Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90212
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor林國峰zh_TW
dc.contributor.advisorGwo-Fong Linen
dc.contributor.author莊浥岫zh_TW
dc.contributor.authorI-HSIU CHUANGen
dc.date.accessioned2023-09-22T17:52:43Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-10-
dc.identifier.citation1. Aksoy, H., Unal, N., Eris, E., Yuce, M. (2013). Stochastic Modeling of Lake van Water Level Time Series with Jumps and Multiple Trends. Hydrology & Earth System Sciences Discussions, 10(2). https://doi.org/10.5194/hess-17-2297-2013
2. Bai, P., Liu, X.M., Xie, J.X. (2021). Simulating runoff under changing climatic conditions: A comparison of the long short-term memory network with two conceptual hydrologic models. Journal of Hydrology, 592(1), 125779. https://doi.org/10.1016/j.jhydrol.2020.125779
3. Byeon, W., Breuel, T.M., Raue, F., Liwicki, M. (2015). Scene labeling with LSTM recurrent neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 3547-3555.
4. Dikshit, A., Pradhan, B., Alamri, A.M. (2021). Long Lead Time Drought Forecasting Using Lagged Climate Variables and a Stacked Long Short-Term Memory Model. Science of The Total Environment, 755(2), 142638. https://doi.org/10.1016/j.scitotenv.2020.142638
5. Fang, Z., Wang, Y., Peng, L., Hong, H. (2020). Predicting flood susceptibility using long short-term memory (LSTM) neural network model. Journal of Hydrology, 594, 125734. https://doi.org/10.1016/j.jhydrol.2020.125734
6. Gao, S., Zhang, S., Huang, Y., Han, J., Luo, H., Zhang, Y., Wang, G. (2020). A New Seq2seq Architecture for Hourly Runoff Prediction Using Historical Rainfall and Runoff as Input. Journal of Hydrology, 612, 128099. https://doi.org/10.1016/j.jhydrol.2022.128099
7. Graves, A., Jaitly, N., Mohamed, A.R. (2013). Hybrid Speech Recognition with Deep Bidirectional LSTM. In Proc. IEEE Workshop Autom. Speech Recognit. Understand, 273-278.
8. Han, D., Chan, L., Zhu, N. (2007). Flood forecasting using support vector machines. Journal of Hydroinformatics, 9 (4), 267–276. https://doi.org/10.2166/hydro.2007.027
9. Hu, D.(2019). An introductory survey on attention mechanisms in nlp problems. In Proc. SAI Intelligent Systems Conference, 432–448.
Jeong, J., Park, E. (2019). Comparative Applications of Data-Driven Models Representing Water Table Fluctuations. Journal of Hydrology, 572, 261–273. https://doi.org/10.1016/j.jhydrol.2019.02.051
10. Yin, J., Deng, Z., Ines, A.V.M., Wu, J., Rasu, E. (2020). Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM). Agricultural Water Management, 242, 106386. https://doi.org/10.1016/j.agwat.2020.106386
11. Cho, K., Merriënboer, B.V., Gülçehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y., (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. In Proc. of the Conference on Empirical Methods in Natural Language Processing (EMNLP), 1724-1734. https://doi.org/10.48550/arXiv.1406.1078
12. Kebede, S., Travi, Y., Alemayehu, T., Marc, V. (2006). Water balance of lake tana and its sensitivity to fluctuations in rainfall, Blue Nile basin, Ethiopia. Journal of Hydrology, 316 (1–4), 233–247. https://doi.org/10.1016/j.jhydrol.2005.05.011
13. Khan, M.S., Coulibaly, P. (2006). Application of support vector machine in lake water level prediction. Journal of Hydrologic Engineering, 11(3), 199–205.
14. Lee, T., Shin, J.Y., Kim, J.S., Singh, V.P., (2020). Stochastic simulation on reproducing longterm memory of hydroclimatological variables using deep learning model. Journal of Hydrology, 582. https://doi.org/10.1016/j.jhydrol.2019.124540.
15. Fischer, P., Öhl, U., (2005). Effects of water-level fluctuations on the littoral benthic fish community in lakes: a mesocosm experiment. Behavioral Ecology, 16 (4), 741–746. https://doi.org/10.1093/beheco/ari047
16. Souhaib, T.B., Rob, H. (2012). Recursive and Direct Multi-Step Forecasting: The Best of Both Worlds. International Journal of Forecasting, 19.
17. Stefenon, S.F., Seman, L.O., Aquino, L.S., Coelho, L.S. (2023). Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants. Energy, 274, 127350. https://doi.org/10.1016/j.energy.2023.127350
18. Graves, A., Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks 18(5-6), 602–610. https://doi.org/10.1016/j.neunet.2005.06.042
19. Xin, L., Recuter, G., Larochelle, B. (1997). Reflectivity-rain rate relationship for convective rainshowers in Edmonton. Journal of Atmosphere-Ocean, 35, 513-521. https://doi.org/10.1080/07055900.1997.9649602
20. Zhang, J., Howard, K., Langston, C., Vasiloff, S., Kaney, B., Arthur, A., Cooten, S.V., Kelleher, K., Kitzmiller, D., Ding, F., Seo, D.J., Wells, E., Dempsey, C. (2011). National mosaic and multi-sensor QPE (NMQ) system. Bulletin of the American Meteorological Society, 92(10), 1321–1338. https://doi.org/10.1175/2011BAMS-D-11-00047.1
21. Palani, S., Liong, S.Y., Tkalich, P. (2008). An ANN application for water quality forecasting. Marine Pollution Bulletin, 56(9), 1586–1597.
22. Wu, W., Dandy, G.C., Maier, H.R. (2014). Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling. Environmental Modelling & Software, 54,108–127.
23. Luo, W., Zhu, S., Wu, S., Dai, J. (2019). Comparing artificial intelligence techniques for chlorophyll-a prediction in US lakes. Environmental Science and Pollution Research, 26(29), 30524–30532.
24. Lin, G.F., Wang, T.C., Chen, L.H. (2016). A forecasting approach combining self-organizing map with support vector regression for reservoir inflow during typhoon periods. Advances in Meteorology, 2016. https://doi.org/10.1155/2016/7575126
25. 石廣琪(2020)。混合式人工智慧於水庫入流量預報。國立臺灣大學工學院土木工程學系碩士論文。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90212-
dc.description.abstract近年來短延時降雨頻率和強度增加,而水庫常採用高水操作,導致水庫及下游河岸預警系統應變時間縮短。現行的水位預報時間僅未來6小時,若在傍晚水位逼近警戒值,主管機關無法決策河川堤防橫移門內是否移車,導致作業困難。本研究提出一長延時水庫下游水位預報模式,提供下游水位預報給防災單位參考。
本研究以台北橋水位作為預報目標,蒐集2014年至2021年之颱風和暴雨事件資料。台北橋上游集水區降雨量、石門水庫放水量、石門水庫入流量和翡翠水庫放水量和淡水河口潮位作為模式之備選因子。以四種人工智慧 (Artificial intelligence, AI)方法:支援向量機 (Support vector machine, SVM)、長短期記憶網路 (Long Short-Term Memory, LSTM)、雙向長短期記憶網路 (Bidirectional Long Short-Term Memory, BiLSTM)及序列到序列 (Sequence-to-Sequence, Seq2Seq),預報未來1小時水位,並以網格搜尋法篩選出各因子之輸入步長和各模式之超參數。為達到長延時預報,將四種模式分別搭配多步階預報,建立長延時水位預報模式,採用評鑑指標評估模式表現。結果顯示Seq2Seq預報模式能準確預報至未來24小時,其CC值皆大於0.9,最高可達0.98,RMSE值於0.16 公尺至0.33 公尺之間,MAE值皆小於0.3公尺,而CE值大部分達0.85。
為驗證本研究預報模式於實際應用之可行性,採上述最佳模式Seq2Seq,介接氣象局定量降水預報,以及經入流量預報轉換之出流量預報,以多步階預報產出未來24小時之台北橋水位預報。結果顯示本研究所提出之水位預報模式介接雨量預報和出流量預報後,以預報未來12小時水位最符合預警的應用;模式能提供準確之長延時預報,其CC值皆大於0.94,最高可達0.97,RMSE值於0.17 公尺至0.32 公尺之間,MAE值皆小於0.3公尺,而CE值最高達0.89。
本研究提出之Seq2Seq預報模式,在後續的實際應用,搭配即時定量降水預報和警戒水位,可提供未來12小時準確的警戒時段以及最大峰值到達時間,大幅提升即時水位預警系統之準確度。能更有效地操作橫移門和疏散門,以利大台北地區能夠於警戒水位前提早疏散附近民眾及停駐於高灘地的車輛,降低損失生命財產的風險。
zh_TW
dc.description.abstractThe response time for the early warning system of reservoirs and downstream riverbanks has been shortened due to higher frequency and greater intensity of short-duration rainfall events in recent years. The existing water level forecasting methods are limited to 6-hour ahead forecasts. Therefore, this study proposes a long-term water level forecasting model for downstream areas.
In this study, the water level of Taipei Bridge has been chosen as the target variable. Data from typhoon and storm events between 2014 and 2021 have been collected. The dataset includes various factors such as precipitation in the upstream watershed of Taipei Bridge, outflow discharge of Shimen Reservoir, inflow discharge of Shimen Reservoir, outflow discharge of Feitsui Reservoir, and tidal measurements at the Tamsui River estuary. . Subsequently, this study uses four artificial intelligence methods, namely Support Vector Machine (SVM), Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (BiLSTM), and Sequence-to-Sequence (Seq2Seq), for predicting 1-hour-ahead water levels. The grid search method is employed to determine the optimal input step size for each factor and to tune the hyperparameters of each model.
In order to achieve long-term forecasting, the four models are combined with multi-step forecasting to establish long-term water level forecasting models, and the evaluation indexes are used to evaluate the model performance. The results demonstrate that the Seq2Seq model outperforms the other models, accurately forecasting the water levels for the next 24 hours, with correlation coefficient (CC) exceeding 0.9 (up to 0.984), root mean square error (RMSE) ranging from 0.161 m to 0.332 m, mean absolute error (MAE) below 0.3 meters, and coefficient of efficiency (CE) reach 0.85. These indexes indicate the high accuracy and reliability of the Seq2Seq model in long-term water level forecasting.
This study integrates the Seq2Seq model with quantitative precipitation and converted outflow forecasts to predict 12-hour ahead water levels at Taipei Bridge. The results show strong accuracy, with CC exceeding 0.94 (up to 0.97), RMSE values ranging from 0.17 m to 0.32 m, MAE values below 0.3 m, and a high CE value of 0.89. This highlights the feasibility and effectiveness of the proposed forecasting model in practical applications.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:52:43Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:52:43Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 3
1.2.1 台灣水位預報發展 3
1.2.2 機器學習與深度學習應用 4
1.3 論文架構 6
第二章 研究區域與資料 7
2.1 研究區域 7
2.2 研究資料 9
2.2.1 雨量資料 9
2.2.2 潮位資料 12
2.2.3 石門水庫出流量資料 13
2.2.4 翡翠水庫出流量資料 15
2.2.5 颱風暴雨場次篩選 17
2.2.6 台北橋水位站資料 17
第三章 研究方法 20
3.1 機器學習法 (SVM) 20
3.2 深度學習法 22
3.2.1 長短期記憶網路 22
3.2.2 雙向長短期記憶網路 25
3.2.3 序列到序列 (Seq2Seq) 27
3.3 網格搜尋法 29
3.4 多步階預報 30
第四章 模式建立與評鑑指標 33
4.1 研究流程 33
4.1.1 模式建置 34
4.1.2 出流量預報修正規則 36
4.2 評鑑指標 37
第五章 結果與討論 38
5.1 模式建立與未來一小時預報 38
5.1.1 因子篩選和參數率定 38
5.1.2 未來一小時預報能力評估 41
5.2 多步階預報模式驗證 47
5.3 介接預報模式 59
第六章 結論與建議 67
6.1 結論 67
6.2 建議 69
參考文獻 70
附錄A 73
附錄B 74
-
dc.language.isozh_TW-
dc.subject台北橋zh_TW
dc.subject人工智慧zh_TW
dc.subject定量降水預報zh_TW
dc.subject水位預報zh_TW
dc.subjectTaipei Bridgeen
dc.subjectWater level forecasten
dc.subjectQuantitative precipitation forecasten
dc.subjectArtificial intelligenceen
dc.title水庫下游水位預報之研究zh_TW
dc.titleForecasting of Water Levels Downstream of Reservoirsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李方中;賴進松zh_TW
dc.contributor.oralexamcommitteeFang-Chung Lee;Jihn-Sung Laien
dc.subject.keyword水位預報,定量降水預報,人工智慧,台北橋,zh_TW
dc.subject.keywordWater level forecast,Quantitative precipitation forecast,Artificial intelligence,Taipei Bridge,en
dc.relation.page86-
dc.identifier.doi10.6342/NTU202302916-
dc.rights.note未授權-
dc.date.accepted2023-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
Appears in Collections:土木工程學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
  Restricted Access
10.56 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved