請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9020
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張翠玉(Emmy T.-Y. Chang) | |
dc.contributor.author | Chieh-Chung Chiang | en |
dc.contributor.author | 姜介中 | zh_TW |
dc.date.accessioned | 2021-05-20T20:06:48Z | - |
dc.date.available | 2009-08-14 | |
dc.date.available | 2021-05-20T20:06:48Z | - |
dc.date.copyright | 2009-08-14 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-11 | |
dc.identifier.citation | 何邦碩(1974),花蓮近海海域地球物理初步測勘,海洋彙刊,第12期,39-47頁。
何春蓀(1986),臺灣地質概論-臺灣地質圖說明書,增訂第二版,經濟部中央地質調查所出版,共164頁。 Angelier, J., H. T. Chu, and J. C. Lee (1997), Shear concentration in a collision zone: kinematics of the active Chihshang fault, Longitudinal Valley, eastern Taiwan, Tectonophysics, 274, 117-144. Cazenave, A., K. Dominh, F. Ponchaut, L. Soudarin, J. F. Cretaux, and C. Le Provost (1999), Sea level changes from Topex‐Poseidon altimetry and tide gauges, and vertical crustal motions from DORIS, Geophys. Res. Lett., 26(14), 2077–2080. Chang, C. P., C. T. Wang, H. C. Wang, and K. S. Chen (2004), Application of DInSAR in monitoring the metropolitan land-surface deformation: Jungli industry park as an example. Journal of Photogrammetry and Remote Sensing, 9(3), 9-14. (in Chinese with English abstract) Chen, H. Y., S. B. Yu, L. C. Kuo, and C. C. Liu (2006), Coseismic and postseismic surface displacements of the 10 December 2003 (Mw 6.5) Chengkung, eastern Taiwan, earthquake, Earth Planets Space, 58, 5-21. Chen, K. H., S. Toda, and R. J. Rau (2008), A leaping, triggered sequence along a segmented fault: The 1951 ML 7.3 Hualien-Taitung earthquake sequence in eastern Taiwan, J. Geophys. Res., 113, B02304, doi:10.1029/2007JB005048. Cheng, S. N., T. T. Yu, Y. T. Yeh, and Z. S. Chang (1997), Relocation of the 1951 Hualien, Taitung earthquake sequence, in Proceedings of Meteorology, Conference on Weather Analysis and Forecasting, 690–699,1997, March, Central Weather Bureau, Taipei, Taiwan. Ching, K. N., R. J. Rau, and Y. Zeng (2007), Coseismic source model of the 2003 Mw6.8 Chengkung earthquake, Taiwan, determined from GPS measurements, J. Geophys. Res., 112, B06422. Chung, L. H., Y. G. Chen, Y. M. Wu, J. B. H. Shyu, Y. T. Kuo, and Y. N. N. Lin (2008), Seismogenic faults along the major suture of the plate boundary deduced by dislocation modeling of coseismic displacements of the 1951 M7.3 Hualien–Taitung earthquake sequence in eastern Taiwan, Earth Planet. Sci. Lett., 269, 416-429. Garcia, D., I. M. Vigo, B. F. Chao, and M. C. Martinez (2007), Vertical Crustal Motion along the Mediterranean and Black Sea Coast Derived from Ocean Altimetry and Tide Gauge Data , Pure and Appl. Geophys., 164, 851-863, doi:10.1007/s00024-007-0193-8. Hanks, T. C., and H. Kanamori (1979), A moment magnitude scale, J. Geophys. Res., 84, 2348–2350. Heaton, T., F. Tajima and A.W. Mori (1986), Estimating ground motions using recorded accelerograms, Surveys in Geophysics, 8, 25-83. Ho, C. S. (1986), A synthesis of the geologic evolution of Taiwan, Tectonophysics, 125, 1-16 Huang, K. C., H. Kao, and Y. M. Wu (2000), The determination of ML - MW in Taiwan, 8th Annual Meeting of Geophysical Society of China, 193–201. (in Chinese). Hsieh, M. L., and P. M. Liew, and M.Y. Hsu (2004), Holocene tectonic uplift on the Hua-tung coast, eastern Taiwan, Qua. Int., 115-116, 47-70. Hsu, T. L. (1962), Recent faulting in the Longitudinal Valley of eastern Taiwan, Mem. Geol. Soc. China, 1, 95– 102. Hsu, T.L. (1976), The Lichi Melange in the Coastal Range framework. Bull. Geol. Surv. Taiwan 25, 87–95. Kuo, C. Y., C. K. Shum, A. Braun, and J. X. Mitrovica (2004), Vertical crustal motion determined by satellite altimetry and tide gauge data in Fennoscandia, Geophys. Res. Lett., 31, L01608, doi:10.1029/2003GL019106. Kuochen, H., Y. M. Wu, Y. G. Chen, and R.Y. Chen (2007), 2003 Mw6.8 Chengkung earthquake and its associated seismogenic structures, J. Asian Earth Sci., 31 ,332-339, doi:10,1016/j.jseaeas.2006.07.028. Liu, C. C. (1989), Impact of crustal deformation on tide gauge records, Proc. Geol. Soc. China, 32(4), 321-338. Matsumoto, K., T. Takanezawa, and M. Ooe (2000), Ocean tide models developed by assimilating Topex/Poseidon altimeter data into hydrodynamical Model: A Global Model and a Regional Model Around Japan, J. Oceanogr., 56 ,567-581. Mindlin, R. D. (1936), Force at a point in the interior of a semi-infinite solid, Physics, 7, 195-202. Mitchum, G. T. (1998), Monitoring the stability of satellite altimeters with tide gauges, J. Atmos. Oceanic Tech., 15, 721–730. Shyu, J.B.H., K. Sieh, Y. G. Chen, and C. S. Liu ( 2005), Neotectonic architecture of Taiwan and its implications for future large earthquakes, J. Geophys. Res., 110, B08402, doi: 10.1029/2004JB003251. Teng, L. S. (1990), Late Cenozoic arc-continent collision in Taiwan, Tectonophysics, 183, 57-76 Wang, C. H., and W. C. Burnett (1990), Holocene mean uplift rate across an active plate-collision boundary in Taiwan, Science, 248, 204-206. Wang, R., Francisco Lorenzo-Martin, and Frank Roth (2006), PSGRN/PSCMP-a new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory, Comput. Geosci, 32, 527-541. Wells, D. L., and K. J. Coppersmith (1994), New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seismol. Soc. Am., 84, 974– 1002. Wu, Y. M., Y. G. Chen, T. C. Shin, H. Kuochen, C. S. Hou, J. C. Hu, C. H. Chang, C. F. Wu, and T. L. Teng (2006), Coseismic versus interseismic ground deformations, fault rupture inversion and segmentation revealed by 2003 Mw 6.8 Chengkung earthquake in eastern Taiwan, Geophys. Res. Lett., 33, L02312, doi:10.1029/2005GL024711. York, J. E. (1976), Quaternary faulting in eastern Taiwan, Bull. Geol. Surv. Taiwan, 25, 63– 75. Yu, S. B., H.Y. Chen, and L.C. Kuo (1997), Velocity field of GPS stations in the Taiwan area. Tectonopyhsics, 274, 41-59. Yu, S. B. and L. C. Kuo(2001), Present-day crustal motion along the Longitudinal Valley Fault, eastern Taiwan. Tectonophysics, 333, 199-217. Yu, S. B. and Y. R. Hsu, L. C. Kuo, H. Y. Chen, and C. C. Liu(2003), GPS measurement of postseismic deformation following the 1999 Chi-Chi, Taiwan , earthquake, J. Geophys. Res., 108(B11), 2520. doi:10.1029/2003JB002369. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9020 | - |
dc.description.abstract | 驗潮站設立於碼頭或岸邊,記錄即時水位變化,反應水面與陸地的相對高程變化。吾人利用中央氣象局海象測報中心所提供臺灣沿岸之23個驗潮站之紀錄,估計地殼在垂直方向上運動的量值。本研究主要有二工作方向:
一、估計近十年臺灣沿岸地區地殼垂直運動量 驗潮紀錄在陸地保持不動時,即為絕對海水面變化。因此驗潮紀錄與絕對海水位變化的差值,可視為地表相對於固定參考高程在垂直方向上的運動量。本研究以TOPEX/Poseidon與Jason-1兩組測高衛星於臺灣周圍海域的測量值,為絕對海水面的變化值,將驗潮紀錄以及測高衛星資料的時間序列,使用最小平方法(Least Squares Method)移除季節性與潮汐訊號,並同時取得整個時間序列的平均線性趨勢,這兩種觀測資料的線性趨勢的差值,即反應資料所涵蓋之時間段,其陸地的平均運動率。研究結果顯示,臺灣全島沿岸的地表幾乎是以下降為主,在臺灣西部嘉南地區的下陷量達-52.2 mm/yr,此應與該區域抽取地下水有關。在臺灣東部,地表運動的量值分布自-37.1至+7.5mm/yr,而沿著岸線自富岡約至花蓮有下陷量增大的趨勢。 二、研究1951年花蓮歷史地震的震源機制 1951年10月22日花蓮市區東南外海發生ML7.3之地震,六小時後在主震北方約22公里處發生ML 7.1之餘震,與該餘震時間對應,花蓮驗潮紀錄基線下降大約350 mm,我們認為此顯示驗潮站所在的地點受到餘震的同震變形抬升約350 mm。然而我們利用氣象局對這個地震的規模及震源機制定義模擬花蓮驗潮站於餘震的同震位移,顯示對應的地表變動量約為100mm的下陷運動,與驗潮紀錄的觀測量不符合,造成觀測量及模擬結果定性上的差異。參考該地區所發生過之地震的震源機制及破裂行為,與Cheng et al. [1997] 之震源機制相似而可信賴;而當時為數不多的地震儀及其在本島的分布主要於臺灣島西部,對於東部外海的地震,可能有相當的定位誤差。本研究以花蓮驗潮站350mm的抬升量為參考值,使用網格空間索,重新驗證花蓮地震主要餘震發生的震源位置。研究結果顯示,斷層的空間最佳位置與米崙斷層一致,我們依此推測1951年花蓮地震應為米崙斷層的錯動,斷層幾何中心之深度可能在13.5km附近。所以本研究驗證1951年花蓮地震的餘震的發震機制,為米崙斷層的再次錯動。 | zh_TW |
dc.description.abstract | This study adopts 23 TG records from the Marine Meteorology Center of the Central Weather Bureau over several decades to estimate the magnitude of vertical crustal motion along the coast around Taiwan. There are two main targets in this study:
A. Estimating vertical crustal motion along Taiwan coast in recent decades The tide gauge (TG) monitors the relative sea level w.r.t. the ground at the TG location, whereas satellite altimetry (ALT), for example TOPEX/Poseidon and Jason-1, measures the absolute sea level w.r.t. the terrestrial reference frame. Their difference signifies the absolute vertical ground motion for each of the available TG locations. Seasonal signals, primarily periodic tides are removed from both TG and ALT data beforehand by linear regression. We can therefore map out a whole profile of vertical crustal motion along the Taiwan coast. The majority of these motions tend to descend during the latest decade. Southwestern Taiwan shows a clear land subsidence reflecting the over withdrawal of groundwater with the largest magnitude -52.2 mm/yr in Bozihliao. The sites in the eastern Taiwan from Fugang to Hualien generally have a smaller descending rate with higher descending trend northward. B. Re-examination of the coseismic deformation of the 1951 Hualien earthquakes We re-examine the earthquake events occurring in Hualien downtown on Oct. 22, 1951. The mainshock was magnitude of ML 7.3, and a large ML 7.1 aftershock event occurred 6 hours afterwards, which caused the vertical shift of 350 mm in the TG record that reflected a vertical crustal uplift. We simulate the amount in this event based on the focal mechanic reconstructed by Chen et al. [1997]. The result shows the TG location had a -100mm coseismic vertical drop in contrast with the observed 350mm uplift, apparently because of the sparse seismometer distribution and the resultant mis-locationing of the epicenter. Furthermore, we use the gridding search method to relocate the epicenter which fits the TG observation, putting the epicenter along the onland portion of the active Meilun Fault nearby the downtown of Hualien. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:06:48Z (GMT). No. of bitstreams: 1 ntu-98-R96241317-1.pdf: 7638035 bytes, checksum: a30f7f6e41f85345f5460645b6522264 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 誌 謝 i
中文摘要 ii 英文摘要 iv 目 錄 vi 圖目錄 viii 表目錄 x 第一章 緒論 1 1.1 研究動機與目的 1 1.2 本文內容 3 第二章 資料來源與介紹 5 2.1 驗潮紀錄 5 2.1.1 驗潮站-Tide Gauge 5 2.1.2 潮汐與分潮 8 2.1.3 驗潮紀錄處理 10 2.2 衛星測高-SATELLITE ALTIMETRY 15 2.2.1 測高衛星簡述 15 2.2.2 衛星測高原理與誤差來源 19 2.2.3 測高資料處理 23 第三章 估計近十年臺灣沿岸地區地殼升降情形 26 3.1 前人研究 26 3.2 計算方法 28 3.3 結果與討論 30 第四章 估計歷史地震在高程之同震變形量 40 4.1 臺灣東部地質及地理概況 40 4.2 從驗潮紀錄推估同震位移量 41 4.2.1 同震位移量計算 41 4.2.2 同震變形模式研究 43 4.3 2003成功地震 43 4.3.1 池上斷層與2003成功地震背景 43 4.3.2 驗潮紀錄與其同震位移量 45 4.3.3 變形模擬的操作結果 46 4.4 1951花蓮地震 48 4.4.1 米崙斷層與1951花蓮地震 48 4.4.2 驗潮紀錄與其同震位移量 49 4.4.3 震源參數調整測試 57 第五章 結論 63 5.1 估計近十年臺灣沿岸地區地殼升降情形 63 5.2 估計歷史地震在垂直方向上造成之同震變形量 64 參考文獻 65 附錄一 驗潮紀錄展示及斜率 69 附錄二 各測站之分潮振幅與相位 83 | |
dc.language.iso | zh-TW | |
dc.title | 利用驗潮紀錄估計臺灣沿岸地表垂直運動 | zh_TW |
dc.title | Estimating Vertical Crustal Motion along Taiwan Coast Using Tide Gauge Records | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 趙丰(Benjamin F. Chao) | |
dc.contributor.oralexamcommittee | 吳逸民(Yih-Min Wu),郭重言(Chung-Yen Kuo),曾于恆(Yu-heng Tseng) | |
dc.subject.keyword | 驗潮站,測高,垂直運動,1951花蓮地震, | zh_TW |
dc.subject.keyword | Tide Gauge,Altimetry,Vertical Motion,1951 Hualien Earthquake, | en |
dc.relation.page | 88 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2009-08-11 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf | 7.46 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。