Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90192
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王大銘zh_TW
dc.contributor.advisorDa-Ming Wangen
dc.contributor.author謝秉澤zh_TW
dc.contributor.authorPing-Tse Hsiehen
dc.date.accessioned2023-09-22T17:47:45Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation1. Zhang K., Wu Y., Wang W., Li B., et al. Recycling indium from waste LCDs: A review. Resources, Conservation and Recycling, 2015, 104: 276-290.
2. Fu F. & Wang Q.. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 2011, 92(3): 407-418.
3. Virolainen S., Ibana D. & Paatero E.. Recovery of indium from indium tin oxide by solvent extraction. Hydrometallurgy, 2011, 107(1-2): 56-61.
4. Thi Tuyet Dang N., Wang D.M., Huang S.Y., et al. Indium Recovery from Aqueous Solution Containing Oxalic Acid – Enhancement by Using Hydrophobic Membranes. Separation and Purification Technology, 2019, 116300.
5. V.S. Kislik. Liquid Membranes: Principles and Applications in Chemical Separations and Wastewater Treatment. Elsevier, 2009.
6. 吳建衡, 以具分散反萃取相支撐式液膜回收螯合銅離子.台灣大學化學工程學研究所碩士論文, 2017.
7. 璩文澤, 以疏水性中空纖維模組為油水分離器之連續式萃取-反萃取系統開發.台灣大學化學工程學研究所碩士論文, 2021.
8. Yahaya Khan M., Abdul Karim Z. A., et al. Current Trends in Water-in-Diesel Emulsion as a Fuel. The Scientific World Journal, 2014, 1-15.
9. Zhao X.Q., Wahid F., Cui J.X., Wang Y.Y., et al. Cellulose-based special wetting materials for oil/water separation: A review. International Journal of Biological Macromolecules, 2021, 185: 890-906.
10. Fane A.G., Wang R. & Jia Y.. Membrane Technology: Past, Present and Future. Membrane and Desalination Technologies, 2010, 1-45.
11. Feng X. & Huang R.Y.M.. Liquid Separation by Membrane Pervaporation: A Review. Industrial & Engineering Chemistry Research, 1997, 36(4): 1048-1066.
12. P Bernardo, E Drioli & G Golemme. Membrane gas separation: a review/state of the art. ACS Publications, 2009.
13. Wang Y., Ma X., Ghanem, et al. Polymers of Intrinsic Microporosity for Energy-Intensive Membrane-Based Gas Separations. Materials Today Nano, 2018, 69-95.
14. Allevi C. & Collodi G.. Hydrogen production in IGCC systems. Integrated Gasification Combined Cycle (IGCC) Technologies, 2017.
15. Mohammad Younas & Mashallah Rezakazemi. Membrane Contactor Technology: Water Treatment, Food Processing, Gas Separation and Carbon Capture, 2022.
16. Jianwen Gao. Membrane Separation Technology for Wastewater Treatment and its Study Progress and Development Trend. College of Information Technology and Engineering, Marshall University, 2016.
17. Cuperus F.P. & Nijhuis H.H.. Applications of membrane technology to food processing. Trends in Food Science & Technology, 1993, 4(9): 277-282.
18. Lee A., Elam J.W. & Darling S.B.. Membrane materials for water purification: design, development, and application. Environmental Science: Water Research & Technology, 2016, 2(1): 17-42.
19. Richard W. Baker. Membrane Technology and Applications, 2000.
20. Enrico Drioli, Lidietta Giorno & Enrica. Comprehensive Membrane Science and Engineering, 2010.
21. Tang Y., Lin Y., Ford D.M., Qian X., et al. A review on models and simulations of membrane formation via phase inversion processes. Journal of Membrane Science, 2021, 640: 119810.
22. Drioli E. & Giorno L.. Membrane operations: innovative separations and transformations. Encyclopedia of Membranes (casting), 2009, 2: 27.
23. Gioacchino Conoscenti, Vincenzo La Carrubba & Valerio Brucato. A Versatile Technique to Produce Porous Polymeric Scaffolds: The Thermally Induced Phase Separation (TIPS) Method. Archives in Chemical Research, 2017.
24. Young T.H. & Chen L.W.. A diffusion-controlled model for wet-casting membrane formation. Journal of Membrane Science, 1991, 59(2): 169-181.
25. Ismail N., Venault A., Mikkola J.P., et al. Investigating the potential of membranes formed by the vapor induced phase separation process. Journal of Membrane Science, 2019, 117601.
26. Venkatram S., Kim C., Chandrasekaran A., et al. Critical assessment of the Hildebrand and Hansen solubility parameters for polymers. Journal of Chemical Information and Modeling, 2019.
27. Selby T.W.. The Non-Newtonian Characteristics of Lubricating Oils. ASLE Transactions, 1958, 1(1): 68-81.
28. Pinnau I. & Freeman B.D.. Formation and Modification of Polymeric Membranes: Overview. Membrane Formation and Modification, 1999, 1-22.
29. Khare V.P., Greenberg A.R., Zartman J., et al. Macrovoid growth during polymer membrane casting. Desalination, 2002, 145(1-3): 17-23.
30. J.G. Wijmans, F.W. Altena & C.A. Smolders. Diffusion during the immersion precipitation process. Journal of Polymer Science: Polymer Physics Edition, 1984, 22(3): 519-524.
31. Reuvers A.J. & Smolders C.A.. Formation of membranes by means of immersion precipitation. Journal of Membrane Science, 1987, 34(1): 45-65.
32. Rozelle L.T., Cadotte J.E., Corneliussen R.D., et al. III/MEMBRANE PREPARATION/ Phase Inversion Membranes, 1967, 3331-3345.
33. Wijmans J.G. & Smolders C.A.. Preparation of Asymmetric Membranes by the Phase Inversion Process. Synthetic Membranes: Science, Engineering and Applications, 1986, 39-56.
34. Tsai Fu Jya & Torkelson John M.. The roles of phase separation mechanism and coarsening in the formation of poly(methyl methacrylate) asymmetric membranes. Macromolecules, 1990, 23(3): 775-784.
35. Song Seung Won & Torkelson John M.. Coarsening Effects on Microstructure Formation in Isopycnic Polymer Solutions and Membranes Produced via Thermally Induced Phase Separation. Macromolecules, 1994, 27(22): 6389-6397.
36. Mousavi, Seyedeh Mohaddeseh, et al. Investigation of the relation between viscoelastic properties of polysulfone solutions, phase inversion process and membrane morphology: The effect of solvent power. Journal of Membrane Science, 2017, 532: 47-57.
37. D.M. Koenhen, M.H.V. Mulder & C.A. Smolders. Phase separation phenomena during the formation of asymmetric membranes. Journal of Applied Polymer Science, 1977, 21(1): 199-215.
38. Ishigami, Toru, Nakatsuka, Keisuke, et al. Solidification characteristics of polymer solution during polyvinylidene fluoride membrane preparation by nonsolvent-induced phase separation. Journal of Membrane Science, 2013, 438: 77-82.
39. Pan Y., Li M. & Hoek E.M.V.. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review. Industrial & Engineering Chemistry Research, 2011, 50(7): 3798-3817.
40. Benning L.G. & Waychunas G.A.. Nucleation, Growth, and Aggregation of Mineral Phases: Mechanisms and Kinetic Controls. Kinetics of Water-Rock Interaction, 2008, 259-333.
41. W.A. Soffa, David E. Laughlin. Physical Metallurgy (Fifth Edition), 2014.
42. G.E. Gaides & A.J. McHugh. Gelation in an amorphous polymer: a discussion of its relation to membrane formation. Polymer, 1989, 30(11): 2118-2123.
43. Johannes C. Jansen, Marialuigia Macchione, Cesare Oliviero, et al. Rheological evaluation of the influence of polymer concentration and molar mass distribution on the formation and performance of asymmetric gas separation membranes prepared by dry phase inversion. Polymer, 2005, 46(25): 11366-11379.
44. Gorjan Stojkov, Zafarjon Niyazov, et al. Relationship between Structure and Rheology of Hydrogels for Various Applications, 2021.
45. Cristina C. Pereira, Ronaldo Nobrega & Cristiano P. Borges. Membranes obtained by simultaneous casting of two polymer solutions. Journal of Membrane Science, 2001, 192(1-2): 11-26.
46. C̆. Stropnik, L. Germic̆ & B. Z̆erjal. Morphology variety and formation mechanisms of polymeric membranes prepared by wet phase inversion. Journal of Applied Polymer Science, 1996, 61(10): 1821-1830.
47. Cui Z.F., Jiang Y. & Field R.W.. Fundamentals of Pressure-Driven Membrane Separation Processes. Membrane Technology, 2010, 1-18.
48. Nusen S., Chairuangsri T., Zhu Z. & Cheng C.Y.. Recovery of indium and gallium from synthetic leach solution of zinc refinery residues using synergistic solvent extraction with LIX 63 and Versatic 10 acid. Hydrometallurgy, 2016, 160: 137-146.
49. Chang J., Zhang L. Bo, Du Y., Peng J., et al. Separation of indium from iron in a rotating packed bed contactor using Di-2-ethylhexylphosphoric acid. Separation and Purification Technology, 2016, 164: 12-18.
50. Hwang L.L., et al. Fabrication of polyphenylsulfone/polyetherimide blend membranes for ultrafiltration applications: The effects of blending ratio on membrane properties and humic acid removal performance. Journal of Membrane Science, 2011, 384(1-2): 72-81.
51. 莊雨潔, 聚醯亞胺薄膜的製備與其過濾機制和效能之探討.台灣大學化學工程研究所碩士論文, 2021.
52. Barton A.F.. CRC handbook of solubility parameters and other cohesion parameters, 2017.
53. Bakeri G., et al. Analysis of Polyetherimide/N-Methyl-2-Pyrrolidone/nonsolvent phase separation behavior. Journal of Polymer Research, 2014, 21(4).
54. Liu B.. The phase diagrams of mixtures of EVAL and PEG in relation to membrane formation. Journal of Membrane Science, 2000, 180(1): 81-92.
55. Kim I.. Preparation and characterization of integrally skinned uncharged polyetherimide asymmetric nanofiltration membrane. Journal of Membrane Science, 2001, 183(2): 235-247.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90192-
dc.description.abstract為了減少回收金屬銦離子的操作步驟,液液萃取成為能同時萃取與反萃取的重要方法,對此衍生出眾多類型的液液萃取,通稱為液膜。其中,近年開發的ESMS_circulation液膜在連續式的系統中,因萃取劑與進料相會形成微乳液,導致已萃取完成的進料相無法從系統中移除,因此希望藉由薄膜技術達到油水分離的效果。本研究使用經PEG-diamine化學改質過的聚醚醯亞胺(Modified Polyetherimide)高分子,並溶解於NMP與2P溶劑中,最後以濕式法刮製成膜。
NMP系統製備出巨型孔洞的截面結構,由於底層為封閉的細胞型孔洞,導致純水通量低;2P系統因溶解參數差值大與氫鍵的緣故,製備出無巨孔且有節點的海綿狀結構,導致2P系統機械強度不好,然而其連通的雙連續結構與改質後薄膜的親水性,使其純水通量最大;水添加劑則由於2P系統因易膠化的緣故,導致高分子無法溶解,而NMP + 2 wt% water系統則是發現雖然巨型孔洞減少,然而其水接觸角最低,因而使純水透過率也有所上升,此外,在12 wt%裡發現底層結構為連通的孔洞,因此在油水分離的透過率效能與2P系統接近。
由於非極性與低黏度的緣故,使得Isopar-L/水對Modified PEI的分離只會讓水透過薄膜,但當採用0.6 M DE2HPA作為油相其中的成分時,則由於油相的黏度與DE2HPA同時帶有親水與疏水基團,使其與Modified PEI吸引而讓油相透過薄膜。另外,透過調整DE2HPA濃度,可以證明油相中親水基團的數量與黏度,會影響水相或油相透過薄膜。除了油相的黏度外,其他的實驗設計也間接證明材料與油相性質的影響,主要是帶正電之高分子與帶負電之親水油相的靜電吸引,將導致油相容易吸附在帶有親水基團的PEI薄膜內,從而影響油水透過的結果。
zh_TW
dc.description.abstractTo reduce the operation steps of recovering indium metal ions, liquid-liquid extraction has become an important method that can extract and strip at the same time, for which various types of liquid-liquid extraction are developed, commonly called liquid membrane. Among them, the continuous system of ESMS_circulation liquid membrane developed in recent years; however, the extractant and the feed phase will form a microemulsion, resulting in the extracted feed phase cannot be removed from the system, therefore, it is hoped that the effect of oil/water separation can be achieved by membrane technology. In this study, a polymer, modified polyetherimide, chemically modified by PEG-diamine is used, dissolved in NMP and 2P solvent, and is finally cast into a film by wet immersion method.
The NMP system has macrovoids in the cross-sectional and due to the cellular closed pores at the lower layer, leading to low pure water permeability. On the account of the large difference between solubility parameters and the effect of hydrogen bonding, the sponge-like structure without macrovoids and nodes was formed, bringing about poor mechanical strength in 2P system, but its connected, bi-continuous structure and the hydrophilicity of the modified PEI made its pure water permeability the largest. The water additive is insoluble in 2P system due to easy gelatinization, while the NMP + 2 wt% water system finds that although the amount of macrovoids are reduced, it has the lowest water contact angle, so that the pure water permeability also increases, in addition, the structure in lower layer is found that the pore is connected in 12 wt%; hence, the efficiency of permeability for oil/water separation is close to that of the 2P system.
Due to the non-polarity and low viscosity, the separation of Isopar-L/water by Modified PEI only allows water to pass through the membrane, but when 0.6 M DE2HPA is used as a component of the oil phase, due to the viscosity of the oil phase and DE2HPA with both hydrophilic and hydrophobic groups, the oil phase is attracted by Modified PEI and is hard to swept away the oil phase from the membrane surface by stir bar, therefore, it makes the oil phase have more opportunity to pass through the Modified PEI membrane. Moreover, in different concentration of DE2HPA, it can be proved that the number of hydrophilic groups in the oil phase and its viscosity will affect the water phase or oil phase to permeate the membrane. In addition to the viscosity of the oil phase, other experimental designs also indirectly prove the influence of the properties of the modified polymer and the oil phase, mainly the electrostatic interaction of positively charged of polymers and negatively charged of amphiphilic oil phase, which will cause the oil phase to be easily adsorbed and interact in the Modified PEI membrane with hydrophilic groups, thereby affecting the results of oil-water separation.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:47:45Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:47:45Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
摘要 III
Abstract IV
目錄 VI
圖目錄 IX
表目錄 XIV
第一章 緒論 1
1-1. 前言 1
1-1-1. 液膜分離技術 2
1-1-2. 液膜之裝置 3
1-2. 油水分離程序 7
1-2-1. 油水乳化液型態 7
1-2-2. 油水乳化液分離 7
1-3. 薄膜簡介 9
1-3-1. 薄膜歷史 9
1-3-2. 薄膜定義與優點 10
1-3-3. 薄膜與分離程序種類 11
1-4. 高分子薄膜製備方式 13
1-4-1. 對稱性薄膜製備 13
1-4-2. 非對稱性薄膜製備 14
1-5. 非溶劑誘導式相分離法之各個步驟對成膜的影響 18
1-6. 非溶劑誘導式相分離法之成膜理論 23
1-6-1 熱力學 23
1-6-2 質傳動力學 27
1-7. 油水分離過濾程序 32
1-7-1. 油水分離機制 32
1-7-2. 薄膜之特性與油水分離之效能 32
1-8. 改質聚醚醯亞胺(Polyetherimide)性質簡介 35
1-9. 文獻回顧 37
1-9-1. 油相與濃度的選擇 37
1-9-2. 高分子與溶劑的選擇 41
1-10. 研究動機與目的 46
第二章 實驗材料與方法 47
2-1. 實驗材料 47
2-2. 實驗儀器 48
2-3. 實驗方法 49
2-3-1. 鑄膜液配製 49
2-3-2. 濕式法成膜 49
2-3-3. 高分子鑄膜液流變量測 50
2-3-4 掃描式電子顯微鏡分析 50
2-3-5. 薄膜透過率的量測 53
2-3-6 油相溶液黏度量測 57
2-3-7 表面張力量測 57
2-3-8 表面接觸角量測 57
第三章 結果與討論 58
3-1. 聚醚醯亞胺之流變性質 58
3-2. 改質之聚醚醯亞胺薄膜結構 61
3-2-1. 不同溶劑對改質之聚醚醯亞胺薄膜結構之影響 61
3-2-2. 添加劑水對改質之聚醚醯亞胺薄膜結構之影響 73
3-3. 改質之聚醚醯亞胺薄膜的過濾效能 79
3-3-1. 添加劑與不同溶劑系統對純水透過濾之影響 79
3-3-2. 添加劑與不同溶劑系統對Isopar-L/水分離之影響 81
3-3-3. 添加劑與不同溶劑系統對0.6 M DE2HPA/水分離之影響 84
3-4. 不同操作步驟之油相溶液透過測試 91
第四章 結論與未來展望 98
4-1. 結論 98
4-2. 未來展望 100
參考文獻 101
-
dc.language.isozh_TW-
dc.subject靜電作用zh_TW
dc.subject黏度zh_TW
dc.subject親水性zh_TW
dc.subject聚乙二醇zh_TW
dc.subject聚醚醯亞胺zh_TW
dc.subject(2-乙基己基)磷酸zh_TW
dc.subjectPolyetherimideen
dc.subjectDE2HPAen
dc.subjectViscosityen
dc.subjectHydrophilicityen
dc.subjectPEG-diamineen
dc.subjectElectrostatic Interactionen
dc.title改質之聚醚醯亞胺薄膜結構對油水乳化分離影響zh_TW
dc.titleThe Effect of Modified PEI Membrane on the Morphology and Performance of Oil/Water Emulsion Separationen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee謝學真;周上智zh_TW
dc.contributor.oralexamcommitteeHsyue-Jen Hsieh;Shang-Chih Chouen
dc.subject.keyword聚乙二醇,聚醚醯亞胺,親水性,(2-乙基己基)磷酸,黏度,靜電作用,zh_TW
dc.subject.keywordPEG-diamine,Polyetherimide,Hydrophilicity,DE2HPA,Viscosity,Electrostatic Interaction,en
dc.relation.page105-
dc.identifier.doi10.6342/NTU202303821-
dc.rights.note未授權-
dc.date.accepted2023-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
6.76 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved