Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90186
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor馬開東zh_TW
dc.contributor.advisorKai-Tung Maen
dc.contributor.author五十嵐雪姬zh_TW
dc.contributor.authorYuki Igarashien
dc.date.accessioned2023-09-22T17:46:18Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation[1] “Paris Agreement,” Climate Action. https://climate.ec.europa.eu/eu-action/international-action-climate-change/climate-negotiations/paris-agreement_en (accessed Jun. 30, 2023).
[2] IPCC, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, 2014.
[3] P.-C. Chang, R.-Y. Yang, and C.-M. Lai, “Potential of Offshore Wind Energy and Extreme Wind Speed Forecasting on the West Coast of Taiwan,” Energies, vol. 8, no. 3, pp. 1685–1700, Feb. 2015, doi: 10.3390/en8031685.
[4] H.-F. Fang, “Wind energy potential assessment for the offshore areas of Taiwan west coast and Penghu Archipelago,” Renewable Energy, vol. 67, pp. 237–241, Jul. 2014, doi: 10.1016/j.renene.2013.11.047.
[5] Executive Yuan, R.O.C. (Taiwan), “Offshore wind-power generation,” Executive Yuan, R.O.C. (Taiwan), Dec. 01, 2011. https://english.ey.gov.tw/News3/9E5540D592A5FECD/34ff3d6b-412e-458d-afe9-01737d2da52d (accessed Jun. 30, 2023).
[6] K. M. Wang and Y. J. Cheng, “The Evolution of feed-in tariff policy in Taiwan,” Energy Strategy Reviews, vol. 1, no. 2, pp. 130–133, Sep. 2012, doi: 10.1016/j.esr.2012.05.002.
[7] Executive Yuan, R.O.C. (Taiwan), “Four-year Wind Power Promotion Plan,” Executive Yuan, R.O.C. (Taiwan), Dec. 01, 2011. https://english.ey.gov.tw/News3/9E5540D592A5FECD/d603a1bf-9963-4e53-a92b-e6520a3d93ff (accessed Jun. 30, 2023).
[8] A. M.-Z. Gao, C.-H. Huang, J.-C. Lin, and W.-N. Su, “Review of recent offshore wind power strategy in Taiwan: Onshore wind power comparison,” Energy Strategy Reviews, vol. 38, p. 100747, Nov. 2021, doi: 10.1016/j.esr.2021.100747.
[9] Y. Chiang, “The Legitimacy and Effectiveness of Local Content Requirements: A Case of the Offshore Wind Power Industry in Taiwan,” in Springer Climate, Cham: Springer International Publishing, 2023, pp. 119–133. Accessed: Jul. 01, 2023. [Online]. Available: http://dx.doi.org/10.1007/978-3-031-24545-9_8
[10] W.-M. Chen, H. Kim, and H. Yamaguchi, “Renewable energy in eastern Asia: Renewable energy policy review and comparative SWOT analysis for promoting renewable energy in Japan, South Korea, and Taiwan,” Energy Policy, vol. 74, pp. 319–329, Nov. 2014, doi: 10.1016/j.enpol.2014.08.019.
[11] H.-S. Chung, “Taiwan’s Offshore Wind Energy Policy: From Policy Dilemma to Sustainable Development,” Sustainability, vol. 13, no. 18, p. 10465, Sep. 2021, doi: 10.3390/su131810465.
[12] Ministry of Economic Affairs,R.O.C., “MOEA Initiates the Offshore Wind Energy Zonal Development Selection Mechanism,” Ministry of Economic Affairs,R.O.C., Sep. 12, 2009. https://www.moea.gov.tw/MNS/english/news/News.aspx?kind=6&menu_id=176&news_id=97414 (accessed Jul. 01, 2023).
[13] Wind Resource Assessment Handbook: Fundamentals for Conducting a Successful Monitoring Program. 1997.
[14] “Vena Energy to Expand the Development of Offshore Wind Projects in Taiwan,” Vena Energy - Leading Independent Power Producer in the Asia-Pacific region. https://www.venaenergy.com/news/vena-energy-to-expand-the-development-of-offshore-wind-projects-in-taiwan/ (accessed Jul. 01, 2023).
[15] “CIP 第三階段區塊開發計畫 EN.” https://ciptwr3.com/projects.php?lang=en (accessed Jul. 01, 2023).
[16] T. R. Energy, “Taiya Renewable Energy,” 台亞風能 Taiya Renewable Energy. https://www.tre.com.tw/en (accessed Jul. 01, 2023).
[17] N. G. Berg, M. Hess, and S.-E. Jacobsen, “Globa Production Networks and Industrial Restructuring: Unpacking the Emerging Offshore Wind Industry,” Norsk Geografisk Tidsskrift - Norwegian Journal of Geography, vol. 74, no. 5, pp. 328–329, Jun. 2020, doi: 10.1080/00291951.2020.1776764.
[18] E. I. Konstantinidis and P. N. Botsaris, “Wind turbines: current status, obstacles, trends and technologies,” IOP Conference Series: Materials Science and Engineering, vol. 161, p. 012079, Nov. 2016, doi: 10.1088/1757-899x/161/1/012079.
[19] “Article Pays Homage to Heronemus and the Enormous Impact of UMass on Wind Energy – UMass Amherst College of Engineering,” UMassAmherst. https://umass.engineering/historical-collections/homage-heronemus-impact-umass-wind-energy/ (accessed Jul. 01, 2023).
[20] K. Tong and C. Cannell, “Technical and Economical Aspects of a Floating Offshore Windfarm.,” Wind Engineering, vol. 17, no. 3, 1993.
[21 ]N. Barltrop, “Multiple Unit Floating Offshore Wind Farm (MUFOW),” Wind Engineering, vol. 17, no. 4, pp. 183–188, 1993.
[22] P. Bertacchi, A. Di Monaco, M. de Gerloni, and G. Ferranti, “A Moored Platform for Wind Turbines,” Wind Engineering, vol. 18, no. 4, pp. 189–198, 1994.
[23] “DNV-ST-0119 Floating wind turbine structures,” DNV. https://www.dnv.com/energy/standards-guidelines/dnv-st-0119-floating-wind-turbine-structures.html (accessed Jul. 01, 2023).
[24] K. P. Thiagarajan and H. J. Dagher, “A Review of Floating Platform Concepts for Offshore Wind Energy Generation,” Journal of Offshore Mechanics and Arctic Engineering, vol. 136, no. 2, Mar. 2014, doi: 10.1115/1.4026607.
[25] S. Butterfield , W. Musial , J. Jonkman, and National Renewable Energy Laboratory , “Engineering Challenges for Floating Offshore Wind Turbines ,” in Copenhagen Offshore Wind Conference , 2005.
[26] W. Musial, S. Butterfield, and A. Boone, “Feasibility of Floating Platform Systems for Wind Turbines,” in 42nd AIAA Aerospace Sciences Meeting and Exhibit, Jan. 2004. Accessed: Jul. 01, 2023. [Online]. Available: http://dx.doi.org/10.2514/6.2004-1007
[27] S. Bashetty and S. Ozcelik, “Review on Dynamics of Offshore Floating Wind Turbine Platforms,” Energies, vol. 14, no. 19, p. 6026, Sep. 2021, doi: 10.3390/en14196026.
[28] I.-J. Hsu et al., “Optimization of Semi-Submersible Hull Design for Floating Offshore Wind Turbines,” in Volume 8: Ocean Renewable Energy, Jun. 2022. Accessed: Jun. 30, 2023. [Online]. Available: http://dx.doi.org/10.1115/omae2022-86751
[29] G. Ferri, E. Marino, N. Bruschi, and C. Borri, “Platform and mooring system optimization of a 10 MW semisubmersible offshore wind turbine,” Renewable Energy, vol. 182, pp. 1152–1170, Jan. 2022, doi: 10.1016/j.renene.2021.10.060.
[30] D. Timmington and L. Efthimiou, Mooring Systems for Floating Offshore Wind: Integrity Management Concepts, Risks and Mitigation. World Forum Offshore Wind e.V., 2022.
[31] K.-T. Ma, Y. Luo, C.-T. T. Kwan, and Y. Wu, Mooring System Engineering for Offshore Structures. Gulf Professional Publishing, 2019.
[32] A. Neisi, H. Ghassemi, M. Iranmanesh, and G. He, “Effect of the multi-segment mooring system by buoy and clump weights on the dynamic motions of the floating platform,” Ocean Engineering, vol. 260, p. 111990, Sep. 2022, doi: 10.1016/j.oceaneng.2022.111990.
[33] M. J. Harrold, P. R. Thies, D. Newsam, C. B. Ferreira, and L. Johanning, “Large-scale testing of a hydraulic non-linear mooring system for floating offshore wind turbines,” Ocean Engineering, vol. 206, p. 107386, Jun. 2020, doi: 10.1016/j.oceaneng.2020.107386.
[34] G. Barbanti, E. Marino, and C. Borri, “Mooring System Optimization for a Spar-Buoy Wind Turbine in Rough Wind and Sea Conditions,” in Lecture Notes in Civil Engineering, Cham: Springer International Publishing, 2019, pp. 87–98. Accessed: Jul. 01, 2023. [Online]. Available: http://dx.doi.org/10.1007/978-3-030-12815-9_7
[35] C.-C. Wu and Y.-H. Kuo, “Typhoons Affecting Taiwan: Current Understanding and Future Challenges,” Bulletin of the American Meteorological Society, vol. 80, no. 1, pp. 67–80, Jan. 1999, doi: 10.1175/1520-0477(1999)080<0067:tatcua>2.0.co;2.
[36] Bureau of Safety and Environmental Enforcement (BSEE) and Bureau of Ocean Energy Management (BOEM), “Gulf of Mexico Shallow Water Potential Stranded Assets,” 2019.
[37] C.-A. Chen, K.-H. Chen, Y. Igarashi, D. Chen, K.-T. Ma, and Z.-Y. Lai, “Design of mooring systen for a 15 MW semi-submersible, TaidaFloat, in Taiwan Strait,” in OMAE2023, 2023.
[38] N. Bruschi, G. Ferri, E. Marino, and C. Borri, “Influence of Clumps-Weighted Moorings on a Spar Buoy Offshore Wind Turbine,” Energies, vol. 13, no. 23, p. 6407, Dec. 2020, doi: 10.3390/en13236407.
[39] American Bureau of Shipping, Guidance Notes on Global Performance Analysis for Floating Offshore Wind Turbines. 2020. [Online]. Available: https://ww2.eagle.org/content/dam/eagle/rules-and-guides/current/design_and_analysis/206_globalperanalyfowti/fowt-gpa-gn-july20.pdf
[40] American Bureau of Shipping, Guide for Building and Classing Floating Offshore Wind Turbines. 2020. [Online]. Available: https://ww2.eagle.org/content/dam/eagle/rules-and-guides/current/offshore/195_fowti/fowt-guide-july20.pdf
[41] INTERNATIONAL ELECTROTECHNICAL COMMISSION, IEC 61400-1: 2019, Part 3-2: Design requirements for floating offshore wind turbines. International Electrotechnical Commission, 2019.
[42] Vryhof Anchors B.V. , Vryhof Manual the guide to anchoring. 2015. [Online]. Available: https://www.plaisance-pratique.com/IMG/pdf/Vryhof_Anchor_Manual2015.pdf
[43] Orcina, Ltd., “Orcawave Documentation,” Orcina, 2023. https://www.orcina.com/webhelp/OrcaWave/Default.htm (accessed Jul. 05, 2023).
[44] “OrcaFlex documentation including OrcaFlex API and Python interface,” Orcina, Jul. 19, 2018. https://www.orcina.com/resources/documentation/ (accessed Jun. 30, 2023).
[45] J. R. Morison and U. of C. Laboratory Berkeley. Fluid Mechanics, The Force Exerted by Surface Waves on Piles. 1949.
[46] J. E. W. Wichers, “Slowly oscillating mooring forces in single point mooring systems,” in 2nd International Conference on Behaviour of Offshore Structures, 1979.
[47] 交通部中央氣象局, “天氣 -中央氣象局全球資訊網,” 中央氣象局全球資訊網, Jul. 05, 2023. https://www.cwb.gov.tw/V8/C/ (accessed Jul. 05, 2023).
[48] 財團法人船舶暨海洋產業研發中心, 經濟部研究機構能源科技專案 年度執行 報 告 110 年 度 新及再生能源前瞻技術掃描評估及研發推動─ 12mw 級風機抗颱浮式平台與錨繫設計及評估創新前瞻計畫. 經濟部, 2021.
[49] J. Abild, N. G. Mortensen, and L. Landberg, “Application of the wind atlas method to extreme wind speed data,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 41, no. 1–3, pp. 473–484, Oct. 1992, doi: 10.1016/0167-6105(92)90451-f.
[50] International Electrotechnical Commission, Wind energy generation systems - Part 1: Design requirements. International Electrotechnical Commission, 2019.
[51] W.-H. Yang, R.-Y. Yang, and T.-C. Chang, “Experimental and numerical study of the stability of barge-type floating offshore wind turbine platform,” Copernicus GmbH, Mar. 2020. Accessed: Jul. 05, 2023. [Online]. Available: http://dx.doi.org/10.5194/egusphere-egu2020-10179
[52] J. Jonkman, S. Butterfield, W. Musial, and G. Scott, “Definition of a 5-MW Reference Wind Turbine for Offshore System Development,” National Renewable Energy Labortary, 2009.
[53] P. ENGINEERING, “Clump weight / sinker - Oval, square & round types,” Pilotfits. https://pilotfits.com/products/clump-weight-or-sinker/ (accessed Jun. 30, 2023).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90186-
dc.description.abstract本研究旨在探究加重塊在極端海況和淺水環境中對2兆瓦浮動式離岸風力發電機繫泊系統的影響。研究主要關注浮台六個自由度的極限值以及錨鏈的最大張力以探討加重塊對於繫泊系統的影響, 包含了加重塊相關的三個參數。分別爲加重塊的起始位置、加重塊的間距以及加重塊的數量。分析的目的是評估這些參數的改變如何影響繫泊系統的性能。研究結果顯示,將加重塊起始位置設定於著陸點之後的地方具有相對較好的性能。當加重塊之間的間距過小,以本研究爲例爲2米和3米時,錨鏈會出現局部極端的張力。由於加重塊在極端環境條件下會被全部被拉起,離開海床,因此加重塊越多,錨鏈的最大張力越大,而造成此結果的原因可能主要來自加重塊總重量的差異。通過針對參數的探討,發現加入加重塊後的系統在淺水海域極限條件的情況下并沒有優化繫泊系統的性能。因此本研究建議進行進一步的研究,以探索在淺水環境中使用加重塊來優化繫泊系統的可行性和潛在優勢。zh_TW
dc.description.abstractThis study aims to investigate the influence of the clump weight on a 2 MW floating offshore wind turbine (FOWT) mooring system, focusing on extreme sea conditions and shallow water effects. This study primarily focuses on the extreme values of the 6 degrees of freedom (6 DoF) and the maximum line tension of the mooring lines to assess the impact of clump weights on the mooring system. Three parameters related to the clump weight were studied, including the starting position of clump weights, spacing between clump weights, and the number of clump weights. The objective was to evaluate the performance differences resulting from these parameters on the effectiveness of the clump weights. The findings indicate that selecting a starting position for the clump weights located after the touchdown point has relatively better performance. When the spacing between clump weights is too small, in this case, 2 meters and 3 meters, localized extreme line tension may occur. Due to the fact that clump weights will all be lifted from the seabed under extreme environmental conditions, the more clump weights there are, the greater the maximum tension along mooring lines. The possible reason for this outcome may primarily lie in the total weight of the clump weights. In the case of shallow water, the inclusion of clump weights in the system does not consistently improve the overall performance compared to the system without clump weights in shallow water regions with extreme sea state. This study suggests the need for further research to explore the feasibility and potential advantages of using clump weights to optimize mooring systems in shallow water environments.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:46:18Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:46:18Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
Abstract II
摘要 III
Nomenclature IV
Latin Symbol V
Greek Symbol VI
Content VII
List of Figures VIII
List of Tables IX
Chapter 1 X
Introduction XI
1.1 Background 1
1.2 Literature Review 4
1.3 Motivation 7
1.4 Structure of Report 9
Design Criteria 10
2.1 Rules and Regulations 10
2.2 Design Load Case 11
2.3 Design Basis 12
2.4 Simulation Software 13
Numerical Method 14
3.1 Diffraction Analysis 14
3.1.1 First Order Problem 15
3.1.2 Second Order Problem 18
3.2 Dynamic Analysis 21
3.2.1 General 21
3.2.2 Line 22
3.2.3 Clump Weights 24
3.2.4 Hydrodynamic Resistance 25
3.2.4.1 Damping 25
3.2.4.2 Yaw Rate Drag 25
3.3 Environment 27
3.3.1 Wind 27
3.3.2 Wave 29
3.3.3 Current 29
Model Setup 31
4.1 General Settings 31
4.2 Wind Turbine 32
4.3 Semi-submersible Platform 36
4.4 Mooring System 43
4.5 Clump Weight 48
4.6 Environment 50
Control case 52
5.1 Case Settings 52
5.2 6 Degree Motion (6 DoF) 53
5.3 Line Tension 54
5.4 Touchdown Point 60
Parametric Study 63
6.1 Clump Weight Starting Point 63
6.1.1 Case Settings 63
6.1.2 Result and Discussion 65
6.2 Clump Weight Spacing 72
6.2.1 Case Settings 72
6.2.2 Result and Discussion 74
6.3 Number of Clump Weight 83
6.3.1 Case Settings 83
6.3.2 Result and Discussion 84
Conclusion 90
References 91
-
dc.language.isoen-
dc.title加重塊在淺水海域極限環境條件下對2兆瓦浮動式離岸風力發電機繫泊系統的影響zh_TW
dc.titleInfluence of Clump Weight on 2 MW Floating Offshore Wind Turbine Mooring System in Extreme Sea Condition and Shallow Wateren
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鍾承憲;楊舜涵zh_TW
dc.contributor.oralexamcommitteeCheng-Hsien Chung;Shun-Han Yangen
dc.subject.keyword浮動式離岸風力發電機,繫泊系統,加重塊,極端海況,淺水海域,zh_TW
dc.subject.keywordFloating Offshore Wind Turbines,FOWTS,Mooring System,Clump Weight,Extreme Sea Conditions,Shallow Water,en
dc.relation.page95-
dc.identifier.doi10.6342/NTU202303528-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf5.37 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved