e1521. Sargen, M.R., et al., Impact of Transcript (p16/p14ARF) Alteration on Cancer Risk in CDKN2A Germline Pathogenic Variant Carriers. JNCI Cancer Spectr, 2022. 6(6). Zhu, J., et al., The relationships between cyclin D1 expression and prognosis of non-small cell lung cancer. Zhongguo Fei Ai Za Zhi, 2010. 13(8): p. 803-8. Si, Y., et al., Anti-SSTR2 antibody-drug conjugate for neuroendocrine tumor therapy. Cancer Gene Ther, 2021. 28(7-8): p. 799-812. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90224 | - |
dc.description.abstract | 肺淋巴上皮癌是非小細胞肺癌的一種罕見亞型,主要在東南亞地區流行。從組織學上看,其具有未分化的腫瘤細胞,核為泡樣核、核仁明顯,通常伴隨著大量的淋巴細胞浸潤。此外,肺淋巴上皮癌常與人類第四型疱疹病毒(EBV)感染相關。由於這種疾病的罕見性和地區限制性,對於肺淋巴上皮癌的研究較少,其相關預後因子仍未清楚。本研究旨在通過分析各種潛在因素,包括臨床特徵 (年齡、性別、吸菸史、胸膜浸潤、腫瘤大小、腫瘤分期、手術方式)、組織病理特徵(腫瘤型態、腫瘤&淋巴球比值、TILs、TLS、STAS、肉芽腫、腫瘤壞死、淋巴管侵犯、腫瘤出芽)、以及免疫組織化學染色標記(甲基硫腺苷酸磷酸酶、D 型細胞週期素、生長抑制素受體2A、細胞程式死亡-配體1),來確定PLEC的有效預後因子。我們回顧了手術切除的I-III期肺淋巴上皮癌病例(n = 56)的腫瘤切片,並使用Kaplan-Meier方法進行生存分析,評估每個因子對總體生存(OS)和無復發生存期(RFS)的影響。
我們的結果顯示,幾個與OS相關的重要負面預後因素包括性別(p = 0.007)、吸煙史(p = 0.016)和STAS(p = 0.029)。對於RFS,顯著的負面預後因素包括胸膜浸潤(p = 0.003)、腫瘤大小(p = 0.026)、分期(p = 0.001)、STAS(p = 0.040)和淋巴管侵犯(p = 0.002)。為了進一步驗證我們的結果,我們分別對OS和PFS進行了多變量Cox回歸分析。多變量Cox回歸模型顯示,所有分析的因素在OS方面都沒有顯著相關。然而,STAS和分期(III期相對於I期)在PFS方面被證明是獨立的預後因素,其風險比率分別為3.748(p = 0.036)和10.631(p = 0.007)。 基於在本研究中發現STAS和PFS之間的顯著相關性,我們針對肺淋巴上皮癌提出了一個新的分級系統,該系統基於腫瘤邊界和腫瘤是否表現STAS來進行分級。根據這個以腫瘤邊界型態(tumor border pattern, TBP)的分級系統,腫瘤被分為三個等級:TBP1級腫瘤(15例,26.8%)具有明確完整的腫瘤邊界;TBP2級腫瘤(23例,41.1%)具有棘刺狀邊界但沒有STAS;TBP3級腫瘤(18例,32.1%)具有棘刺狀邊界和STAS。這個分級系統顯示出顯著的預後價值,如每個分級觀察到的PFS率有顯著的差異 (p = 0.036):TBP1腫瘤為92.9%,TBP2腫瘤為65.7%,TBP3腫瘤為45.0%。 總結來說,我們的研究表明STAS和腫瘤分期(III期相對於I期)作為肺淋巴上皮癌PFS的獨立預後因素。此外,基於腫瘤邊界和STAS新提出的腫瘤邊界型態(tumor border pattern, TBP)的三級分級系統顯示出顯著的預後價值,為肺淋巴上皮癌的臨床決策提供了有價值的信息。 | zh_TW |
dc.description.abstract | Pulmonary lymphoepithelial carcinoma (PLEC) is a rare subtype of non-small cell lung cancer (NSCLC) primarily prevalent in Southeast Asia. Histologically, PLEC is characterized by undifferentiated tumor cells with vesicular nuclei and prominent nucleoli, often accompanied by extensive lymphocyte infiltration. Additionally, PLEC is commonly associated with Epstein-Barr virus (EBV) infection. Given the rarity of the disease and regional limitations, there are limited studies on PLEC, and prognostic factors of PLEC have still remained unclear. In this study, we aimed to identify prognostic factors for PLEC by analyzing various factors, including clinical characteristics (age, gender, smoking history, pleural invasion, tumor size, stage, surgical method), histopathological features (tumor pattern, T: L, TILs, TLS, STAS, granuloma, tumor necrosis, LVI, tumor budding), and immunohistochemical (IHC) markers (MTAP, cyclin D1, SSTR2A, PD-L1). We retrospectively reviewed tumor slides from surgically resected stage I-III PLEC cases (n=56) and conducted survival analysis using Kaplan-Meier method to assess overall survival (OS) and recurrence-free survival (RFS) to find out prognostic factors of PLEC.
Our results revealed several factors significantly associated with shorter OS, including gender (p = 0.007), smoking history (p = 0.016), and STAS (p = 0.029). For RFS, significant negative prognostic factors included pleural invasion (p = 0.003), tumor size (p = 0.026), stage (p = 0.001), STAS (p = 0.040), and LVI (p = 0.002). To further validate our findings and exclude confounding factors, we performed multivariate Cox regression analysis separately for OS and PFS. The multivariable Cox regression model revealed that none of the analyzed factors were significantly associated with OS. However, STAS and stage (stage III vs stage I) emerged as independent prognostic factors for RFS, with hazard ratios of 3.748 (p = 0.036) and 10.631 (p = 0.007), respectively. Based on the significant association between STAS and RFS, we proposed a novel 3-tier grading system for PLEC that based on tumor border and the presence of STAS. According to this grading system, tumors were classified into three grades according to their tumor border patterns (TBP): TBP1 tumor (15, 26.8%) with well-defined tumor borders, TBP2 tumor (23, 41.1%) with spiculated borders without STAS, and TBP3 tumor (18, 32.1%) with spiculated borders and STAS. This grading system demonstrated significant prognostic value, as evidenced by the RFS rates observed in each tier: 92.9% for TBP1 tumors, 65.7% for TBP2 tumors, and 45.0% for TBP3 tumors. In conclusion, our study identified STAS and stage (stage III vs stage I) were independent prognostic factors for RFS in PLEC. Additionally, the newly proposed 3-tier TBP grading system showed significant prognostic value, providing valuable information for clinical decision-making in PLEC. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:55:38Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-22T17:55:38Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract v Content viii Chapter 1 Introduction 1 Chapter 2 Material and methods 4 2.1.1 Patient cohort 4 2.1.2 Candidates of prognostic factors 4 2.2.1 Histologic evaluation of tumor pattern 5 2.2.2 Histologic evaluation of tumor area : lymphocytic area (T: L) 6 2.2.3 Histologic evaluation of tumor-infiltrating lymphocytes (TILs) 7 2.2.4 Histologic evaluation of tertiary lymphoid structures (TLS) 8 2.2.5 Histologic evaluation of spread through air spaces (STAS) 8 2.2.6 Histologic evaluation of lymphovascular invasion (LVI) 9 2.2.7 Histologic evaluation of tumor necrosis 10 2.2.8 Histologic evaluation of granulomatous inflammation 10 2.2.9 Histologic evaluation of tumor budding 11 2.3.1 Immunohistochemical staining of Methylthioadenosine phosphorylase (MTAP) 12 2.3.2 Immunohistochemical staining of cyclin D1 13 2.3.3 Immunohistochemical staining of somatostatin receptor 2A (SSTR2A) 14 2.3.4 Immunohistochemical staining of programmed cell death-ligand (PD-L1) 15 2.3.5 In situ hybridization of Epstein-Barr virus-encoded small RNAs (EBERs) 15 2.4.1 Statistical analysis 16 Chapter 3 Results 17 3.1.1 Patients’ characteristics 17 3.2.1 Univariate analysis of each selected factor 19 3.2.2 Multivariable cox regression model of potential factors 19 3.3.1 Proposing a new grading system for PLEC based on tumor borders and STAS 19 3.3.2 High grade tumor border pattern (TBP) was more commonly observed in cases with larger tumor size (> 3cm), higher lymphocytic area proportion LVI, tumor necrosis, and the deletion of MTAP 20 Chapter 4 Discussion 21 Chapter 5 Figures and tables 29 5.1.1 Figure 1. Three different histologic patterns of pulmonary lymphoepithelial carcinoma (PLEC) 29 5.2.1 Figure 2. Three different groups of the tumor area (T) to the lymphocytic area (L) ratio 30 5.3.1 Figure 3. The different proportions of tumor-infiltrating lymphocytes (TILs) were present in the two groups 31 5.4.1 Figure 4. The presence of tertiary lymphoid structures (TLS) in pulmonary lymphoepithelial carcinoma (PLEC) 32 5.5.1 Figure 5. Spread through air spaces (STAS) of pulmonary lymphoepithelial carcinoma (PLEC) 33 5.6.1 Figure 6. Candidates of hsitologic prognostic factors in pulmonary lymphoepithelial carcinoma (PLEC) 34 5.7.1 Figure 7. Pulmonary lymphoepithelial carcinoma (PLEC) with different Methylthioadenosine phosphorylase (MTAP) staining results 35 5.8.1 Figure 8. Pulmonary lymphoepithelial carcinoma (PLEC) with different cyclin D1 staining results 36 5.9.1 Figure 9. Pulmonary lymphoepithelial carcinoma (PLEC) with different somatostatin receptor 2A (SSTR2A) staining results 37 5.10.1 Figure 10. Pulmonary lymphoepithelial carcinoma (PLEC) with different programmed cell death-ligand 1 (PD-L1) staining results 38 5.11.1 Figure 11. Pulmonary lymphoepithelial carcinoma (PLEC) with different .programmed cell death-ligand 1 (PD-L1) distribution in tumor cell (TC) and immune cell (IC) 39 5.12.1 Figure 12. Kaplan-Meier curves of overall survival (OS) 40 5.13.1 Figure 13. Kaplan-Meier curves of recurrence-free survival (RFS) 41 5.14.1 Figure 14. Kaplan-Meier curves of tumor border 42 5.15.1 Figure 15. A new grading system for pulmonary lymphoepithelial carcinoma (PLEC) based on tumor border patterns (TBP) 43 5.16.1 Figure 16. Overall survival (OS) curves and recurrence-free survival (RFS) curves of the new grading system for pulmonary lymphoepithelial carcinoma (PLEC) based on tumor border patterns (TBP) 44 5.17.1 Table.1 Patient characteristics and Univariate analysis of each factor 46 5.18.1 Table 2. Multivariate cox regression model of overall survival (OS) 50 5.19.1 Table 3. Multivariate cox regression model of recurrence-free survival (PFS) 51 5.20.1 Table 4. Multivariate cox regression model of TBP recurrence-free survival (RFS) 52 5.21.1 Table 5. Chi-square test between the new grading system of pulmonary lymphoepithelial carcinoma (PLEC) and each factor 53 Chapter 6 Reference 57 | - |
dc.language.iso | en | - |
dc.title | 肺淋巴上皮癌的預後因子及預測腫瘤復發風險的新分級系統 | zh_TW |
dc.title | Biomarkers of pulmonary lymphoepithelial carcinoma and a new grading system predicting risk of tumor recurrence | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 鄭永銘;林孟暐 | zh_TW |
dc.contributor.oralexamcommittee | Yung-Ming Jeng;Mong-Wei Lin | en |
dc.subject.keyword | 肺淋巴上皮癌,預後因子,STAS,腫瘤邊界型態, | zh_TW |
dc.subject.keyword | pulmonary lymphoepithelial carcinoma,prognostic factor,spread through air spaces (STAS),tumor border,new grading system, | en |
dc.relation.page | 60 | - |
dc.identifier.doi | 10.6342/NTU202303165 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-08-09 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 病理學研究所 | - |
顯示於系所單位: | 病理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 12.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。