Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90214
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林軒田zh_TW
dc.contributor.advisorHsuan-Tien Linen
dc.contributor.author周寬zh_TW
dc.contributor.authorOscar Chew Kuanen
dc.date.accessioned2023-09-22T17:53:12Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation[1] P. Bansal and A. Sharma. Controlling learned effects to reduce spurious correlations in text classifiers, 2023.
[2] D. Borkan, L. Dixon, J. Sorensen, N. Thain, and L. Vasserman. Nuanced metrics for measuring unintended bias with real data for text classification, 2019.
[3] C. Clark, M. Yatskar, and L. Zettlemoyer. Don’t take the easy way out: Ensemble based methods for avoiding known dataset biases. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4069–4082, Hong Kong, China, Nov. 2019. Association for Computational Linguistics.
[4] C. Clark, M. Yatskar, and L. Zettlemoyer. Learning to model and ignore dataset bias with mixed capacity ensembles. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 3031–3045, Online, Nov. 2020. Association for Computational Linguistics.
[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.
[6] D. Friedman, A. Wettig, and D. Chen. Finding dataset shortcuts with grammar induction. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 4345–4363, Abu Dhabi, United Arab Emirates, Dec. 2022. Association for Computational Linguistics.
[7] M. Gardner, W. Merrill, J. Dodge, M. Peters, A. Ross, S. Singh, and N. A. Smith. Competency problems: On finding and removing artifacts in language data. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 1801–1813, Online and Punta Cana, Dominican Republic, Nov. 2021. Association for Computational Linguistics.
[8] M. Glockner, V. Shwartz, and Y. Goldberg. Breaking NLI systems with sentences that require simple lexical inferences. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 650–655, Melbourne, Australia, July 2018. Association for Computational Linguistics.
[9] S. Gururangan, S. Swayamdipta, O. Levy, R. Schwartz, S. Bowman, and N. A. Smith. Annotation artifacts in natural language inference data. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 107–112, New Orleans, Louisiana, June 2018. Association for Computational Linguistics.
[10] H. He, S. Zha, and H. Wang. Unlearn dataset bias in natural language inference by fitting the residual. In Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo 2019), pages 132–142, Hong Kong, China, Nov.2019. Association for Computational Linguistics.
[11] C. Herlihy and R. Rudinger. MedNLI is not immune: Natural language inference artifacts in the clinical domain. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 1020–1027, Online, Aug. 2021. Association for Computational Linguistics.
[12] J. Hu, S. Ruder, A. Siddhant, G. Neubig, O. Firat, and M. Johnson. XTREME: A massively multilingual multi-task benchmark for evaluating cross-lingual generalisation. In H. D. III and A. Singh, editors, Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages 4411–4421. PMLR, 13–18 Jul 2020.
[13] N. Joshi, X. Pan, and H. He. Are all spurious features in natural language alike? an analysis through a causal lens. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 9804–9817, Abu Dhabi, United Arab Emirates, Dec. 2022. Association for Computational Linguistics.
[14] P. Kirichenko, P. Izmailov, and A. G. Wilson. Last layer re-training is sufficient for robustness to spurious correlations. In The Eleventh International Conference on Learning Representations, 2023.
[15] X. Liu, K. Ji, Y. Fu, W. Tam, Z. Du, Z. Yang, and J. Tang. P-tuning: Prompt tuning can be comparable to fine-tuning across scales and tasks. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 61–68, Dublin, Ireland, May 2022. Association for Computational Linguistics.
[16] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach, 2019.
[17] A. Liusie, V. Raina, V. Raina, and M. Gales. Analyzing biases to spurious correlations in text classification tasks. In Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 78–84, Online only, Nov. 2022. Association for Computational Linguistics.
[18] J. M. Ludan, Y. Meng, T. Nguyen, S. Shah, Q. Lyu, M. Apidianaki, and C. Callison Burch. Explanation-based finetuning makes models more robust to spurious cues, 2023.
[19] T. McCoy, E. Pavlick, and T. Linzen. Right for the wrong reasons: Diagnosing syntactic heuristics in natural language inference. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3428–3448, Florence, Italy, July 2019. Association for Computational Linguistics.
[20] R. Sharma, J. Allen, O. Bakhshandeh, and N. Mostafazadeh. Tackling the story ending biases in the story cloze test. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 752–757, Melbourne, Australia, July 2018. Association for Computational Linguistics.
[21] C. Si, D. Friedman, N. Joshi, S. Feng, D. Chen, and H. He. What spurious features can pretrained language models combat?, 2023.
[22] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1631–1642, Seattle, Washington, USA, Oct. 2013. Association for Computational Linguistics.
[23] L. Tu, G. Lalwani, S. Gella, and H. He. An empirical study on robustness to spurious correlations using pre-trained language models. Transactions of the Association for Computational Linguistics, 8:621–633, 2020.
[24] P. A. Utama, N. S. Moosavi, and I. Gurevych. Mind the trade-off: Debiasing NLU models without degrading the in-distribution performance. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 8717–8729, Online, July 2020. Association for Computational Linguistics.
[25] A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill, O. Levy, and S. Bowman. Superglue: A stickier benchmark for general-purpose language understanding systems. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.
[26] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. Bowman. GLUE: A multi-task benchmark and analysis platform for natural language understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 353–355, Brussels, Belgium, Nov. 2018. Association for Computational Linguistics.
[27] T. Wang, R. Sridhar, D. Yang, and X. Wang. Identifying and mitigating spurious correlations for improving robustness in NLP models. In Findings of the Association for Computational Linguistics: NAACL 2022, pages 1719–1729, Seattle, United States, July 2022. Association for Computational Linguistics.
[28] Z. Wang and A. Culotta. Identifying spurious correlations for robust text classification. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 3431–3440, Online, Nov. 2020. Association for Computational Linguistics.
[29] R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi. HellaSwag: Can a machine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4791–4800, Florence, Italy, July 2019. Association for Computational Linguistics.
[30] X. Zhang and Y. LeCun. Which encoding is the best for text classification in chinese, english, japanese and korean? CoRR, abs/1708.02657, 2017.
[31] J. Zhao, X. Wang, Y. Qin, J. Chen, and K.-W. Chang. Investigating ensemble methods for model robustness improvement of text classifiers. In Findings of the Association for Computational Linguistics: EMNLP 2022, pages 1634–1640, Abu Dhabi, United Arab Emirates, Dec. 2022. Association for Computational Linguistics.
[32] Y. Zheng, J. Zhou, Y. Qian, M. Ding, C. Liao, L. Jian, R. Salakhutdinov, J. Tang, S. Ruder, and Z. Yang. FewNLU: Benchmarking state-of-the-art methods for few-shot natural language understanding. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 501–516, Dublin, Ireland, May 2022. Association for Computational Linguistics.
[33] C. Zhou, X. Ma, P. Michel, and G. Neubig. Examining and combating spurious features under distribution shift. In M. Meila and T. Zhang, editors, Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 12857–12867. PMLR, 18–24 Jul 2021.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90214-
dc.description.abstract過去的研究發現深度學習模型會利用訓練資料中的虛假關係來得到看似良好的表現。例如在文本分類任務中,模型可能錯誤地學習到“performances”與正面的評價相關,然而這樣的關聯在一般情況下並不成立。依賴這樣的虛假關係的模型在面對真實世界的數據集時便會出現大幅的性能下降。在本文中,我們從一個新的角度出發,利用鄰域分析來研究深度學習模型是如何學習到這些虛假關係。以上分析揭示了訓練集中導致於語意上與標籤不相關的詞嵌入被模型錯誤地與那些與標籤有關的詞嵌入聚集起來,使得模型無法分辨哪些是與標籤有關的詞嵌入。在這個分析的基礎上,我們設計了一個檢測虛假關係的指標,並提出了一系列正則化方法,稱為NFL (doN't Forget your Language),以避免模型學到文本分類任務中的虛假關係。實驗證明NFL能夠有效地防止錯誤的聚類,並顯著提高模型的穩健性。zh_TW
dc.description.abstractRecent research has revealed that deep learning models have a tendency to leverage spurious correlations that exist in the training set but may not hold true in general circumstances. For instance, a sentiment classifier may erroneously learn that the token "performance" is commonly associated with positive movie reviews. Relying on these spurious correlations degrades the classifier’s performance when it deploys on out-of-distribution data. In this paper, we examine the implications of spurious correlations through a novel perspective called neighborhood analysis. The analysis uncovers how spurious correlations lead unrelated words to erroneously cluster together in the embedding space. Driven by the analysis, we design a metric to detect spurious tokens and also propose a family of regularization methods, NFL (don't Forget your Language) to mitigate spurious correlations in text classification. Experiments show that NFL can effectively prevent erroneous clusters and significantly improve the robustness of classifiers.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:53:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:53:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 iii
Abstract iv
Contents v
List of Figures vii
List of Tables viii
Denotation ix
Chapter 1 Introduction 1
Chapter 2 Problem Formulation 4
2.1 Spurious Correlations in Text Classification 4
Chapter 3 Neighborhood Analysis 5
3.1 Experiment Setup 5
3.2 Analysis Framework Based on the Nearest Neighbors 7
Chapter 4 Mitigating Spurious Correlations 10
4.1 DoN’t Forget your Langauge 10
4.2 Spurious Score 12
4.3 Robust Accuracy 13
4.4 Comparison Between Pre-trained Language Models 13
Chapter 5 Naturally Occuring Spurious Correlation 15
5.1 Dataset 15
5.2 Neighborhood Analysis of Naturally Occuring Spurious Correlations 16
5.3 Detecting Spurious Tokens 16
Chapter 6 Related Work 18
6.1 Mitigating spurious correlations 18
6.2 Model-based detection of spurious tokens 19
Chapter 7 Conclusion 20
Chapter 8 Limitation 21
References 22
Appendix A — Training details 29
Appendix B — Weights of regularization terms 30
-
dc.language.isoen-
dc.subject深度學習zh_TW
dc.subject詞嵌入zh_TW
dc.subject自然語言zh_TW
dc.subject文本分類zh_TW
dc.subject虛假關係zh_TW
dc.subjectNatural Language Processingen
dc.subjectWord Embeddingsen
dc.subjectText Classificationen
dc.subjectDeep Learningen
dc.subjectSpurious Correlationen
dc.title剖析文本分類任務中的虛假關係zh_TW
dc.titleUnderstanding and Mitigating Spurious Correlations in Text Classificationen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳縕儂;林守德;孫紹華zh_TW
dc.contributor.oralexamcommitteeYun-Nung Chen;Shou-De Lin;Shao-Hua Sunen
dc.subject.keyword深度學習,自然語言,詞嵌入,文本分類,虛假關係,zh_TW
dc.subject.keywordDeep Learning,Natural Language Processing,Word Embeddings,Text Classification,Spurious Correlation,en
dc.relation.page31-
dc.identifier.doi10.6342/NTU202303731-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-10-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf976.66 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved