請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90188
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡向榮 | zh_TW |
dc.contributor.advisor | Hsiang-Jung Tsai | en |
dc.contributor.author | 范揚棋 | zh_TW |
dc.contributor.author | Yang-Chi Fan | en |
dc.date.accessioned | 2023-09-22T17:46:47Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-22 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-11 | - |
dc.identifier.citation | 1. Elwinger, K.; Schneitz, C.; Berndtson, E.; Fossum, O.; Teglof, B.; Engstom, B. Factors affecting the incidence of necrotic enteritis, caecal carriage of Clostridium perfringens and bird performance in broiler chicks. Acta Vet. Scand. 1992, 33, 369-378.
2. Lovland, A.; Kaldhusdal, M. Liver lesions seen at slaughter as an indicator of necrotic enteritis in broiler flocks. FEMS Immunol. Med. Microbiol. 1999, 24, 345-351. 3. Petit, L.; Gibert, M.; Popoff, M.R. Clostridium perfringens: toxinotype and genotype. Trends Microbiol 1999, 7, 104-110, doi:10.1016/s0966-842x(98)01430-9. 4. Batz, M.B.; Hoffmann, S.; Morris, J.G. Ranking the Disease Burden of 14 Pathogens in Food Sources in the United States Using Attribution Data from Outbreak Investigations and Expert Elicitation. J Food Protect 2012, 75, 1278-1291, doi:10.4315/0362-028x.Jfp-11-418. 5. Hampson, D.J.; Murdoch, A.I. Growth enhancement in broiler chickens receiving CHEMEQRTM polymeric antimicrobial. Avian Pathol. 2003, 32, 605-611, doi:10.1080/03079450310001610703. 6. Drew, M.D.; Syed, N.A.; Goldade, B.G.; Laarveld, B.; Van Kessel, A.G. Effects of dietary protein source and level on intestinal populations of Clostridium perfringens in broiler chickens. Poult. Sci. 2004, 83, 414-420. 7. Svobodová, I.; Steinhauserová, I.; Nebola, M. Incidence of Clostridium perfringens in broiler chickens in the Czech Republic. Acta Vet. Brno. 2007, 76, S25-S30, doi:10.2754/avb200776S8S025. 8. Callicott, K.A.; Hargardottir, H.; Georgsson, F.; Reiersen, J.; Frigriksdottir, V.; Gunnarsson, E.; Michel, P.; Bisaillon, J.R.; Kristinsson, K.G.; Briem, H.; et al. Broiler Campylobacter contamination and human campylobacteriosis in Iceland. Appl Environ Microbiol 2008, 74, 6483-6494, doi:10.1128/AEM.01129-08. 9. Coker, A.O.; Isokpehi, R.D.; Thomas, B.N.; Amisu, K.O.; Obi, C.L. Human campylobacteriosis in developing countries. Emerg Infect Dis 2002, 8, 237-244, doi:10.3201/eid0803.010233. 10. Nizeyi, J.B.; Innocent, R.B.; Erume, J.; Kalema, G.R.; Cranfield, M.R.; Graczyk, T.K. Campylobacteriosis, salmonellosis, and shigellosis in free-ranging human-habituated mountain gorillas of Uganda. J Wildl Dis 2001, 37, 239-244, doi:10.7589/0090-3558-37.2.239. 11. Skarp, C.P.A.; Hanninen, M.L.; Rautelin, H.I.K. Campylobacteriosis: the role of poultry meat. Clin Microbiol Infect 2016, 22, 103-109, doi:10.1016/j.cmi.2015.11.019. 12. Nawaz, M.S.; Khan, S.A.; Khan, A.A.; Nayak, R.; Steele, R.; Paine, D.; Jones, R. Molecular characterization of fluoroquinolone-resistant Campylobacter spp. isolated from poultry. Poult Sci 2003, 82, 251-258, doi:10.1093/ps/82.2.251. 13. Price, L.B.; Johnson, E.; Vailes, R.; Silbergeld, E. Fluoroquinolone-resistant Campylobacter isolates from conventional and antibiotic-free chicken products. Environ Health Perspect 2005, 113, 557-560, doi:10.1289/ehp.7647. 14. Takahashi T, I.K., Kojima A, Asai T, Harada K, Tamura Y. Emergence of fluoroquinolone resistance in Campylobacter jejuni in chickens exposed to enrofloxacin treatment at the inherent dosage licensed in Japan. J Vet Med B Infect Dis Vet Public Health 2005, 52, 460-464, doi:10.1111/j.1439-0450.2005.00890.x. . 15. Tsai, H.J.; Hsiang, P.H. The prevalence and antimicrobial susceptibilities of Salmonella and Campylobacter in ducks in Taiwan. J Vet Med Sci 2005, 67, 7-12, doi:10.1292/jvms.67.7. 16. Zhao S, Y.S., Tong E, Abbott JW, Womack N, Friedman SL, McDermott PF. Antimicrobial resistance of Campylobacter isolates from retail meat in the United States between 2002 and 2007. Appl Environ Microbiol 2010, 76, 7949-7956, doi:10.1128/AEM.01297-10. Epub 2010 Oct 22. 17. Beckmann, L.; Muller, M.; Luber, P.; Schrader, C.; Bartelt, E.; Klein, G. Suitability of SSCP-PCR analysis for molecular detection of quinolone resistance in Campylobacter jejuni. Berl Munch Tierarztl Wochenschr 2003, 116, 487-490. 18. Han, J.; Wang, Y.; Sahin, O.; Shen, Z.; Guo, B.; Shen, J.; Zhang, Q. A fluoroquinolone resistance associated mutation in gyrA Affects DNA supercoiling in Campylobacter jejuni. Front Cell Infect Microbiol 2012, 2, 21, doi:10.3389/fcimb.2012.00021. 19. Wang, Y.; Huang, W.M.; Taylor, D.E. Cloning and nucleotide sequence of the Campylobacter jejuni gyrA gene and characterization of quinolone resistance mutations. Antimicrob Agents Chemother 1993, 37, 457-463, doi:10.1128/AAC.37.3.457. 20. Pietzka, A.T.; Indra, A.; Stoger, A.; Zeinzinger, J.; Konrad, M.; Hasenberger, P.; Allerberger, F.; Ruppitsch, W. Rapid identification of multidrug-resistant Mycobacterium tuberculosis isolates by rpoB gene scanning using high-resolution melting curve PCR analysis. J Antimicrob Chemother 2009, 63, 1121-1127, doi:10.1093/jac/dkp124. 21. Slinger, R.; Bellfoy, D.; Desjardins, M.; Chan, F. High-resolution melting assay for the detection of gyrA mutations causing quinolone resistance in Salmonella enterica serovars Typhi and Paratyphi. Diagn Microbiol Infect Dis 2007, 57, 455-458, doi:10.1016/j.diagmicrobio.2006.09.011. 22. Popa, S.A.; Morar, A.; Ban-Cucerzan, A.; Tirziu, E.; Herman, V.; Sallam, K.I.; Morar, D.; Acaroz, U.; Imre, M.; Florea, T.; et al. Occurrence of Campylobacter spp. and phenotypic antimicrobial resistance profiles of Campylobacter jejuni in slaughtered broiler chickens in north-western Romania. Antibiotics 2022, 11, doi:10.3390/antibiotics11121713. 23. Lima, L.M.P., G.; Borges, K.A.; Furian, T.Q.; Salle, C.T.P.; Moraes, H.L.D.; do Nascimento, V. Prevalence and distribution of pathogenic genes in Campylobacter jejuni isolated from poultry and human sources. J Infect Dev Ctries 2022, 16, 1466-1472, doi:10.3855/jidc.16485. 24. Ma, L.K., M. E.; Lu, X. Antimicrobial resistance gene transfer from Campylobacter jejuni in mono- and dual-species biofilms. Appl Environ Microbiol 2021, 87, e0065921, doi:10.1128/AEM.00659-21. 25. Anju, K.; Karthik, K.; Divya, V.; Mala Priyadharshini, M.L.; Sharma, R.K.; Manoharan, S. Toxinotyping and molecular characterization of antimicrobial resistance in Clostridium perfringens isolated from different sources of livestock and poultry. Anaerobe 2021, 67, 102298, doi:10.1016/j.anaerobe.2020.102298. 26. Mora, Z.V.M.-R., M.E.; Arratia-Quijada, J.; Gonzalez-Torres, Y. S.;; Nuño, K.V.-L., A. Clostridium perfringens as foodborne pathogen in broiler production: pathophysiology and potential strategies for controlling necrotic enteritis. Animals 2020, 10, 1718. 27. Campylobacter. Available online: https://www.who.int/news-room/fact-sheets/detail/campylobacter (accessed on 1 May 2020). 28. Mohiuddin, M.S.Z.F.L., S.Q.; Qi, N.S.; Li, J.; Lv, M.; Lin, X.H.; Cai, H.M.; Hu, J.J.; Liu, S. B.; Zhang, J.F.; Gu, Y.F.; Sun, M.F. Animal model studies, antibiotic resistance and toxin gene profile of NE reproducing Clostridium perfringens type A and type G strains isolated from commercial poultry farms in China. Microorganisms 2023, 11, 622. 29. Bendary, M.M.; Abd El-Hamid, M.I.E.-T., R.M.; Hefny, A.A.; Algendy, R.M.; Elzohairy, N.A.; Ghoneim, M.M.; Al-Sanea, M.M.; Nahari, M.H.; Moustafa, W.H. Clostridium perfringens associated with foodborne infections of animal origins: insights into prevalence, antimicrobial resistance, toxin genes profiles, and toxinotypes. Biology 2022, 11, 551. 30. Arsene, M.M.J.; Davares, A.K.L.; Andreevna, S.L.; Vladimirovich, E.A.; Carime, B.Z.; Marouf, R.; Khelifi, I. The use of probiotics in animal feeding for safe production and as potential alternatives to antibiotics. Vet World 2021, 14, 319-328, doi:10.14202/vetworld.2021.319-328. 31. Figueroa-Gonzalez, I.; Quijano, G.; Ramirez, G.; Cruz-Guerrero, A. Probiotics and prebiotics--perspectives and challenges. J Sci Food Agric 2011, 91, 1341-1348, doi:10.1002/jsfa.4367. 32. Chen, Y.S.; Srionnual, S.; Onda, T.; Yanagida, F. Effects of prebiotic oligosaccharides and trehalose on growth and production of bacteriocins by lactic acid bacteria. Lett Appl Microbiol 2007, 45, 190-193, doi:10.1111/j.1472-765X.2007.02167.x. 33. Cooper, K.K.; Songer, J.G. Necrotic enteritis in chickens: a paradigm of enteric infection by Clostridium perfringens type A. Anaerobe 2009, 15, 55-60, doi:10.1016/j.anaerobe.2009.01.006. 34. Keyburn, A.L.B., J.D.; Vaz, P.; Bannam, T.L.; Ford, M.E.; Parker, D.; Di Rubbo, A.; Rood, J.I.; Moore, R.J. . NetB, a new toxin that is associated with avian necrotic enteritis caused by Clostridium perfringens. PLoS Pathogens 2008, 4. 35. Rana, E.A.; Nizami, T.A.; Islam, M.S.; Barua, H.; Islam, M.Z. Phenotypical identification and toxinotyping of Clostridium perfringens isolates from healthy and enteric disease-affected chickens. Vet Med Int 2023, 2023, 2584171, doi:10.1155/2023/2584171. 36. Olkowski, A.A.; Wojnarowicz, C.; Chirino-Trejo, M.; Drew, M.D. Responses of broiler chickens orally challenged with Clostridium perfringens isolated from field cases of necrotic enteritis. Res Vet Sci 2006, 81, 99-108, doi:10.1016/j.rvsc.2005.10.006. 37. Abildgaard, L.; Sondergaard, T.E.; Engberg, R.M.; Schramm, A.; Hojberg, O. In vitro production of necrotic enteritis toxin B, NetB, by netB-positive and netB-negative Clostridium perfringens originating from healthy and diseased broiler chickens. Vet Microbiol 2010, 144, 231-235, doi:10.1016/j.vetmic.2009.12.036. 38. Drew, M.D.; Syed, N.A.; Goldade, B.G.; Laarveld, B.; Van Kessel, A.G. Effects of dietary protein source and level on intestinal populations of Clostridium perfringens in broiler chickens. Poult Sci 2004, 83, 414-420, doi:10.1093/ps/83.3.414. 39. Gholamiandehkordi, A.R.; Timbermont, L.; Lanckriet, A.; Van Den Broeck, W.; Pedersen, K.; Dewulf, J.; Pasmans, F.; Haesebrouck, F.; Ducatelle, R.; Van Immerseel, F. Quantification of gut lesions in a subclinical necrotic enteritis model. Avian Pathol 2007, 36, 375-382, doi:10.1080/03079450701589118. 40. Charlebois, A.P., E; Létourneau-Montminy, M.; Boulianne, M. Persistence of a Clostridium perfringens strain in a broiler chicken farm over a three-year period. Avian Dis 2020, 64, 415-420, 416. 41. Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A review of antibiotic use in food animals: perspective, policy, and potential. Public Health Rep 2012, 127, 4-22, doi:10.1177/003335491212700103. 42. Liu, Y.; Zhang, S.; Luo, Z.; Liu, D. Supplemental Bacillus subtilis PB6 improves growth performance and gut health in broilers challenged with Clostridium perfringens. J Immunol Res 2021, 2021, 2549541, doi:10.1155/2021/2549541. 43. Mora, Z.V.N., K.; Vazquez-Paulino, O.A., H.; Castro-Rosas, J.; Gomez-Aldapa, C.; Angulo, C.; Ascencio, F.; Villarruel-Lopez, A. Effect of a synbiotic mix on intestinal structural changes, and Salmonella Typhimurium and Clostridium perfringens colonization in broiler chickens. Animals 2019, 9, doi:10.3390/ani9100777. 44. Keyburn, A.L.; Portela, R.W.; Sproat, K.; Ford, M.E.; Bannam, T.L.; Yan, X.; Rood, J.I.; Moore, R.J. Vaccination with recombinant NetB toxin partially protects broiler chickens from necrotic enteritis. Vet Res 2013, 44, 54, doi:10.1186/1297-9716-44-54. 45. Bendary, M.M.; Abd El-Hamid, M.I.; El-Tarabili, R.M.; Hefny, A.A.; Algendy, R.M.; Elzohairy, N.A.; Ghoneim, M.M.; Al-Sanea, M.M.; Nahari, M.H.; Moustafa, W.H. Clostridium perfringens Associated with Foodborne Infections of Animal Origins: Insights into Prevalence, Antimicrobial Resistance, Toxin Genes Profiles, and Toxinotypes. Biology (Basel) 2022, 11, doi:10.3390/biology11040551. 46. Brynestad, S.; Granum, P.E. Clostridium perfringens and foodborne infections. Int J Food Microbiol 2002, 74, 195-202, doi:10.1016/s0168-1605(01)00680-8. 47. Grass, J.E.; Gould, L.H.; Mahon, B.E. Epidemiology of foodborne disease outbreaks caused by Clostridium perfringens, United States, 1998-2010. Foodborne Pathog Dis 2013, 10, 131-136, doi:10.1089/fpd.2012.1316. 48. Uzal, F.A.; McClane, B.A.; Cheung, J.K.; Theoret, J.; Garcia, J.P.; Moore, R.J.; Rood, J.I. Animal models to study the pathogenesis of human and animal Clostridium perfringens infections. Vet Microbiol 2015, 179, 23-33, doi:10.1016/j.vetmic.2015.02.013. 49. Rood, J.I. Virulence genes of Clostridium perfringens. Annu Rev Microbiol 1998, 52, 333-360, doi:10.1146/annurev.micro.52.1.333. 50. Fourie, J.C.J.; Bezuidenhout, C.C.; Sanko, T.J.; Mienie, C.; Adeleke, R. Inside environmental Clostridium perfringens genomes: antibiotic resistance genes, virulence factors and genomic features. J Water Health 2020, 18, 477-493, doi:10.2166/wh.2020.029. 51. Zhou, H.; Lepp, D.; Pei, Y.; Liu, M.; Yin, X.; Ma, R.; Prescott, J.F.; Gong, J. Influence of pCP1NetB ancillary genes on the virulence of Clostridium perfringens poultry necrotic enteritis strain CP1. Gut Pathog 2017, 9, 6, doi:10.1186/s13099-016-0152-y. 52. Stevens, D.L.; Aldape, M.J.; Bryant, A.E. Life-threatening clostridial infections. Anaerobe 2012, 18, 254-259, doi:10.1016/j.anaerobe.2011.11.001. 53. Mohiuddin, M.; Yuan, W.; Song, Z.; Liao, S.; Qi, N.; Li, J.; Lv, M.; Wu, C.; Lin, X.; Hu, J.; et al. Experimental induction of necrotic enteritis with or without predisposing factors using netB positive Clostridium perfringens strains. Gut Pathog 2021, 13, 68, doi:10.1186/s13099-021-00463-z. 54. Paredes-Sabja, D.; Setlow, P.; Sarker, M.R. Germination of spores of Bacillales and Clostridiales species: mechanisms and proteins involved. Trends Microbiol 2011, 19, 85-94, doi:10.1016/j.tim.2010.10.004. 55. Awad, M.M.; Bryant, A.E.; Stevens, D.L.; Rood, J.I. Virulence studies on chromosomal alpha-toxin and theta-toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of alpha-toxin in Clostridium perfringens-mediated gas gangrene. Mol Microbiol 1995, 15, 191-202, doi:10.1111/j.1365-2958.1995.tb02234.x. 56. Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States--major pathogens. Emerg Infect Dis 2011, 17, 7-15, doi:10.3201/eid1701.p11101. 57. Fisher, D.J.; Fernandez-Miyakawa, M.E.; Sayeed, S.; Poon, R.; Adams, V.; Rood, J.I.; Uzal, F.A.; McClane, B.A. Dissecting the contributions of Clostridium perfringens type C toxins to lethality in the mouse intravenous injection model. Infect Immun 2006, 74, 5200-5210, doi:10.1128/IAI.00534-06. 58. Lindström, M.H., A.; Lahti, P.; Korkeala, H. Novel insights into the epidemiology of Clostridium perfringens type A food poisoning. Food Microbiol 2011, 20, 192-198, doi:https://doi.org/10.1016/j.fm.2010.03.020. 59. Hassan, K.A.; Elbourne, L.D.; Tetu, S.G.; Melville, S.B.; Rood, J.I.; Paulsen, I.T. Genomic analyses of Clostridium perfringens isolates from five toxinotypes. Res Microbiol 2015, 166, 255-263, doi:10.1016/j.resmic.2014.10.003. 60. Duan, Z.; Hansen, T.H.; Hansen, T.B.; Dalgaard, P.; Knochel, S. Predicting outgrowth and inactivation of Clostridium perfringens in meat products during low temperature long time heat treatment. Int J Food Microbiol 2016, 230, 45-57, doi:10.1016/j.ijfoodmicro.2016.03.019. 61. Li, J.; McClane, B.A. Comparative effects of osmotic, sodium nitrite-induced, and pH-induced stress on growth and survival of Clostridium perfringens type A isolates carrying chromosomal or plasmid-borne enterotoxin genes. Appl Environ Microbiol 2006, 72, 7620-7625, doi:10.1128/AEM.01911-06. 62. Kaakoush, N.O.; Castano-Rodriguez, N.; Mitchell, H.M.; Man, S.M. Global Epidemiology of Campylobacter infection. Clin Microbiol Rev 2015, 28, 687-720, doi:10.1128/CMR.00006-15. 63. Platts-Mills, J.A.; Kosek, M. Update on the burden of Campylobacter in developing countries. Curr Opin Infect Dis 2014, 27, 444-450, doi:10.1097/QCO.0000000000000091. 64. Louis, V.R.; Gillespie, I.A.; O'Brien, S.J.; Russek-Cohen, E.; Pearson, A.D.; Colwell, R.R. Temperature-driven Campylobacter seasonality in England and Wales. Appl Environ Microbiol 2005, 71, 85-92, doi:10.1128/AEM.71.1.85-92.2005. 65. Nichols, G.L.; Richardson, J.F.; Sheppard, S.K.; Lane, C.; Sarran, C. Campylobacter epidemiology: a descriptive study reviewing 1 million cases in England and Wales between 1989 and 2011. BMJ Open 2012, 2, doi:10.1136/bmjopen-2012-001179. 66. Young, K.T.; Davis, L.M.; Dirita, V.J. Campylobacter jejuni: molecular biology and pathogenesis. Nat Rev Microbiol 2007, 5, 665-679, doi:10.1038/nrmicro1718. 67. Korolik, V. The role of chemotaxis during Campylobacter jejuni colonisation and pathogenesis. Curr Opin Microbiol 2019, 47, 32-37, doi:10.1016/j.mib.2018.11.001. 68. Li, X.; Chai, Q.; Zheng, L.; Huang, P.; Gundogdu, O.; Jiao, X.; Tang, Y.; Huang, J. Investigating the role of BN-domains of FlhF involved in flagellar synthesis in Campylobacter jejuni. Microbiol Res 2022, 256, 126944, doi:10.1016/j.micres.2021.126944. 69. Jin, S.; Joe, A.; Lynett, J.; Hani, E.K.; Sherman, P.; Chan, V.L. JlpA, a novel surface-exposed lipoprotein specific to Campylobacter jejuni, mediates adherence to host epithelial cells. Mol Microbiol 2001, 39, 1225-1236, doi:10.1111/j.1365-2958.2001.02294.x. 70. Hickey, T.E.; McVeigh, A.L.; Scott, D.A.; Michielutti, R.E.; Bixby, A.; Carroll, S.A.; Bourgeois, A.L.; Guerry, P. Campylobacter jejuni cytolethal distending toxin mediates release of interleukin-8 from intestinal epithelial cells. Infect Immun 2000, 68, 6535-6541, doi:10.1128/IAI.68.12.6535-6541.2000. 71. Lara-Tejero, M.; Galan, J.E. CdtA, CdtB, and CdtC form a tripartite complex that is required for cytolethal distending toxin activity. Infect Immun 2001, 69, 4358-4365, doi:10.1128/IAI.69.7.4358-4365.2001. 72. Guerry, P. Campylobacter flagella: not just for motility. Trends microbiol 2007, 15, 456-461, doi:https://doi.org/10.1016/j.tim.2007.09.006. 73. Ang, C.W.; De Klerk, M.A.; Endtz, H.P.; Jacobs, B.C.; Laman, J.D.; van der Meche, F.G.; van Doorn, P.A. Guillain-Barre syndrome- and Miller Fisher syndrome-associated Campylobacter jejuni lipopolysaccharides induce anti-GM1 and anti-GQ1b Antibodies in rabbits. Infect Immun 2001, 69, 2462-2469, doi:10.1128/IAI.69.4.2462-2469.2001. 74. Man, S.M. The clinical importance of emerging Campylobacter species. Nat Rev Gastroenterol Hepatol 2011, 8, 669-685, doi:10.1038/nrgastro.2011.191. 75. Klena, J.D.; Parker, C.T.; Knibb, K.; Ibbitt, J.C.; Devane, P.M.; Horn, S.T.; Miller, W.G.; Konkel, M.E. Differentiation of Campylobacter coli, Campylobacter jejuni, Campylobacter lari, and Campylobacter upsaliensis by a multiplex PCR developed from the nucleotide sequence of the lipid A gene lpxA. J Clin Microbiol 2004, 42, 5549-5557, doi:10.1128/JCM.42.12.5549-5557.2004. 76. Allos, B.M. Campylobacter jejuni Infections: update on emerging issues and trends. Clin Infect Dis 2001, 32, 1201-1206, doi:10.1086/319760. 77. Engberg, J.; Aarestrup, F.M.; Taylor, D.E.; Gerner-Smidt, P.; Nachamkin, I. Quinolone and macrolide resistance in Campylobacter jejuni and C. coli: resistance mechanisms and trends in human isolates. Emerg Infect Dis 2001, 7, 24-34, doi:10.3201/eid0701.010104. 78. Luangtongkum, T.; Jeon, B.; Han, J.; Plummer, P.; Logue, C.M.; Zhang, Q. Antibiotic resistance in Campylobacter: emergence, transmission and persistence. Future Microbiol 2009, 4, 189-200, doi:10.2217/17460913.4.2.189. 79. Park, M.; Kim, J.; Feinstein, J.; Lang, K.S.; Ryu, S.; Jeon, B. Development of fluoroquinolone resistance through antibiotic tolerance in Campylobacter jejuni. Microbiol Spectr 2022, 10, e0166722, doi:10.1128/spectrum.01667-22. 80. Hughes, R.A.C. Guillain-Barre syndrome: looking back... and forward. J Neurol Neurosurg Psychiatry 2020, 91, 111-112, doi:10.1136/jnnp-2019-322361. 81. Newell, D.G.; Fearnley, C. Sources of Campylobacter colonization in broiler chickens. Appl Environ Microbiol 2003, 69, 4343-4351, doi:10.1128/AEM.69.8.4343-4351.2003. 82. Udayamputhoor, R.S.; Hariharan, H.; Van Lunen, T.A.; Lewis, P.J.; Heaney, S.; Price, L.; Woodward, D. Effects of diet formulations containing proteins from different sources on intestinal colonization by Campylobacter jejuni in broiler chickens. Can J Vet Res 2003, 67, 204-212. 83. Sahin, O.; Luo, N.; Huang, S.; Zhang, Q. Effect of Campylobacter-specific maternal antibodies on Campylobacter jejuni colonization in young chickens. Appl Environ Microbiol 2003, 69, 5372-5379, doi:10.1128/AEM.69.9.5372-5379.2003. 84. D'Angelantonio, D.; Scattolini, S.; Boni, A.; Neri, D.; Di Serafino, G.; Connerton, P.; Connerton, I.; Pomilio, F.; Di Giannatale, E.; Migliorati, G.; et al. Bacteriophage therapy to reduce colonization of Campylobacter jejuni in broiler chickens before slaughter. Viruses 2021, 13, doi:10.3390/v13081428. 85. Al Hakeem, W.G.F., S.; Shanmugasundaram, R.; Selvaraj, R. K. Campylobacter jejuni in poultry: pathogenesis and control strategies. Microorganisms 2022, 10, doi:10.3390/microorganisms10112134. 86. Bhaduri, S.; Cottrell, B. Survival of cold-stressed Campylobacter jejuni on ground chicken and chicken skin during frozen storage. Appl Environ Microbiol 2004, 70, 7103-7109, doi:10.1128/AEM.70.12.7103-7109.2004. 87. Silva, J.L., D.; Fernandes, M.; Mena, C.; Gibbs, P.A.; Teixeira, P. Campylobacter spp. as a foodborne pathogen: a review. Front Microbiol 2011, 2, 200, doi:10.3389/fmicb.2011.00200. 88. Provaznikova, D.; Kumstyrova, T.; Kotlin, R.; Salaj, P.; Matoska, V.; Hrachovinova, I.; Rittich, S. High-resolution melting analysis for detection of MYH9 mutations. Platelets 2008, 19, 471-475, doi:10.1080/09537100802140013. 89. Nagai, Y.; Iwade, Y.; Hayakawa, E.; Nakano, M.; Sakai, T.; Mitarai, S.; Katayama, M.; Nosaka, T.; Yamaguchi, T. High resolution melting curve assay for rapid detection of drug-resistant Mycobacterium tuberculosis. J Infect Chemother 2013, 19, 1116-1125, doi:10.1007/s10156-013-0636-3. 90. Ong, D.C.; Yam, W.C.; Siu, G.K.; Lee, A.S. Rapid detection of rifampicin- and isoniazid-resistant Mycobacterium tuberculosis by high-resolution melting analysis. J Clin Microbiol 2010, 48, 1047-1054, doi:10.1128/JCM.02036-09. 91. Yadav, R.; Sethi, S.; Mewara, A.; Dhatwalia, S.K.; Gupta, D.; Sharma, M. Rapid detection of rifampicin, isoniazid and streptomycin resistance in Mycobacterium tuberculosis clinical isolates by high-resolution melting curve analysis. J Appl Microbiol 2012, 113, 856-862, doi:10.1111/j.1365-2672.2012.05379.x. 92. Fathima, S.H., W.G.A.; Shanmugasundaram, R.; Selvaraj, R.K. Necrotic enteritis in broiler chickens: a review on the pathogen, pathogenesis, and prevention. Microorganisms 2022, 10, 1958. 93. Hume, M.E. Historic perspective: prebiotics, probiotics, and other alternatives to antibiotics. Poult Sci 2011, 90, 2663-2669, doi:10.3382/ps.2010-01030. 94. Kim, G.B.; Seo, Y.M.; Kim, C.H.; Paik, I.K. Effect of dietary prebiotic supplementation on the performance, intestinal microflora, and immune response of broilers. Poult Sci 2011, 90, 75-82, doi:10.3382/ps.2010-00732. 95. Abd El-Hack, M.E.E.-S., M. T.; Salem, H. M.; El-Tahan, A. M.; Soliman, M. M.; Youssef, G. B. A.; Taha, A. E.; Soliman, S. M.; Ahmed, A. E.; El-Kott, A. F.; Al Syaad, K. M.; Swelum, A. A. Alternatives to antibiotics for organic poultry production: types, modes of action and impacts on bird's health and production. Poult Sci 2022, 101, 101696, doi:10.1016/j.psj.2022.101696. 96. Calik, A.; Omara, II; White, M.B.; Evans, N.P.; Karnezos, T.P.; Dalloul, R.A. Dietary non-drug feed additive as an alternative for antibiotic growth promoters for broilers during a necrotic enteritis challenge. Microorganisms 2019, 7, doi:10.3390/microorganisms7080257. 97. El-Shall, N.A.; Awad, A.M.; El-Hack, M.E.A.; Naiel, M.A.E.; Othman, S.I.; Allam, A.A.; Sedeik, M.E. The simultaneous administration of a probiotic or prebiotic with live salmonella vaccine improves growth performance and reduces fecal shedding of the bacterium in Salmonella-challenged broilers. Animals (Basel) 2019, 10, doi:10.3390/ani10010070. 98. Gaggia, F.; Mattarelli, P.; Biavati, B. Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol 2010, 141 Suppl 1, S15-28, doi:10.1016/j.ijfoodmicro.2010.02.031. 99. Tomasik, P.J.; Tomasik, P. Probiotics and Prebiotics. Cereal Chemistry 2003, 80, 113-117, doi:https://doi.org/10.1094/CCHEM.2003.80.2.113. 100. Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 1995, 125, 1401-1412, doi:10.1093/jn/125.6.1401. 101. Wu, Y.T.; Yang, W.Y.; Samuel Wu, Y.H.; Chen, J.W.; Chen, Y.C. Modulations of growth performance, gut microbiota, and inflammatory cytokines by trehalose on Salmonella Typhimurium-challenged broilers. Poult Sci 2020, 99, 4034-4043, doi:10.1016/j.psj.2020.03.053. 102. Ruangpanit, Y.; Matsushita, K.; Mukai, K.; Kikusato, M. Effect of trehalose supplementation on growth performance and intestinal morphology in broiler chickens. Vet Anim Sci 2020, 10, 100142, doi:10.1016/j.vas.2020.100142. 103. Kaldhusdal, M.; Hofshagen, M. Barley inclusion and avoparcin supplementation in broiler diets. 2. Clinical, pathological, and bacteriological findings in a mild form of necrotic enteritis. Poult. Sci. 1992, 71, 1145-1153. 104. Baums, C.G.; Schotte, U.; Amtsberg, G.; Goethe, R. Diagnostic multiplex PCR for toxin genotyping of Clostridium perfringens isolates. Vet Microbiol. 2004, 100, 11-16, doi:10.1016/S0378-1135(03)00126-3. 105. Wang, R.F.; Cao, W.W.; Franklin, W.; Campbell, W.; Cerniglia, C.E. A 16S rDNA-based PCR method for rapid and specific detection of Clostridium perfringens in food. Mol. Cell. Probe. 1994, 8, 131-137, doi:10.1006/mcpr.1994.1018. 106. Coursodon, C.F.; Glock, R.D.; Moore, K.L.; Cooper, K.K.; Songer, J.G. TpeL-producing strains of Clostridium perfringens type A are highly virulent for broiler chicks. Anaerobe 2012, 18, 117-121, doi:10.1016/j.anaerobe.2011.10.001. 107. NCCLS. Methods for antimicrobial susceptibility testing of anaerobic bacteria. National Committee for Clinical Laboratory Standards 2004. 108. Shane, S.M.; Koetting, D.G.; Harrington, K.S. The occurrence of Clostridium perfringens in the intestine of chicks. Avian Dis. 1984, 28, 1120-1124. 109. Miwa, N.; Nishina, T.; Kubo, S.; Honda, H. Most probable numbers of enterotoxigenic Clostridium perfringens in intestinal contents of domestic livestock detected by nested PCR. J. Vet. Med. Sci. 1997, 59, 557-560, doi:DOI 10.1292/jvms.59.557. 110. Heikinheimo, A.; Korkeala, H. Multiplex PCR assay for toxinotyping Clostridium perfringens isolates obtained from Finnish broiler chickens. Lett. Appl. Microbiol. 2005, 40, 407-411, doi:10.1111/j.1472-765X.2005.01702.x. 111. Engstrom, B.E.; Fermer, C.; Lindberg, A.; Saarinen, E.; Baverud, V.; Gunnarsson, A. Molecular typing of isolates of Clostridium perfringens from healthy and diseased poultry. Vet Microbiol 2003, 94, 225-235, doi:10.1016/S0378-1135(03)00106-8. 112. Gharaibeh, S.; Al Rifai, R.; Al-Majali, A. Molecular typing and antimicrobial susceptibility of Clostridium perfringens from broiler chickens. Anaerobe 2010, 16, 586-589, doi:10.1016/j.anaerobe.2010.10.004. 113. Caiyan Wu, S.L., Nanshan Qi , Xinyu Peng, , Minna Lv and Mingfei Sun. Molecullar typing, prevalence of netB and antimicrobial susceptibility among clinical isolates of Clostridium perfringens from chickens in southern China. J. Anim. Vet. Adv. 2012, 11, 1183-1187. 114. Wen, Q.; McClane, B.A. Detection of enterotoxigenic Clostridium perfringens type A isolates in American retail foods. Appl. Environ. Microbiol. 2004, 70, 2685-2691, doi:10.1128/aem.70.5.2685-2691.2004. 115. Miki, Y.; Miyamoto, K.; Kaneko-Hirano, I.; Fujiuchi, K.; Akimoto, S. Prevalence and characterization of enterotoxin gene-carrying Clostridium perfringens isolates from retail meat products in Japan. Appl. Environ. Microbiol. 2008, 74, 5366-5372, doi:10.1128/aem.00783-08. 116. Grass, J.E.; Gould, L.H.; Mahon, B.E. Epidemiology of Foodborne Disease Outbreaks Caused by Clostridium perfringens, United States, 1998-2010. Foodborne Pathog Dis 2013, 10, 131-136, doi:10.1089/fpd.2012.1316. 117. Lee, K.W.; Lillehoj, H.S.; Park, M.S.; Jang, S.I.; Ritter, G.D.; Hong, Y.H.; Jeong, W.; Jeoung, H.Y.; An, D.J.; Lillehoj, E.P. Clostridium perfringens alpha-toxin and NetB toxin antibodies and their possible role in protection against necrotic enteritis and gangrenous dermatitis in broiler chickens. Avian Dis 2012, 56, 230-233, doi:10.1637/9847-070711-ResNote.1. 118. Keyburn, A.L.; Boyce, J.D.; Vaz, P.; Bannam, T.L.; Ford, M.E.; Parker, D.; Di Rubbo, A.; Rood, J.I.; Moore, R.J. NetB, a new toxin that is associated with avian necrotic enteritis caused by Clostridium perfringens. PLoS Pathog 2008, 4, e26, doi:10.1371/journal.ppat.0040026. 119. Dahiya, J.P.; Wilkie, D.C.; Van Kessel, A.G.; Drew, M.D. Potential strategies for controlling necrotic enteritis in broiler chickens in post-antibiotic era. Anim Feed Sci Technol 2006, 129, 60-88, doi:10.1016/j.anifeedsci.2005.12.003. 120. Martel, A.; Devriese, L.A.; Cauwerts, K.; De Gussem, K.; Decostere, A.; Haesebrouck, F. Susceptibility of Clostridium perfringens strains from broiler chickens to antibiotics and anticoccidials. Avian Pathol 2004, 33, 3-7, doi:10.1080/0307945031000163291. 121. Johansson, A.; Greko, C.; Engstrom, B.E.; Karlsson, M. Antimicrobial susceptibility of Swedish, Norwegian and Danish isolates of Clostridium perfringens from poultry, and distribution of tetracycline resistance genes. Vet. Microbiol. 2004, 99, 251-257, doi:10.1016/j.vetmic.2004.01.009. 122. Watkins, K.L.; Shryock, T.R.; Dearth, R.N.; Saif, Y.M. In-vitro antimicrobial susceptibility of Clostridium perfringens from commercial turkey and broiler chicken origin. Vet Microbiol 1997, 54, 195-200, doi:Doi 10.1016/S0378-1135(96)01276-X. 123. Llanco, L.A.; Nakano, V.; Ferreira, A.J.P.; Avila-Campos, M.J. Toxintyping and antimicrobial susceptibility of Clostridium perfringens isolated from brolier chickens with necrotic enteritis. Int. J. Food Microbiol. Res. 2012, 4, 290-294. 124. Slavic, D.; Boerlin, P.; Fabri, M.; Klotins, K.C.; Zoethout, J.K.; Weir, P.E.; Bateman, D. Antimicrobial susceptibility of Clostridium perfringens isolates of bovine, chicken, porcine, and turkey origin from Ontario. Can J Vet Res 2011, 75, 89-97. 125. Gholamiandehkordi, A.; Eeckhaut, V.; Lanckriet, A.; Timbermont, L.; Bjerrum, L.; Ducatelle, R.; Haesebrouck, F.; Van Immerseel, F. Antimicrobial resistance in Clostridium perfringens isolates from broilers in Belgium. Vet Res Commun 2009, 33, 1031-1037, doi:10.1007/s11259-009-9306-4. 126. Eberle, K.N.; Kiess, A.S. Phenotypic and genotypic methods for typing Campylobacter jejuni and Campylobacter coli in poultry. Poult Sci 2012, 91, 255-264, doi:10.3382/ps.2011-01414. 127. Feodoroff, B.; Ellstrom, P.; Hyytiainen, H.; Sarna, S.; Hanninen, M.L.; Rautelin, H. Campylobacter jejuni isolates in Finnish patients differ according to the origin of infection. Gut Pathog 2010, 2, 22, doi:10.1186/1757-4749-2-22. 128. Wilson, M.K.; Lane, A.B.; Law, B.F.; Miller, W.G.; Joens, L.A.; Konkel, M.E.; White, B.A. Analysis of the pan genome of Campylobacter jejuni isolates recovered from poultry by pulsed-field gel electrophoresis, multilocus sequence typing (MLST), and repetitive sequence polymerase chain reaction (rep-PCR) reveals different discriminatory capabilities. Microb Ecol 2009, 58, 843-855, doi:10.1007/s00248-009-9571-3. 129. Friedman, C.R.; Hoekstra, R.M.; Samuel, M.; Marcus, R.; Bender, J.; Shiferaw, B.; Reddy, S.; Ahuja, S.D.; Helfrick, D.L.; Hardnett, F.; et al. Risk factors for sporadic Campylobacter infection in the United States: A case-control study in FoodNet sites. Clin Infect Dis 2004, 38 Suppl 3, S285-296, doi:10.1086/381598. 130. Jackson CR, F.-C.P., Wineland N, Tankson JD, Barrett JB, Douris A, Gresham CP, Jackson-Hall C, McGlinchey BM, Price MV. Introduction to United States Department of Agriculture VetNet: status of Salmonella and Campylobacter databases from 2004 through 2005. Foodborne Pathog Dis. 2007, 4, 241-248, doi:10.1089/fpd.2006.0067. 131. Hooper, D.C.; Wolfson, J.S. Mode of action of the new quinolones: new data. Eur J Clin Microbiol Infect Dis 1991, 10, 223-231, doi:10.1007/BF01966994. 132. Hooper, D.C.; Wolfson, J.S. Fluoroquinolone Antimicrobial Agents. N Engl J Med 1991, 324, 384-394, doi:10.1056/nejm199102073240606. 133. Amani, J.; Ahmadpour, A.; Imani Fooladi, A.A.; Nazarian, S. Detection of E. coli O157:H7 and Shigella dysenteriae toxins in clinical samples by PCR-ELISA. Braz J Infect Dis 2015, 19, 278-284, doi:10.1016/j.bjid.2015.02.008. 134. Druml, B.; Cichna-Markl, M. High resolution melting (HRM) analysis of DNA--its role and potential in food analysis. Food Chem 2014, 158, 245-254, doi:10.1016/j.foodchem.2014.02.111. 135. Law, J.W.; Ab Mutalib, N.S.; Chan, K.G.; Lee, L.H. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 2014, 5, 770, doi:10.3389/fmicb.2014.00770. 136. Wang, G.; Clark, C.G.; Taylor, T.M.; Pucknell, C.; Barton, C.; Price, L.; Woodward, D.L.; Rodgers, F.G. Colony multiplex PCR assay for identification and differentiation of Campylobacter jejuni, C. coli, C. lari, C. upsaliensis, and C. fetus subsp. fetus. J Clin Microbiol 2002, 40, 4744-4747, doi:10.1128/JCM.40.12.4744-4747.2002. 137. Yin, X.; Zheng, L.; Liu, Q.; Lin, L.; Hu, X.; Hu, Y.; Wang, Q. High-resolution melting curve analysis for rapid detection of rifampin resistance in Mycobacterium tuberculosis: a meta-analysis. J Clin Microbiol 2013, 51, 3294-3299, doi:10.1128/JCM.01264-13. 138. Ge, B.; McDermott, P.F.; White, D.G.; Meng, J. Role of efflux pumps and topoisomerase mutations in fluoroquinolone resistance in Campylobacter jejuni and Campylobacter coli. Antimicrob Agents Chemother 2005, 49, 3347-3354, doi:10.1128/AAC.49.8.3347-3354.2005. 139. Wilson, D.L.; Abner, S.R.; Newman, T.C.; Mansfield, L.S.; Linz, J.E. Identification of ciprofloxacin-resistant Campylobacter jejuni by use of a fluorogenic PCR assay. J Clin Microbiol 2000, 38, 3971-3978, doi:10.1128/JCM.38.11.3971-3978.2000. 140. Wang, X.; Zhuo, Q.; Hong, Y.; Wu, Y.; Gu, Q.; Yuan, D.; Dong, Q.; Shao, J. Correlation between multilocus sequence typing and antibiotic resistance, virulence potential of Campylobacter jejuni isolates from poultry meat. Foods 2022, 11, doi:10.3390/foods11121768. 141. European Food Safety, A.; European Centre for Disease, P.; Control. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J 2017, 15, e05077, doi:10.2903/j.efsa.2017.5077. 142. Hermans, D.V.D., K.; Messens, W.; Martel, A.; Van Immerseel, F.; Haesebrouck, F.; Rasschaert, G.; Heyndrickx, M.; Pasmans, F. Campylobacter control in poultry by current intervention measures ineffective: urgent need for intensified fundamental research. Vet Microbiol 2011, 152, 219-228, doi:10.1016/j.vetmic.2011.03.010. 143. Stern, N.J.C., N.A.; Musgrove, M.T.; Park, C.M. . Incidence and levels of Campylobacter in broilers after exposure to an inoculated seeder bird. J App Poultry Res 2001, 10, 315-318, doi:doi.org/10.1093/japr/10.4.315. 144. Taha-Abdelaziz, K.S., M.; Sharif, S.; Sharma, S.; Kulkarni, R.R.; Alizadeh, M.; Yitbarek, A.; Helmy, Y.A. Intervention strategies to control Campylobacter at different stages of the food chain. Microorganisms 2023, 11, 113. 145. Al-Surrayai, T.; Al-Khalaifah, H. Dietary supplementation of fructooligosaccharides enhanced antioxidant activity and cellular immune response in broiler chickens. Front Vet Sci 2022, 9, 857294, doi:10.3389/fvets.2022.857294. 146. Smialek, M.; Kowalczyk, J.; Koncicki, A. The use of probiotics in the reduction of Campylobacter spp. prevalence in poultry. Animals 2021, 11, doi:10.3390/ani11051355. 147. Taha-Abdelaziz, K.; Astill, J.; Kulkarni, R.R.; Read, L.R.; Najarian, A.; Farber, J.M.; Sharif, S. In vitro assessment of immunomodulatory and anti-Campylobacter activities of probiotic lactobacilli. Sci Rep 2019, 9, 17903, doi:10.1038/s41598-019-54494-3. 148. Saint-Cyr, M.J.; Haddad, N.; Taminiau, B.; Poezevara, T.; Quesne, S.; Amelot, M.; Daube, G.; Chemaly, M.; Dousset, X.; Guyard-Nicodeme, M. Use of the potential probiotic strain Lactobacillus salivarius SMXD51 to control Campylobacter jejuni in broilers. Int J Food Microbiol 2017, 247, 9-17, doi:10.1016/j.ijfoodmicro.2016.07.003. 149. Manes-Lazaro, R.; Van Diemen, P.M.; Pin, C.; Mayer, M.J.; Stevens, M.P.; Narbad, A. Administration of Lactobacillus johnsonii FI9785 to chickens affects colonisation by Campylobacter jejuni and the intestinal microbiota. Br Poult Sci 2017, 58, 373-381, doi:10.1080/00071668.2017.1307322. 150. Ruvalcaba-Gómez, J.M.V., Z.; Valdez-Alarcón, J.J.; Martínez-Núñez, M.; Gomez-Godínez, L.J.; Ruesga-Gutiérrez, E.; Anaya-Esparza, L.M.; Arteaga-Garibay, R.I.; Villarruel-López, A. Non-antibiotics strategies to control Salmonella infection in poultry. Animals 2022, 12, doi:10.3390/ani12010102. 151. Chotinsky, D.; Toncheva, E.; Profirov, Y. Development of disaccharidase activity in the small intestine of broiler chickens. Br Poult Sci 2001, 42, 389-393, doi:10.1080/00071660120055386. 152. Line, J.H., K.; Conlan, A. Comparison of challenge models for determining the colonization dose of Campylobacter jejuni in broiler chicks. Poult Sci 2008, 87, 1700-1706, doi:10.3382/ps.2008-00027. 153. Sails, A.D.; Fox, A.J.; Bolton, F.J.; Wareing, D.R.; Greenway, D.L. A real-time PCR assay for the detection of Campylobacter jejuni in foods after enrichment culture. Appl Environ Microbiol 2003, 69, 1383-1390, doi:10.1128/AEM.69.3.1383-1390.2003. 154. Wang, R.F.; Cao, W.W.; Franklin, W.; Campbell, W.; Cerniglia, C.E. A 16S rDNA-based PCR method for rapid and specific detection of Clostridium perfringens in food. Mol Cell Probes 1994, 8, 131-137, doi:10.1006/mcpr.1994.1018. 155. Haarman, M.; Knol, J. Quantitative real-time PCR analysis of fecal Lactobacillus species in infants receiving a prebiotic infant formula. Appl Environ Microbiol 2006, 72, 2359-2365, doi:10.1128/AEM.72.4.2359-2365.2006. 156. Hond, E.D.G., B.; Ghoos, Y. Effect of high performance chicory inulin on constipation. Nutr Res 2000, 20, 731-736. 157. Savaiano, D.A. Lactose digestion from yogurt: mechanism and relevance. Am J Clin Nutr 2014, 99, 1251S-1255S, doi:10.3945/ajcn.113.073023. 158. Hermans, D.V.D., K.; Messens, W.; Martel, A.; Van Immerseel, F.; Haesebrouck, F.; Pasmans, F. Colonization factors of Campylobacter jejuni in the chicken gut. Vet Res 2011, 42, 82, doi:10.1186/1297-9716-42-82. 159. Khan, S.; Moore, R.J.; Stanley, D.; Chousalkar, K.K. The gut microbiota of laying hens and its manipulation with prebiotics and probiotics to enhance gut health and food safety. Appl Environ Microbiol 2020, 86, doi:10.1128/AEM.00600-20. 160. Smialek, M.; Kowalczyk, J.; Koncicki, A. The use of probiotics in the reduction of Campylobacter spp. prevalence in poultry. Animals 2021, 11, doi:10.3390/ani11051355. 161. Bereswill, S.; Ekmekciu, I.; Escher, U.; Fiebiger, U.; Stingl, K.; Heimesaat, M.M. Lactobacillus johnsonii ameliorates intestinal, extra-intestinal and systemic pro-inflammatory immune responses following murine Campylobacter jejuni infection. Sci Rep 2017, 7, 2138, doi:10.1038/s41598-017-02436-2. 162. Thomrongsuwannakij, T., Chuanchuen, R.; Chansiripornchai, N. Identification of competitive exclusion and its ability to protect against Campylobacter jejuni in broilers. The Thai J Vet Med 2016, 46, 279-286. 163. Arsi, K., Donoghue, A.M., Woo-Ming, A., Blore, P.J.; Donoghue, D.J. The efficacy of selected probiotic and prebiotic combinations in reducing Campylobacter colonization in broiler chickens. J Appl Poultry Res 2015, 24, 327-334, doi:https://doi.org/10.3382/japr/pfv032. 164. Long, J.R.; Pettit, J.R.; Barnum, D.A. Necrotic enteritis in broiler chickens. II. pathology and proposed pathogenesis. Can J Comp Med 1974, 38, 467-474. 165. Si, W.G., J.; Han, Y.; Yu, H.; Brennan, J.; Zhou, H.; Chen, S. Quantification of cell proliferation and alpha-toxin gene expression of Clostridium perfringens in the development of necrotic enteritis in broiler chickens. . Appl enviro microb 2007, 73, 7110–7113., doi:https://doi.org/10.1128/AEM.01108-07. 166. Dahiya, J.P.W., D.C.; Van Kessel, A.G.; Drew, M.D. Potential strategies for controlling necrotic enteritis in broiler chickens in post-antibiotic era. Anim Feed Sci Tec 2006, 129, 60-88, doi:https://doi.org/10.1016/j.anifeedsci.2005.12.003. 167. To, H.; Suzuki, T.; Kawahara, F.; Uetsuka, K.; Nagai, S.; Nunoya, T. Experimental induction of necrotic enteritis in chickens by a netB-positive Japanese isolate of Clostridium perfringens. J Vet Med Sci 2017, 79, 350-358, doi:10.1292/jvms.16-0500. 168. Vanaporn, M.; Titball, R.W. Trehalose and bacterial virulence. Virulence 2020, 11, 1192-1202, doi:10.1080/21505594.2020.1809326. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90188 | - |
dc.description.abstract | 家禽肉及其相關產品是亞洲以及全世界重要的蛋白質來源。然而,近年來,食品安全對於政府和整個社會來說變得越來越重要。食媒性病原體和抗生素抗藥性問題已經被指出對消費者健康造成傷害。隨著食品安全意識的抬頭,許多國家開始禁止抗生素作為生長促進劑使用。然而,部分疾病隨之重新浮現,例如產氣莢膜梭狀芽孢桿菌、空腸彎曲桿菌,對於家禽產業與人類健康帶來新的威脅。因此,本研究分別進行了三項研究,分別圍繞著產氣莢膜梭狀芽孢桿菌、空腸彎曲桿菌以及海藻糖在家禽健康管理中的作用。產氣莢膜梭狀芽孢桿菌感染以引起家禽群體中亞臨床和臨床性壞死性腸炎而惡名昭彰,全球每年的經濟損失估計為20億美元。第一項在台灣對五週齡、臨床健康上市前的肉雞進行的研究,旨在確定產氣莢膜梭狀芽孢桿菌的流行、毒力分型以及抗微生物藥物抗藥性的調查。該研究從2012年6月持續到2013年2月,總共從98個肉雞養殖場收集的435個雞迴腸內容物樣本。結果顯示產氣莢膜梭狀芽孢桿菌的檢出率為9.9%,有29.6%的肉雞養殖場為陽性。值得注意的是,所有分離出來的產氣莢膜梭狀芽孢桿菌都產生了A型毒素。該研究透過qPCR檢測雞隻腸內容物中的產氣莢膜梭狀芽孢桿菌數量平均為3.9×106 CFU/g,菌量範圍從6.85×102到1.61×107 CFU/g。在雞迴腸的病變分數與產氣莢膜梭狀芽孢桿菌數量之間有正相關(p<0.05)。對所有分離出來的產氣莢膜梭狀芽孢桿菌進行抗生素敏感性測試、量測各抗微生物藥物的MIC50值。大多數的產氣莢膜梭狀芽孢桿菌對amoxicillin、bacitracin及 enrofloxacin顯示出敏感,但對chlortetracycline、erythromycin及 lincomycin顯示出抗藥性。值得注意的是,從腸道有嚴重病變的雞體內分離出來的產氣莢膜梭狀芽孢桿菌的erythromycin及 lincomycin的MIC50值比腸道輕微病變的雞要高。在另一項研究中,2009年至2012年從國內水禽收集的95株空腸彎曲桿菌分離株進行了quinolone抗藥性分析。對nalidixic acid和ciprofloxacin具抗藥性的比率分別為61.2%和57.9%。此外,進一步篩查了這些分離物中gyrA基因的quinolone抗藥決定區(QRDRs)的突變情況。在gyrA突變分析中觀察到多種突變模式。高解析度熔解(HRM)分析中結果中顯示四種熔化溫度曲線模式,能夠區分突變型gyrA菌株和野生型菌株。試驗結果證明HRM可以在全面的quinolone抗藥性監測計劃中快速檢測gyrA突變。最後一項研究調查了海藻糖對肉雞生長性能和病原菌接種的影響。海藻糖是動物、植物和微生物中發現的一種雙醣,也是FDA和歐盟批准的食品添加劑。該研究包括兩個實驗—第一個旨在確定肉雞對海藻糖的耐受性。結果顯示,在飼養期間體重變化、每日體重增長、飼料攝取量或飼料轉換率方面都沒有顯著差異(p>0.05)。這個結果顯示飼糧中添加最高10%的海藻糖劑量也不會對肉雞養殖造成負面影響。第二個實驗評估了海藻糖對空腸彎曲桿菌和產氣莢膜梭狀芽孢桿菌的抗菌效果。試驗結果顯示,沒有觀察到肉雞生長性能或空腸彎曲桿菌和產氣莢膜梭狀芽孢桿菌在肉雞腸道和糞便中的菌數的顯著差異(p>0.05)。然而,乳酸桿菌的數量在添加3%和5%海藻糖的情況下顯著增加(p<0.05)。儘管海藻糖並未直接減少空腸彎曲桿菌和產氣莢膜梭狀芽孢桿菌的數量,但它似乎通過提高雞腸道中乳酸桿菌的數量來增強腸道健康,特別是在存在腸道病原菌的情況下。因此,雖然海藻糖並未直接影響肉雞的生長性能或空腸彎曲桿菌和產氣莢膜梭狀芽孢桿菌在肉雞腸道中的數量,但它可能通過提高乳酸桿菌的數量在肉雞飼養中作為一種益生元。總結來說,這些研究強調了台灣家禽中重要病原體如產氣莢膜梭狀芽孢桿菌和空腸彎曲桿菌的流行和抗藥性模式,並獲得海藻糖作為飼糧中添加劑提高家禽健康中的潛在作用。這些發現可能對制定未來的家禽疾病控制和管理策略提供參考,為更可持續的家禽養殖做出貢獻。 | zh_TW |
dc.description.abstract | Poultry meat and related products are a vital source of protein not only in Asia but also in the global. However, recently, food safety has become increasingly important to governments, industry and consumers. Foodborne pathogens and antibiotic resistance have been reported to harm the health of consumers. With convenient transportation and increasing globalization, the food chain has become more and more complex, exacerbating these issues. The control and management of poultry diseases have significant implications for global food security, considering the potential economic losses in the industry. In this dissertation, there were three studies focusing on this challenge conducted in Taiwan: 1) revolving around Clostridium perfringens and 2) Campylobacter jejuni, as well as 3) the potential role of trehalose in managing poultry health. C. perfringens infection is notorious for causing subclinical and clinical necrotic enteritis in poultry flocks, with an estimated annual global economic toll of two billion US dollars. The first study on Taiwan's 5-week-old and clinically healthy broiler sought to determine C. perfringens prevalence, toxin types, and antimicrobial resistance levels. The study spanned from June 2012 to February 2013 and involved the collection of 435 samples of chicken ileum contents from 98 broiler farms. The results indicated a C. perfringens isolation rate of 9.9%, with 29.6% of the tested farms testing positive. It was noted that all isolated C. perfringens produced toxin type A. The study revealed a mean C. perfringens number of 3.9×106 CFU/g in the intestinal contents through qPCR. This number ranged from 6.85×102 to 1.61×107 CFU/g. There was a positive correlation (p<0.05) between the lesion score and C. perfringens number in the chickens' ilea. On conducting antimicrobial susceptibility tests on all C. perfringens isolates, the MIC50 values for several antimicrobial drugs were determined. Most C. perfringens isolates showed susceptibility to amoxicillin, bacitracin, and enrofloxacin but demonstrated resistance to chlortetracycline, erythromycin, and lincomycin. Notably, C. perfringens isolated from chickens with severe lesions had a higher MIC50 of erythromycin and lincomycin than chickens with mild lesions. In another study, 95 C. jejuni isolates collected from domestic waterfowl from 2009 to 2012 were subjected to quinolone resistance analysis. The resistance rates to nalidixic acid and ciprofloxacin were 61.2% and 57.9%, respectively. The isolates were further screened for mutations in the quinolone-resistant determining regions (QRDRs) of the gyrA genes. A variety of mutation patterns was observed in the gyrA mutation analysis. A high-resolution melting (HRM) analysis revealed four patterns of melting temperature curve that distinguished mutated-gyrA strains from wild-type strains. The HRM assay demonstrated its viability for rapidly detecting gyrA mutations in a comprehensive quinolone resistance monitoring program. The final study investigated the impact of trehalose, a disaccharide found in animals, plants, and microorganisms, and a legal food additive in the FDA and the European Union on broilers' growth performance and pathogenic bacteria inoculation. The research comprised two objectives—the first objective to determine broilers' tolerance to trehalose. The results showed no significant differences (p>0.05) on body weight changes, daily weight gain, feed intake, or feed conversion ratio during the feeding period. This result suggested that a trehalose dosage of up to 10% should not negatively affect broiler farming. The second objective evaluated the antibacterial effects of trehalose on C. jejuni and C. perfringens, respectively. No significant difference (p>0.05) was observed in broilers’ growth performance or bacterial counts of C. jejuni and C. perfringens in the intestine and feces of broilers during a 5-week feeding period. However, Lactobacillus counts significantly increased with 3% and 5% trehalose supplementation. While trehalose did not directly decrease C. jejuni and C. perfringens count, it seemed to enhance gut health by raising Lactobacillus counts in the chicken gut, especially in the presence of enteropathogenic bacteria. Thus, while trehalose does not directly impact the broiler’s growth performance or C. jejuni and C. perfringens counts in the broiler’s gut, it might serve as a prebiotic in broiler feeding by raising Lactobacillus counts. In conclusion, these studies highlight the prevalence and resistance patterns of critical poultry pathogens like C. jejuni and C. perfringens in Taiwan and underscore the potential role of dietary supplements like trehalose in enhancing poultry health. The findings could inform future strategies for controlling and managing poultry diseases, contributing to more sustainable poultry farming. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:46:47Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-22T17:46:47Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 II
Acknowledgment誌謝 IV 中文摘要 V Abstract VII Content X List of tables XII List of illustrations XIV 口試委員會審定書 II Acknowledgment誌謝 III 中文摘要 IV Abstract VI Content IX List of tables XI List of illustrations XIII Chapter 1 Introduction 15 Chapter 2 Literature review 18 2.1 The impact of Clostridium perfringens on poultry 18 2.2 An overview of Clostridium perfringens and its role in human health 20 2.3 An overview of Campylobacter jejuni 23 2.4 An overview the High-resolution melting 27 2.5 An overview the physiological functions of feed additives and trehalose in poultry 28 Chapter 3 Incidence and antimicrobial susceptibility of Clostridium perfringens in pre-market broilers in Taiwan 30 3.1 Abstract 30 3.2 Introduction 31 3.3 Materials and methods 32 3.4 Results 35 3.5 Discussion 37 3.6 Conclusions 39 Chapter 4 The evaluation between the gyrA mutation detected by HRM and quinolone susceptibility in Campylobacter jejuni 40 4.1 Abstract 40 4.2 Introduction 40 4.3 Materials and methods 43 4.4 Results 45 4.5 Discussion 47 4.6 Conclusions 50 Chapter 5 Investigation of trehalose supplementation impacting Campylobacter jejuni and Clostridium perfringens from broiler farming 52 5.1 Abstract 52 5.2 Introduction 53 5.3 Materials and methods 55 5.4 Results 61 Experiment 1: The tolerance test of trehalose on broilers 61 Experiment 2: The antibacterial tests of trehalose on broiler 61 Experiment 2-1: The antibacterial tests of trehalose on C. jejuni 61 Experiment 2-2: The antibacterial tests of trehalose on C. perfringens 62 5.5 Discussion 63 5.6 Conclusions 68 Chapter 6 Summary 70 References 72 Appendix 113 List of tables Table 1. The primers used to detect the bacterial virulence of Cp 85 Table 2. Distribution of intestinal lesion scores and the correlations between lesion scores and bacterial counts of Cp-positive samples 86 Table 3. Distribution of MIC values (µg/mL) of 7 antimicrobials against 43 Cp isolates 86 Table 4. Comparison of MIC50 values (μg/mL) for 43 Cp-positive samples, by histopathological lesion score. Eighteen isolates were scored as 0–2 and 25 isolates were scored as 3–4 87 Table 5. MIC ranges for two quinolones and the amino acid changes in gyrA in the C. jejuni isolates 87 Table 6. Sensitivity and specificity of the high-resolution melting assay in comparison with drug susceptibility testing 88 Table 7. The components of experimental diets in the starter period of broilers 89 Table 8. The components of experimental diets in the grower period of broilers 90 Table 9. The components of experimental diets in the finisher period of broilers 91 Table 10. The components of experimental diets in the starter period of broilers 92 Table 11. The components of experimental diets in the grower period of broilers 93 Table 12. The components of experimental diets in the finisher period of broilers 94 Table 13. Effects of trehalose on body weight of broilers 95 Table 14. Effects of trehalose on daily weight gain and feed intake, feed conversion ratio and mortality of broilers based on each feeding period 96 Table 15. Effects of trehalose on the incidence of diarrhea phenomenon of broilers in each feeding period and overall feeding period 97 Table 16. Effects of trehalose on body weight (g) of broilers orally challenged with C. jejuni 97 Table 17. Effects of trehalose on daily weight gain and feed intake, feed conversion ratio and mortality of broilers orally challenged with C. jejuni according to pre-inoculation and post-inoculation periods 98 Table 18. Effects of trehalose on C. jejuni counts in portions of intestine or feces of broilers orally challenged with C. jejuni) 99 Table 19. Effects of trehalose on total Lactobacillus counts in portions of intestine or feces of broilers orally challenged with C. jejuni 99 Table 20. Effects of trehalose on body weight (g) of broilers orally challenged with C. perfringens 100 Table 21. Effects of trehalose on daily weight gain and feed intake, feed conversion ratio and mortality of broilers orally challenged with C. perfringens according to pre-inoculation and post-inoculation periods 101 Table 22. Effects of trehalose on C. perfringens counts in portions of intestine or feces of broilers orally challenged with C. perfringens 101 Table 23. Effects of trehalose on total Lactobacillus counts in portions of intestine or feces of broilers orally challenged with C. perfringens 102 List of illustrations Figure 1. Gross lesions scores for chicken intestinal mucosa 103 Figure 2. Histopathological lesions scores for chicken intestinal mucosa 104 Figure 3. qPCR results for comparison of 107 CFU/g C. perfringens ATCC 13124, 200 mg ileum contents mixed with 107 CFU/g Cp ATCC 13124, 200 mg ileum contents mixed with 107 CFU/g Cp ATCC 13124 and 107 CFU/g E. coli, 200 mg ileum contents without Cp 105 Figure 4. Multiplex PCR typing results 106 Figure 5. High-resolution melting curves of four kinds of gyrA sequences of C. jejuni isolates 106 Figure 6. Derivative melting curves of four kinds of gyrA sequences of C. jejuni isolates 107 Figure 7. Derivative melting curves for nalidixic acid and ciprofloxacin-susceptible C. jejuni isolates 108 Figure 8. Derivative melting curves for nalidixic acid and ciprofloxacin-resistant C. jejuni isolates 108 Figure 9. Scheme of experiment 1: The tolerance test of trehalose on broilers 109 Figure 10. Scheme of experiment 2-1: The antibacterial tests of trehalose on C. jejuni 110 Figure 11. Scheme of experiment 2-2: The antibacterial tests of trehalose on C. perfringens 111 Figure 12. Effects of trehalose (Tre) on total Lactobacillus counts in portions of intestine or feces of broilers orally challenged with C. jejuni (C.J.) 111 Figure 13. Effects of trehalose (Tre) on total Lactobacillus counts in portions of intestine or feces of broilers orally challenged with C. perfringens (C.P.) 112 | - |
dc.language.iso | en | - |
dc.title | 對產氣莢膜梭狀芽孢桿菌與空腸彎曲桿菌抗藥性以及海藻糖作為益生元潛力的研究 | zh_TW |
dc.title | Studies on Drug Resistance of Clostridium perfringens and Campylobacter jejuni, as well as the Prebiotic Potential of Trehalose | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 陳秋麟;鄭明珠;羅登源;陳億乘;林辰栖 | zh_TW |
dc.contributor.oralexamcommittee | Chiu-Lin Chen;Ming-Chu Cheng;Deng-Yuan Luo;Yi-Chen Chen;Chen-Si Lin | en |
dc.subject.keyword | 食媒性病原體,抗生素抗藥性,產氣莢膜梭狀芽孢桿菌,空腸彎曲桿菌,海藻糖, | zh_TW |
dc.subject.keyword | Foodborne pathogens,Antibiotic resistance,Clostridium perfringens,Campylobacter jejuni,trehalose, | en |
dc.relation.page | 155 | - |
dc.identifier.doi | 10.6342/NTU202303750 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-08-11 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 獸醫學系 | - |
顯示於系所單位: | 獸醫學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 5.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。