請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90175完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳嘉晉 | zh_TW |
| dc.contributor.advisor | Chia-Chin Chen | en |
| dc.contributor.author | 葉建廷 | zh_TW |
| dc.contributor.author | Chien-Ting Yeh | en |
| dc.date.accessioned | 2023-09-22T17:43:39Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-11 | - |
| dc.identifier.citation | [1] M. J. Akhtar, Z.-U.-N. Akhtar, R. A. Jackson, and C. R. A. Catlow. Computer simulation studies of strontium titanate. Journal of the American Ceramic Society, 78(2):421–428, 1995.
[2] Y. I. Alivov, E. Kalinina, A. Cherenkov, D. C. Look, B. Ataev, A. Omaev, M. Chukichev, and D. Bagnall. Fabrication and characterization of n-zno/p-algan heterojunction light-emitting diodes on 6h-sic substrates. Applied Physics Letters, 83(23):4719–4721, 2003. [3] Y. I. Alivov, Ü. Özgür, S. Dogan, C. Liu, Y. Moon, X. Gu, V. Avrutin, Y. Fu, and H. Morkoc. Forward-current electroluminescence from gan/zno double heterostructure diode. Solid-state electronics, 49(10):1693–1696, 2005. [4] Y. I. Alivov, J. Van Nostrand, D. C. Look, M. Chukichev, and B. Ataev. Observation of 430 nm electroluminescence from zno/gan heterojunction light-emitting diodes. Applied Physics Letters, 83(14):2943–2945, 2003. [5] M. Allen and S. Durbin. Influence of oxygen vacancies on schottky contacts to zno. Applied Physics Letters, 92(12):122110, 2008. [6] H. K. Ardakani. Electrical conductivity of in situ“hydrogen-reduced"and structural properties of zinc oxide thin films deposited in different ambients by pulsed excimer laser ablation. Thin Solid Films, 287(1-2):280–283, 1996. [7] I. Ayoub, V. Kumar, R. Abolhassani, R. Sehgal, V. Sharma, R. Sehgal, H. C. Swart, and Y. K. Mishra. Advances in zno: Manipulation of defects for enhancing their technological potentials. Nanotechnology Reviews, 11(1):575–619, 2022. [8] L. J. Brillson and Y. Lu. Zno schottky barriers and ohmic contacts. Journal of Applied Physics, 109(12):8, 2011. [9] C. R. A. Catlow, S. A. French, A. A. Sokol, A. A. Al-Sunaidi, and S. M. Woodley. Zinc oxide: A case study in contemporary computational solid state chemistry. Journal of computational chemistry, 29(13):2234–2249, 2008. [10] S. Cheung and N. Cheung. Extraction of schottky diode parameters from forward current-voltage characteristics. Applied physics letters, 49(2):85–87, 1986. [11] D. Dijkkamp, T. Venkatesan, X. Wu, S. Shaheen, N. Jisrawi, Y. Min-Lee, W. McLean, and M. Croft. Preparation of y-ba-cu oxide superconductor thin films using pulsed laser evaporation from high t c bulk material. Applied Physics Letters, 51(8):619–621, 1987. [12] C. Drouilly, J.-M. Krafft, F. Averseng, S. Casale, D. Bazer-Bachi, C. Chizallet, V. Lecocq, H. Vezin, H. Lauron-Pernot, and G. Costentin. Zno oxygen vacancies formation and filling followed by in situ photoluminescence and in situ epr. The Journal of Physical Chemistry C, 116(40):21297–21307, 2012. [13] K. Ellmer and R. Mientus. Carrier transport in polycrystalline transparent conductive oxides: A comparative study of zinc oxide and indium oxide. Thin solid films, 516(14):4620–4627, 2008. [14] P. Erhart, A. Klein, and K. Albe. First-principles study of the structure and stability of oxygen defects in zinc oxide. Physical Review B, 72(8):085213, 2005. [15] J. Gerblinger and H. Meixner. Fast oxygen sensors based on sputtered strontium titanate. Sensors and Actuators B: Chemical, 4(1-2):99–102, 1991. [16] M. C. Göbel, G. Gregori, and J. Maier. Numerical calculations of space charge layer effects in nanocrystalline ceria. part i: comparison with the analytical models and derivation of improved analytical solutions. Physical Chemistry Chemical Physics, 16(21):10214–10231, 2014. [17] K. Govender, D. S. Boyle, P. B. Kenway, and P. O’Brien. Understanding the factors that govern the deposition and morphology of thin films of zno from aqueous solution. Journal of Materials Chemistry, 14(16):2575–2591, 2004. [18] L. E. Greene, B. D. Yuhas, M. Law, D. Zitoun, and P. Yang. Solution-grown zinc oxide nanowires. Inorganic chemistry, 45(19):7535–7543, 2006. [19] S. D. Ha and S. Ramanathan. Adaptive oxide electronics: A review. Journal of applied physics, 110(7), 2011. [20] K. Hagemark. Defect structure of zn-doped zno. Journal of Solid State Chemistry, 16(3-4):293–299, 1976. [21] J. Han, P. Mantas, and A. Senos. Defect chemistry and electrical characteristics of undoped and mn-doped zno. Journal of the European Ceramic Society, 22(1):49–59, 2002. [22] A. Huang, Y. He, Y. Zhou, Y. Zhou, Y. Yang, J. Zhang, L. Luo, Q. Mao, D. Hou, and J. Yang. A review of recent applications of porous metals and metal oxide in energy storage, sensing and catalysis. Journal of Materials Science, 54:949–973, 2019. [23] Y.-L. Huang, H.-J. Liu, C.-H. Ma, P. Yu, Y.-H. Chu, and J.-C. Yang. Pulsed laser deposition of complex oxide heteroepitaxy. Chinese Journal of Physics, 60:481–501, 2019. [24] T. Ive, T. Ben-Yaacov, C. Van de Walle, U. Mishra, S. DenBaars, and J. Speck. Stepflow growth of zno (0 0 0 1) on gan (0 0 0 1) by metalorganic chemical vapor epitaxy. Journal of Crystal Growth, 310(15):3407–3412, 2008. [25] J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, and X. W. Lou. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Advanced materials, 24(38):5166–5180, 2012. [26] M. Jin, J. Feng, Z. De-Heng, M. Hong-lei, and L. Shu-Ying. Optical and electronic properties of transparent conducting zno and zno: Al films prepared by evaporating method. Thin solid films, 357(2):98–101, 1999. [27] P. Joshi and S. Krupanidhi. Structural and electrical characteristics of srtio3 thin films for dynamic random access memory applications. Journal of applied physics, 73(11):7627–7634, 1993. [28] S. O. Kasap. Principles of electronic materials and devices. McGraw-Hill Professional, New York, NY, 4 edition, Apr. 2017. [29] S. Kim, J. Fleig, and J. Maier. Space charge conduction: Simple analytical solutions for ionic and mixed conductors and application to nanocrystalline ceria. Physical Chemistry Chemical Physics, 5(11):2268–2273, 2003. [30] W. Kingery, H. Bowen, and D. Uhlmann. Introduction to ceramics. 2 edition, 1976. [31] F. A. Kroger. The Chemistry of Imperfect Crystals, volume 2. North-Holland, 1974. [32] W. N. Lawless and T. K. Gupta. Thermal properties of pure and varistor zno at low temperatures. Journal of applied physics, 60(2):607–611, 1986. [33] J. Li, X. Tang, Q. Liu, Y. Jiang, and Z. Tang. Resistive switching and optical properties of strontium ferrate titanate thin film prepared via chemical solution deposition. Journal of Advanced Ceramics, 10:1001–1010, 2021. [34] Y. Lin, editor. Advanced nano deposition methods. Wiley-VCH Verlag, Weinheim, Germany, Nov. 2016. [35] J. Maier. Crystalline solid electrolytes and defect chemistry: some novel thermodynamic and kinetic results. Solid State Ionics, 86:55–67, 1996. [36] J. Maier. Complex oxides: high temperature defect chemistry vs. low temperature defect chemistry. Physical Chemistry Chemical Physics, 5(11):2164–2173, 2003. [37] S. Middya, A. Layek, A. Dey, J. Datta, M. Das, C. Banerjee, and P. P. Ray. Role of zinc oxide nanomorphology on schottky diode properties. Chemical Physics Letters, 610:39–44, 2014. [38] R. Moos and K. H. Hardtl. Defect chemistry of donor-doped and undoped strontium titanate ceramics between 1000° and 1400° c. Journal of the American Ceramic Society, 80(10):2549–2562, 1997. [39] H. Nanto, H. Sokooshi, and T. Usuda. Smell sensor using zinc oxide thin films prepared by magnetron sputtering. In TRANSDUCERS’91: 1991 International Conference on Solid-State Sensors and Actuators. Digest of Technical Papers, pages 596–599. IEEE, 1991. [40] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, Morkoç, and H. A comprehensive review of zno materials and devices. Journal of applied physics, 98(4):11, 2005. [41] Y.-Y. Pai, A. Tylan-Tyler, P. Irvin, and J. Levy. Physics of srtio3-based heterostructures and nanostructures: a review. Reports on Progress in Physics, 81(3):036503, 2018. [42] H. Peng, L. Pu, J. Wu, D. Cha, J. Hong, W. Lin, Y. Li, J. Ding, A. David, K. Li, et al. Effects of electrode material and configuration on the characteristics of planar resistive switching devices. APL Materials, 1(5):052106, 2013. [43] F. Quaranta, A. Valentini, F. R. Rizzi, and G. Casamassima. Dual-ion-beam sputter deposition of zno films. Journal of Applied Physics, 74(1):244–248, 1993. [44] M. M. Roessler and E. Salvadori. Principles and applications of epr spectroscopy in the chemical sciences. Chemical Society Reviews, 47(8):2534–2553, 2018. [45] S. Ruddlesden and P. Popper. New compounds of the k2nif4 type. Acta Crystallographica, 10(8):538–539, 1957. [46] S. Ruddlesden and P. Popper. The compound sr3ti2o7 and its structure. Acta Crystallographica, 11(1):54–55, 1958. [47] K. Sasaki and J. Maier. Low temperature defect chemistry of oxides. Journal of the European Ceramic Society, 19(6-7):741–745, 1999. [48] K. Sasaki and J. Maier. Low-temperature defect chemistry of oxides. i. general aspects and numerical calculations. Journal of Applied Physics, 86(10):5422–5433, 1999. [49] H. Schwarz and H. Tourtellotte. Vacuum deposition by high-energy laser with emphasis on barium titanate films. Journal of Vacuum Science and Technology, 6(3):373–378, 1969. [50] D. Sharma, S. Upadhyay, V. R. Satsangi, R. Shrivastav, U. V. Waghmare, and S. Dass. Improved photoelectrochemical water splitting performance of cu2o/ srtio3 heterojunction photoelectrode. The Journal of Physical Chemistry C, 118(44):25320–25329, 2014. [51] T. Shi, Y. Chen, and X. Guo. Defect chemistry of alkaline earth metal (sr/ba) titanates. Progress in Materials Science, 80:77–132, 2016. [52] M. Siebenhofer, F. Baiutti, J. de Dios Sirvent, T. M. Huber, A. Viernstein, S. Smetaczek, C. Herzig, M. O. Liedke, M. Butterling, A. Wagner, et al. Exploring point defects and trap states in undoped srtio3 single crystals. Journal of the European Ceramic Society, 42(4):1510–1521, 2022. [53] A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan, and D. Mohamad. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro letters, 7:219–242, 2015. [54] H. M. Smith and A. Turner. Vacuum deposited thin films using a ruby laser. Applied Optics, 4(1):147–148, 1965. [55] Y. Su, J. Lang, L. Li, K. Guan, C. Du, L. Peng, D. Han, and X. Wang. Unexpected catalytic performance in silent tantalum oxide through nitridation and defect chemistry. Journal of the American Chemical Society, 135(31):11433–11436, 2013. [56] M. Sukkar and H. Tuller. Defect equilibria in zno varistor materials. In Additives and Interfaces in Electronic Ceramics. Proc. Special Conf. held at Cincinnati 4-5 May 1982. Advances in Ceramics, volume 7, page 71, 1982. [57] S. M. Sze and M.-K. Lee. Semiconductor devices. John Wiley & Sons, Chichester, England, 3 edition, Apr. 2012. [58] M. Tyunina, M. Savinov, and A. Dejneka. Electrical conductivity in oxygensubstituted srtio3-δ films. Applied Physics Letters, 119(19):192901, 2021. [59] K. Van Benthem, C. Elsässer, and R. French. Bulk electronic structure of srtio 3: Experiment and theory. Journal of applied physics, 90(12):6156–6164, 2001. [60] M. C. Verbraeken, T. Ramos, K. Agersted, Q. Ma, C. D. Savaniu, B. R. Sudireddy,J. T. S. Irvine, P. Holtappels, and F. Tietz. Modified strontium titanates: from defect chemistry to sofc anodes. Rsc Advances, 5(2):1168–1180, 2015. [61] I. E. Wachs. Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials. Catalysis Today, 100(1-2):79–94, 2005. [62] X. Wang, J. Song, and Z. L. Wang. Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices. Journal of Materials Chemistry, 17(8):711–720, 2007. [63] Z. L. Wang. Zinc oxide nanostructures: growth, properties and applications. Journal of physics: condensed matter, 16(25):R829, 2004. [64] J. H. Werner and H. H. Güttler. Barrier inhomogeneities at schottky contacts. Journal of applied physics, 69(3):1522–1533, 1991. [65] E. zavoisky. The paramagnetic absorption of a solution in parallel fields. Journal of Physics, VIII(6):377–380, 1944. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90175 | - |
| dc.description.abstract | 隨著近期大數據與人工智慧的迅速發展,運算效能需求的提升不僅增加了對運算晶片的需求,也推動了電晶體的發展,因此PN接面的研究變得非常重要。 PN接面是p-type和n-type半導體材料之間的緊密接觸,因此接面材料的選擇對於電性和其他特性的研究至關重要。傳統上,控制半導體材料的p-type和n-type屬性通常是通過改變掺雜物的類型和濃度來實現的,例如在矽晶片的生長過程中,通過掺雜3A或5A族元素來製造p-type或n-type矽基半導體。而將氧化物做為半導體材料時也不例外,氧化物的PN特性除了可以通過控制掺雜物和濃度來實現,亦可以通過控制氧化物中的氧缺陷生成量來調節。本研究將從缺陷化學的角度切入,研究氧化物介面缺陷濃度與環境氧分壓之間的關係,進而了解氧分壓對PN特性的影響。我們使用脈衝雷射沉積方法生長ZnO和STO兩種常見的氧化物薄膜,並藉由改變退火過程中的環境氧分壓,觀察該氧分壓對薄膜PN接面的電性變化。最後透過計算缺陷濃度與電位的空間分布,評估此觀點的可行性。 | zh_TW |
| dc.description.abstract | With the recent rapid development of big data and artificial intelligence, there has been an increased demand for computational power. This not only has led to an increased demand for computational chips but also driven the development of transistors, making research on PN junctions extremely important. A PN junction refers to the close contact between p-type and n-type semiconductor materials, and the choice of materials for the junction is crucial for studying their electrical properties and other characteristics. Traditionally, controlling the p-type and n-type properties of semiconductor materials is achieved by modifying the type and concentration of dopants. For example, in the growth process of silicon wafers, elements from the 3A or 5A groups are doped to create p-type or n-type silicon-based semiconductors. The same holds true for oxide materials when used as semiconductor materials. The PN properties of oxides can be achieved not only by controlling the type and concentration of dopants but also by manipulating the generation of oxygen defects in the oxide material. In this study, we approach the topic from the perspective of defect chemistry to investigate the relationship between defect concentrations at oxide interfaces and environmental oxygen partial pressure, thereby understanding the influence of oxygen partial pressure on PN properties. We grow ZnO and STO, two commonly used oxide thin films, using pulsed laser deposition, and we observe the changes in the electrical properties of the thin film PN junctions by varying the environmental oxygen partial pressure during the annealing process. Finally, we evaluate the feasibility of this perspective by calculating the spatial distribution of defect concentrations and potentials. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:43:39Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T17:43:39Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract v Contents vii List of Figures xi List of Tables xv Denotation xvii Chapter 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Defect Chemistry of Oxides . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Complete Equilibrium (T ≥ TE) . . . . . . . . . . . . . . . . . . . 6 1.2.2 Partially Frozen-in states (T < TE) . . . . . . . . . . . . . . . . . . 8 1.3 ZnO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 STO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Pulsed Laser Deposition (PLD) . . . . . . . . . . . . . . . . . . . . 12 1.6 PN Junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.6.1 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.6.2 Current-voltage Measurement . . . . . . . . . . . . . . . . . . . . 22 1.6.3 Defect Concentration Profile in Depletion Region . . . . . . . . . . 27 1.7 Metal-semiconductor Junction . . . . . . . . . . . . . . . . . . . . . 30 1.7.1 Work functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.7.2 Current-voltage Characteristics . . . . . . . . . . . . . . . . . . . . 33 Chapter 2 Experiment 35 2.1 Experimental Device . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.1.1 Structural Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.1.2 Type of Metal Electrodes . . . . . . . . . . . . . . . . . . . . . . . 36 2.1.3 Post-annealing Temperature . . . . . . . . . . . . . . . . . . . . . . 37 2.2 Film Deposition Process . . . . . . . . . . . . . . . . . . . . . . . . 38 2.2.1 Pre-clean Method of Quartz Substrate . . . . . . . . . . . . . . . . 38 2.2.2 Pulsed Laser Deposition (PLD) . . . . . . . . . . . . . . . . . . . . 38 2.2.3 E-beam Evaporation . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.3 Characterization Methods . . . . . . . . . . . . . . . . . . . . . . . 40 2.3.1 X-ray Diffraction (XRD) . . . . . . . . . . . . . . . . . . . . . . . 40 2.3.2 Field Emission Scanning Electron Microscope (FESEM) . . . . . . 40 2.3.3 Atomic Force Microscope (AFM) . . . . . . . . . . . . . . . . . . 40 2.3.4 Current-voltage measurement . . . . . . . . . . . . . . . . . . . . . 41 Chapter 3 Results and Discussions 43 3.1 Film Structure and Surface Analysis . . . . . . . . . . . . . . . . . . 43 3.1.1 XRD Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.1.2 FESEM Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.1.3 AFM Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2 Defect Chemistry of ZnO . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2.1 Intermediate Temperature (T=973K) . . . . . . . . . . . . . . . . . 48 3.2.2 Low Temperature (T=298K) . . . . . . . . . . . . . . . . . . . . . 50 3.3 Defect Chemistry of STO . . . . . . . . . . . . . . . . . . . . . . . 52 3.3.1 Intermediate Temperature (T=973K) . . . . . . . . . . . . . . . . . 52 3.3.2 Low Temperature (T=298K) . . . . . . . . . . . . . . . . . . . . . 54 3.4 Current-voltage Characteristics . . . . . . . . . . . . . . . . . . . . 56 3.5 Defect Concentration Profiles . . . . . . . . . . . . . . . . . . . . . 61 Chapter 4 Conclusion and Prospects 69 Appendix A — Electron Paramagnetic Resonance (EPR) 71 A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 A.2 Experiment Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 74 A.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 74 References 77 | - |
| dc.language.iso | en | - |
| dc.subject | PN接面 | zh_TW |
| dc.subject | 氧缺陷 | zh_TW |
| dc.subject | 薄膜二極體 | zh_TW |
| dc.subject | 缺陷化學 | zh_TW |
| dc.subject | 脈衝雷射沉積 | zh_TW |
| dc.subject | PN junctions | en |
| dc.subject | Oxygen vacancies | en |
| dc.subject | Pulsed laser deposition | en |
| dc.subject | Defect chemistry | en |
| dc.subject | Thin film diode | en |
| dc.title | 透過氧缺陷調控探索氧化物薄膜中電荷載子於二極體之應用 | zh_TW |
| dc.title | Exploring Charge Carriers in Oxide Thin Films via Oxygen Vacancy Engineering for Diode Applications | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李文亞;李懿軒 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Ya Lee;Yi-Hsuan Lee | en |
| dc.subject.keyword | 氧缺陷,薄膜二極體,缺陷化學,PN接面,脈衝雷射沉積, | zh_TW |
| dc.subject.keyword | Oxygen vacancies,Thin film diode,Defect chemistry,PN junctions,Pulsed laser deposition, | en |
| dc.relation.page | 85 | - |
| dc.identifier.doi | 10.6342/NTU202303105 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-11 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2028-08-05 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 此日期後於網路公開 2028-08-05 | 11.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
