Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90200Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳信希 | zh_TW |
| dc.contributor.advisor | Hsin-Hsi Chen | en |
| dc.contributor.author | 邱承之 | zh_TW |
| dc.contributor.author | CHR-JR Chiu | en |
| dc.date.accessioned | 2023-09-22T17:49:50Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-11 | - |
| dc.identifier.citation | A. Alhamzeh, R. Fonck, E. Versmee, E. EgyedZsigmond, H. Kosch, and L. Brunie. It's time to reason: Annotating argumentation structures in financial earnings calls: The finarg dataset. In Proceedings of the 4th Workshop on Financial Technology and Natural Language Processing, pages 15–21, Vienna, Austria, 2022.
D. Araci. Finbert: Financial sentiment analysis with pre-trained language models, 2019. S. Chen, Y. Hou, Y. Cui, W. Che, T. Liu, and X. Yu. Recall and learn: Fine-tuning deep pre-trained language models with less forgetting. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 7870–7881, Online, Nov. 2020. Association for Computational Linguistics. Y. Chi, F. Giunchiglia, D. Shi, X. Diao, C. Li, and H. Xu. ZiNet: Linking Chinese characters spanning three thousand years. In Findings of the Association for Computational Linguistics: ACL 2022, pages 3061–3070, Dublin, Ireland, May 2022. Association for Computational Linguistics. A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzmán, E. Grave, M. Ott, L. Zettlemoyer, and V. Stoyanov. Unsupervised cross-lingual representation learning at scale. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 8440–8451, Online, July 2020. Association for Computational Linguistics. Y. Cui, W. Che, T. Liu, B. Qin, and Z. Yang. Pre-training with whole word masking for chinese bert. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29:3504–3514, 2021. J. Devlin, M.W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. X. Ding, K. Liao, T. Liu, Z. Li, and J. Duan. Event representation learning enhanced with external commonsense knowledge, 2020. S. Eger, J. Daxenberger, C. Stab, and I. Gurevych. Cross-lingual argumentation mining: Machine translation (and a bit of projection) is all you need! In Proceedings of the 27th International Conference on Computational Linguistics, pages 831–844, 2018. V. Gast, L. Bierkandt, S. Druskat, and C. Rzymski. Enriching TimeBank: Towards a more precise annotation of temporal relations in a text. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), pages 3844–3850, Portorož, Slovenia, May 2016. European Language Resources Association (ELRA). T. Ge, H. Ji, B. Chang, and Z. Sui. One tense per scene: Predicting tense in Chinese conversations. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 668–673, Beijing, China, July 2015. Association for Computational Linguistics. M. Geva, Y. Goldberg, and J. Berant. Are we modeling the task or the annotator? an investigation of annotator bias in natural language understanding datasets. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1161–1166, Hong Kong, China, Nov. 2019. Association for Computational Linguistics. A. HautliJanisz, Z. Kikteva, W. Siskou, K. Gorska, R. Becker, and C. Reed. QT30: A corpus of argument and conflict in broadcast debate. In Proceedings of the Thirteenth Language Resources and Evaluation Conference, pages 3291–3300, Marseille, France, June 2022. European Language Resources Association. N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. de Laroussilhe, A. Gesmundo, M. Attariyan, and S. Gelly. Parameter-efficient transfer learning for nlp, 2019. D. Ingle, R. Tripathi, A. Kumar, K. Patel, and J. Vepa. Investigating the characteristics of a transformer in a few-shot setup: Does freezing layers in RoBERTa help? In Proceedings of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 238–248, Abu Dhabi, United Arab Emirates (Hybrid), Dec. 2022. Association for Computational Linguistics. J. Jang, S. Ye, C. Lee, S. Yang, J. Shin, J. Han, G. Kim, and M. Seo. TemporalWiki: A lifelong benchmark for training and evaluating ever-evolving language models. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 6237–6250, Abu Dhabi, United Arab Emirates, Dec. 2022. Association for Computational Linguistics. Z. Ke, H. Lin, Y. Shao, H. Xu, L. Shu, and B. Liu. Continual training of language models for few-shot learning. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 10205–10216, Abu Dhabi, United Arab Emirates, Dec. 2022. Association for Computational Linguistics. W. Klein. Time in Language. Routledge, 1994. R. Le Poidevin. The Experience and Perception of Time. In E. N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Summer 2019 edition, 2019. J. Lee, R. Tang, and J. Lin. What would elsa do? freezing layers during transformer fine-tuning, 2019. B. Li and G. Wisniewski. Are neural networks extracting linguistic properties or memorizing training data? an observation with a multilingual probe for predicting tense. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 3080–3089, Online, Apr. 2021. Association for Computational Linguistics. Y. Liu, Y. Su, A.A. Liu, B. Schiele, and Q. Sun. Mnemonics training: Multi-class incremental learning without forgetting. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, jun 2020. H. Llorens, L. Derczynski, R. Gaizauskas, and E. Saquete. TIMEN: An open temporal expression normalisation resource. In Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC’12), pages 3044–3051, Istanbul, Turkey, May 2012. European Language Resources Association (ELRA). M. L. McHugh. Interrater reliability: the kappa statistic. Biochemia medica, 22(3):276–282, 2012. A. Moghar and M. Hamiche. Stock market prediction using lstm recurrent neural network. Procedia Computer Science, 170:1168–1173, 2020. The 11th International Conference on Ambient Systems, Networks and Technologies (ANT) / The 3rd International Conference on Emerging Data and Industry 4.0 (EDI40) / Affiliated Workshops. T. Moreau and J. Audiffren. Post training in deep learning with last kernel, 2017. Q. Ning, H. Wu, R. Han, N. Peng, M. Gardner, and D. Roth. TORQUE: A reading comprehension dataset of temporal ordering questions. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1158–1172, Online, Nov. 2020. Association for Computational Linguistics. G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter. Continual lifelong learning with neural networks: A review. Neural Networks, 113:54–71, 2019. M. Parmar, S. Mishra, M. Geva, and C. Baral. Don’t blame the annotator: Bias already starts in the annotation instructions. In Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 1779–1789, Dubrovnik, Croatia, May 2023. Association for Computational Linguistics. A. M. Rather, A. Agarwal, and V. Sastry. Recurrent neural network and a hybrid model for prediction of stock returns. Expert Systems with Applications, 42(6):3234–3241, 2015. G. D. Rosin and K. Radinsky. Temporal attention for language models, 2022. R. RuizDolz, M. Nofre, M. Taulé, S. Heras, and A. GarcíaFornes. Vivesdebate: A new annotated multilingual corpus of argumentation in a debate tournament. Applied Sciences, 11(15):7160, 2021. X. Shi, J. Zhai, X. Yang, Z. Xie, and C. Liu. Radical embedding: Delving deeper to Chinese radicals. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 594–598, Beijing, China, July 2015. Association for Computational Linguistics. C. Stab and I. Gurevych. Parsing argumentation structures in persuasive essays. Computational Linguistics, 43(3):619–659, 2017. S. Vashishtha, B. Van Durme, and A. S. White. Fine-grained temporal relation extraction. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 2906–2919, Florence, Italy, July 2019. Association for Computational Linguistics. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need, 2017. A. Vempala, E. Blanco, and A. Palmer. Determining event durations: Models and error analysis. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 164–168, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. M. Verhagen, R. Saurí, T. Caselli, and J. Pustejovsky. SemEval-2010 task 13: TempEval2. In Proceedings of the 5th International Workshop on Semantic Evaluation, pages 57–62, Uppsala, Sweden, July 2010. Association for Computational Linguistics. J. Visser, B. Konat, R. Duthie, M. Koszowy, K. Budzynska, and C. Reed. Argumentation in the 2016 us presidential elections: annotated corpora of television debates and social media reaction. Language Resources and Evaluation, 54(1):123–154, 2020. L. Wang, X. Zhang, H. Su, and J. Zhu. A comprehensive survey of continual learning: Theory, method and application, 2023. Y. Wang, Q. Yao, J. Kwok, and L. M. Ni. Generalizing from a few examples: A survey on few-shot learning, 2020. Z. Wang, X. Liu, and M. Zhang. Breaking the representation bottleneck of Chinese characters: Neural machine translation with stroke sequence modeling. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 6473–6484, Abu Dhabi, United Arab Emirates, Dec. 2022. Association for Computational Linguistics. P. Wei, N. Xu, and W. Mao. Modeling conversation structure and temporal dynamics for jointly predicting rumor stance and veracity. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4787–4798, Hong Kong, China, Nov. 2019. Association for Computational Linguistics. O. Weller, K. Seppi, and M. Gardner. When to use multitask learning vs intermediate fine-tuning for pre-trained encoder transfer learning, 2022. H. Wen and H. Ji. Utilizing relative event time to enhance event-event temporal relation extraction. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 10431–10437, Online and Punta Cana, Dominican Republic, Nov. 2021. Association for Computational Linguistics. Y. Xu and S. B. Cohen. Stock movement prediction from tweets and historical prices. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1970–1979, Melbourne, Australia, July 2018. Association for Computational Linguistics. S. Zhang, C. Gong, and E. Choi. Learning with different amounts of annotation: From zero to many labels. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 7620–7632, Online and Punta Cana, Dominican Republic, Nov. 2021. Association for Computational Linguistics. Z. Zhang, H. Zhang, K. Chen, Y. Guo, J. Hua, Y. Wang, and M. Zhou. Mengzi: Towards lightweight yet ingenious pre-trained models for chinese. arXiv preprint arXiv:2110.06696, 2021. M. Zhao, Y. Zhu, E. Shareghi, I. Vulić, R. Reichart, A. Korhonen, and H. Schütze. A closer look at few-shot cross-lingual transfer: The choice of shots matters. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 5751–5767, Online, Aug. 2021. Association for Computational Linguistics. B. Zhou, D. Khashabi, Q. Ning, and D. Roth. “going on a vacation” takes longer than “going for a walk”: A study of temporal commonsense understanding. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3363–3369, Hong Kong, China, Nov. 2019. Association for Computational Linguistics. B. Zhou, Q. Ning, D. Khashabi, and D. Roth. Temporal common sense acquisition with minimal supervision. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7579–7589, Online, July 2020. Association for Computational Linguistics. F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He. A comprehensive survey on transfer learning, 2020. J. Zou, H. Cao, L. Liu, Y. Lin, E. Abbasnejad, and J. Q. Shi. Astock: A new dataset and automated stock trading based on stock specific news analyzing model, 2022. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90200 | - |
| dc.description.abstract | 生活中眾多討論與對話由各個論點與論點間的關係所構成,例如金融市場相關討論,社會議題辯論,以及論文寫作內容。因此在自然語言處理中,有相當多作品處理論點關係識別這個重要主題。雖然論點之間的關係相當多元,可能有各式各樣的分類,但是使用支持、攻擊、無關或其他,是一個基本且常見的分類組合,很多相關分類也是基於此稍作轉變或細分。除了論點之間的關係,時間在許多討論與人們的生活場景中也扮演重要角色,因此長期以來也一直是重要且熱門的研究主題。從傳統處理時態,到現今針對不同任務,使用不同方法標記與處理時間的資料集與模型之相關研究中,經常提及因為時間資訊在不同語境下意涵多變且經常隱含等相關性質,使時間推理在不同領域的應用仍具挑戰。
因此,這篇論文的主要貢獻為邀請具金融工作與知識背景的專業人士,標記中文金融社交媒體討論中的論點關係和時間資訊,建立了一個資料集。並且蒐集其他相似論點關係識別的研究,討論此類任務跨語言和跨領域的學習能力,並且提出一個易於實作,且高效率的複習方法,處理學習中常見的的遺忘問題。近年來,小型資料標註和學習也日漸重要,因此我們討論語言、領域和任務順序外,也討論資料集大小對效能的影響,以提供未來研究於任務順序安排的參考方向。此外,因為時間資訊的多變性,我們的資料集提供了針對中文金融社交討論平台的時間標記,並結合相關中文金融研究,比較與分析文字時間資訊推理的影響。 | zh_TW |
| dc.description.abstract | Many discussions are composed of arguments and their interactions, such as discussions on financial market, debates of social topics and essay writing. Therefore, argument relation identification is an important topic in language processing. Although there are numerous relations, support, attack and none or other, is an essential and common set with many variations. In addition to the relation of arguments, temporal knowledge is also crucial not only in many discussions, but also for many aspects of people's daily life, and thus has long been a popular language research topic as well. There are multiple temporal datasets focusing on various targets, e.g. event relation and duration. We can see from previous works that temporal knowledge and its influence on many other tasks still remain complex and puzzling because they're often implicit and versatile in different scenarios, which make it hard to have universal resources and standard for all domains and purposes.
Therefore, our work enrich argumentative and temporal resources with a Chinese financial dataset, TREE (Time Reveals valuE Expression), which has argumentative and temporal labels annotated by experts to further understand argument relation and temporal knowledge. We discuss the challenge and quality of our dataset and also collaborate with other relative and similar works to examine our methods. Inspired by post-training works, we develop a simple and resource efficient method to help models overcoming forgetting problem when learning form transferring relative tasks. We find not only the order of training tasks matters but also language families, domains and sizes of datasets. For the financial temporal inference task, we collaborate and compare with other Chinese financial works to analyze the influence of temporal inference task based on text. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:49:50Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T17:49:50Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
誌謝 ii 摘要 iii Abstract v Contents vii List of Figures x List of Tables xi Chapter 1 Introduction 1 1.1 Motivation and Background 1 1.2 Overview 3 1.3 Thesis Organization 3 Chapter 2 Related Works 4 2.1 Argumentative and Temporal Knowledge of Finance and Social Media 4 2.2 Recent Learning Methodologies and Techniques 6 Chapter 3 Dataset 7 3.1 Data Collection 7 3.2 Challenges, Guidelines and Examples of Annotation 8 3.2.1 Challenges of Annotation Process 8 3.2.2 Guidelines and Examples of Annotation 11 3.3 Information of Supplementary Datasets 12 3.3.1 Cross-Domain, Cross-Lingual Argument Datasets 12 3.3.2 Chinese Financial Dataset 14 Chapter 4 Methods 16 4.1 Argument Relation Identification 16 4.1.1 Problem Definition 16 4.1.2 Efficient Reviewing Strategy 18 4.2 Temporal Inference of Financial Social Media 19 4.2.1 Problem Definition 19 4.2.2 Financial Temporal Inference 20 Chapter 5 Experiments, Analysis and Discussions 21 5.1 Financial Argument Classification Experiments 21 5.1.1 Language Families, Domains, and Sizes of Datasets 21 5.1.2 Results of Efficient Reviewing Strategy 23 5.2 Financial Temporal Inference 26 5.3 Experiment Setup 30 Chapter 6 Conclusion, Limitations and Future Work 31 6.1 Conclusion 31 6.2 Limitations and Future Work 31 References 33 Appendix A — Other Related Resources 42 A.1 Related Websites, Resources and Tools 42 | - |
| dc.language.iso | en | - |
| dc.subject | 論點關係識別 | zh_TW |
| dc.subject | 跨語言 | zh_TW |
| dc.subject | 財務時間資訊 | zh_TW |
| dc.subject | 跨領域 | zh_TW |
| dc.subject | 資料標記 | zh_TW |
| dc.subject | Financial Domain Temporal Knowledge | en |
| dc.subject | Cross-lingual | en |
| dc.subject | Cross-domain | en |
| dc.subject | Argument Relation Identification | en |
| dc.subject | Data Annotation | en |
| dc.title | 財務社交媒體的論點關係識別與時間推理 | zh_TW |
| dc.title | Argument Relation Identification and Temporal Inference of Financial Social Media | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 古倫維;王釧茹;陳建錦 | zh_TW |
| dc.contributor.oralexamcommittee | Lun-Wei Ku;Chuan-Ju Wang;Chien-Chin Chen | en |
| dc.subject.keyword | 論點關係識別,財務時間資訊,跨語言,跨領域,資料標記, | zh_TW |
| dc.subject.keyword | Argument Relation Identification,Financial Domain Temporal Knowledge,Cross-lingual,Cross-domain,Data Annotation, | en |
| dc.relation.page | 42 | - |
| dc.identifier.doi | 10.6342/NTU202303574 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-13 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| Appears in Collections: | 資訊工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-111-2.pdf Restricted Access | 1.16 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
