Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90181
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊杉zh_TW
dc.contributor.advisorChuin-Shan Chenen
dc.contributor.author羅昱恆zh_TW
dc.contributor.authorYu Heng Loen
dc.date.accessioned2023-09-22T17:45:06Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-11-
dc.identifier.citation[1] M. Shetty and A. Jain, Concrete Technology (Theory and Practice), 8e, S. Chand Publishing, 2019.
[2] C. R. S. Institute, Placing Reinforcing Bars: Recommended Practices, Concrete Reinforcing Steel Institute, 2011.
[3] 張鈞程, 運用數位孿生與深度學習之端對端鋼筋查驗框架, 碩士論文, 國立臺灣大學工學院土木工程學系, 2022.
[4] K. Han, J. Gwak, M. Golparvar-Fard, K. Saidi, G. Cheok, M. Franaszek and R. Lipman, "VISION-BASED FIELD INSPECTION OF CONCRETE REINFORCING BARS," in 13th International Conference on Construction Applications of Virtual Reality, London, UK, 2013.
[5] M.-K. Kim, J. P. P. Thedja and Q. Wang, "Automated dimensional quality assessment for formwork and rebar of reinforced concrete components using 3D point cloud data," Automation in Construction, 2020.
[6] 莊仕杰, 以實例分割與主動學習探討鋼筋間距辨識, 碩士論文, 國立臺灣大學工學院土木工程學系, 2021.
[7] X. Zhang, J. Zhang, M. Ma, Z. Chen, S. Yue, T. He and X. Xu, "A High Precision Quality Inspection System for Steel Bars Based on Machine Vision," Sensors, 2018.
[8] Y. Kardovskyi and S. Moon, "Artificial intelligence quality inspection of steel bars installation by integrating mask R-CNN and stereo vision," Automation in Construction, 2021.
[9] O. Chum, T. Pajdla and P. Sturm, "The geometric error for homographies," in Computer Vision and Image Understanding, 2005.
[10] E. Dubrofsky, "Homography Estimation," Master's Thesis, Department of Computer Science, University of British Columbia, 2009.
[11] R. Hartley and A. Zisserman, "Multiple View Geometry in Computer Vision," Cambridge University Press, March 2004.
[12] D. G. Lowe, "Object recognition from local scale-invariant features," in International Conference on Computer Vision, 1999.
[13] M. Brown and D. G. Lowe, "Automatic Panoramic Image Stitching using Invariant Features," International Journal of Computer Vision, p. 59–73, 1 8 2007.
[14] M. A. Fischler and R. C. Bolles, "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography," in Communications of the ACM, 1981.
[15] J. L. Schönberger and J.-M. Frahm, "Structure-from-Motion Revisited," in Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
[16] D. G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," International Journal of Computer Vision, 2004.
[17] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz and R. Szeliski, "Building Rome in a Day," in International Conference on Computer Vision, 2009.
[18] C. Beder and R. Steffen, "Determining an Initial Image Pair for Fixing the Scale of a 3D Reconstruction from an Image Sequence," in Lecture Notes in Computer Science, 2006.
[19] B. Triggs, P. F. McLauchlan, R. I. Hartley and A. W. Fitzgibbon, "Bundle Adjustment — A Modern Synthesis," in Lecture Notes in Computer Science, 2002.
[20] J. L. Schönberger, E. Zheng, M. Pollefeys and J.-M. Frahm, "Pixelwise View Selection for Unstructured Multi-View Stereo," in European Conference on Computer Vision (ECCV), 2016.
[21] R. Girshick, J. Donahue, T. Darrell and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," in IEEE Conference on Computer Vision and Pattern Recognition, 2014.
[22] A. Krizhevsky, I. Sutskever and G. E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," in Advances in Neural Information Processing Systems, 2012.
[23] R. Girshick, "Fast R-CNN," in IEEE International Conference on Computer Vision (ICCV), 2015.
[24] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection," in Advances in Neural Information Processing Systems (NIPS), 2015.
[25] J. Long, E. Shelhamer and T. Darrell, "Fully convolutional networks for semantic segmentation," in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
[26] K. He, G. Gkioxari, P. Dollár and R. Girshick, "Mask R-CNN," in IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.
[27] Y. Xu, Y. Zhou, P. Sekula and L. Ding, "Machine learning in construction: From shallow to deep learning," Developments in the Built Environment, 2021.
[28] T. D. Akinosho, L. O. Oyedele, M. Bilal, A. O. Ajayi, M. D. Delgado, O. O. Akinade and A. A. Ahmed, "Deep learning in the construction industry: A review of present status and future innovations," Journal of Building Engineering, 2020.
[29] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, J. Cai and T. Chen, "Recent advances in convolutional neural networks," Pattern Recognition, 2018.
[30] N. Otsu, "A Threshold Selection Method from Gray-Level Histograms," IEEE Transactions on Systems, Man, and Cybernetics, pp. 62-66, 1979.
[31] M. Ester, H.-P. Kriegel, J. Sander and X. Xu, "A density-based algorithm for discovering clusters in large spatial databases with noise," KDD, pp. 226-231, 1996.
[32] P. V. Hough, "Method and means for recognizing complex patterns". United States Patent 3,069,654, 18 12 1962.
[33] L. Keselman, J. I. Woodfill, A. Grunnet-Jepsen and A. Bhowmik, "Intel RealSense Stereoscopic Depth Cameras," in IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017.
[34] M.-F. Balcan, A. Beygelzimer and J. Langford, "Agnostic active learning," Journal of Computer and System Sciences, 2009.
[35] B. Settles, Active Learning Literature Survey, University of Wisconsin-Madison, Department of Computer Sciences, 2012.
[36] C. E. Shannon, "A Mathematical Theory of Communication," Bell System Technical Journal, 1948.
[37] J. Yosinski, J. Clune, Y. Bengio and H. Lipson, "How transferable are features in deep neural networks?," in Advances in Neural Information Processing Systems 27, 2014.
[38] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar and L. Zitnick, "Microsoft COCO: Common Objects in Context," in European Conference on Computer Vision, 2014.
[39] L. Mariga, "pyRANSAC-3D," 10 2022. [Online]. Available: https://github.com/leomariga/pyRANSAC-3D.
[40] E. Olson, "AprilTag: A robust and flexible visual fiducial system," in IEEE International Conference on Robotics and Automation (ICRA), 2011.
[41] J. Wang and E. Olson, "AprilTag 2: Efficient and robust fiducial detection," in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016.
[42] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo and R. Girshick, "Detectron2," 2019. [Online]. Available: https://github.com/facebookresearch/detectron2.
[43] K. Wada, "Labelme: Image Polygonal Annotation with Python," 2016. [Online]. Available: https://github.com/wkentaro/labelme.
[44] I. Susmelj, M. Heller, P. Wirth, J. Prescott and M. Ebner, "Lightly," 2020. [Online]. Available: https://github.com/lightly-ai/lightly.
[45] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan and S. Belongie, "Feature Pyramid Networks for Object Detection," in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
[46] K. Pulli, A. Baksheev, K. Kornyakov and V. Eruhimov, "Realtime Computer Vision with OpenCV: Mobile Computer-Vision Technology Will Soon Become as Ubiquitous as Touch Interfaces.," Association for Computing Machinery, p. 40–56, April 2012.
[47] S. Gillies, C. van der Wel, J. Van den Bossche, M. W. Taves, J. Arnott and B. C. Ward, "Shapely," 30 1 2023. [Online]. Available: https://github.com/shapely/shapely.
[48] M. Moitzi, "ezdxf," 2023. [Online]. Available: https://github.com/mozman/ezdxf.
[49] "CloudCompare," 2022. [Online]. Available: http://www.cloudcompare.org/.
[50] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai and S. Chintala, "PyTorch: An Imperative Style, High-Performance Deep Learning Library," in Advances in Neural Information Processing Systems 32, 2019.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90181-
dc.description.abstract本研究旨在整合深度學習與基於平面投影轉換的影像拼接技術,以建立一個快速的鋼筋查驗流程。因單張二維影像僅能完成局部查驗,本研究提出透過影像拼接生成大型全域圖像,並在全域圖像上進行鋼筋辨識,以實現全域定位的查驗效益。本研究結合三維重建與二維實例分割,使用稀疏點雲萃取相機資訊,並以鋼筋構件平台作為正射影像平面,以穩固完成二維圖像的拼接。本研究對二維深度學習模型的偵測結果進行後處理,並自動產生結果圖和文字報告,與拼接圖像結合,使工程師能夠一目了然地了解查驗項目的缺失。深度學習模型訓練過程亦引入主動學習,以提升標註流程的效率,降低人力成本。
本研究通過實驗室場域和實務場域的測試,從查驗效率和查驗準確度兩個面向評估此查驗流程的可行性和穩健性。在準確度方面,經現場場域的測試,本研究在雙向版結構與樓梯間牆結構皆取得良好表現,鋼筋支數查全率最高達100%召回率,鋼筋間距誤差最低達到11.05mm、6.7%。此外,通過實驗室場域測試,本研究探討工程師拍攝工法對查驗模型表現的影響,得證對鋼筋垂直拍攝可將模型表現最大化。在查驗效率方面,本研究在實驗室場域最快可於五分鐘內完成查驗,現場場域則為約十分鐘左右,平均每張照片運行時間最快達7.77秒,相較三維重建的鋼筋查驗方法,能節省高達88%的運行時間。
zh_TW
dc.description.abstractThis study aims to integrate deep learning and image stitching techniques based on homography transformation to establish a fast rebar inspection process. Given that a single 2D image is only suitable for localized inspection, this research proposes generating a large image through image stitching and conducting rebar recognition on it to achieve the benefits of large-scale inspection. This study combines 3D reconstruction and 2D instance segmentation, utilizing sparse point clouds to extract camera information and rebar component platform as the orthographic image plane to ensure stable 2D image stitching. Post-processing is applied to the detection results of the 2D deep learning model, and result drawings and text reports are generated, combined with stitched images, enabling engineers to readily understand the inspection results and their defects. Active learning is introduced during the training process of the deep learning model to enhance annotation efficiency and reduce labor costs.
The inspection process is tested in both laboratory and practical field scenarios to investigate the feasibility and robustness of the process from the perspectives of inspection efficiency and accuracy. Regarding accuracy, based on tests in practical field scenarios, the process achieves good performance in both bi-directional slab structures and staircase wall structures, with a maximum of 100% Recall and a minimum of 11.05mm and 6.7% error in rebar spacing. Furthermore, through laboratory field testing, this study investigates the influence of shooting methods on the process, proving that perpendicular shooting of rebars maximizes the performance of the model. In terms of inspection efficiency, the inspection can be completed within five minutes in laboratory scenarios and about ten minutes in real scenarios. The average runtime for each photo can be as fast as 7.77 seconds, resulting in up to 88% time savings compared to the 3D reconstruction of the rebar inspection method.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:45:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:45:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 論文架構 2
第二章 文獻回顧 3
2.1 圖像拼接 (Image Stitching) 與平面投影轉換 (Homography) 3
2.2 運動恢復結構 (Structure from Motion, SfM) 5
2.3 深度學習之實例分割 (Instance Segmentation) 6
2.4 深度學習在營造業的應用 7
第三章 研究方法 14
3.1 鋼筋資料集的標註與模型訓練 14
3.2 SfM結合平面投影轉換的圖像拼接方法 16
3.3 鋼筋影像辨識後處理方法 19
3.4 以AprilTag量測鋼筋尺寸 21
3.5 查驗結果圖說視覺化方法 23
3.6 以深度學習與平面投影轉換進行快速鋼筋查驗流程 23
第四章 研究結果與討論 24
4.1 查驗模型訓練與軟硬體準備 24
4.2 各方法拼接圖像、生成全域影像之成果比較 26
4.3 以實驗室場域測試模型準確性與效率 27
4.3.1 比對後處理前後的鋼筋檢測率 33
4.3.2 鋼筋間距查驗之準確率 34
4.3.3 工程師拍攝手法對查驗表現之影響 35
4.3.4 全域影像生成與鋼筋辨識之效率 35
4.4 實務導入至工地現場穩健性測試 37
4.4.1 場域一:三鶯捷運車站版結構 40
4.4.2 場域二:南門市場室內牆結構 44
4.4.3 場域三:三鶯行政大樓牆結構 49
4.4.4 場域四:iPhone拍攝牆結構 52
4.4.5 實務導入工地場域結果討論 56
第五章 結論與建議 59
5.1 結論 59
5.2 未來展望 59
參考文獻 61
-
dc.language.isozh_TW-
dc.subject深度學習zh_TW
dc.subject實例分割zh_TW
dc.subject平面投影轉換zh_TW
dc.subject圖像拼接zh_TW
dc.subject三維重建zh_TW
dc.subjecthomography transformen
dc.subjectinstance segmentationen
dc.subjectimage stitchingen
dc.subjectdeep learningen
dc.subject3D reconstructionen
dc.title以深度學習與平面投影轉換進行快速鋼筋查驗zh_TW
dc.titleFast Rebar Inspection with Deep Learning and Homographyen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林之謙;周頌安;黃志民zh_TW
dc.contributor.oralexamcommitteeJacob Je-Chian Lin;Song-An Chou;Chi-Min Huangen
dc.subject.keyword深度學習,平面投影轉換,實例分割,圖像拼接,三維重建,zh_TW
dc.subject.keyworddeep learning,homography transform,instance segmentation,image stitching,3D reconstruction,en
dc.relation.page66-
dc.identifier.doi10.6342/NTU202304023-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
7.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved