請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90160
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭安妮 | zh_TW |
dc.contributor.advisor | Annie On-Lei Kwok | en |
dc.contributor.author | 吳若誠 | zh_TW |
dc.contributor.author | Jo-Cheng Wu | en |
dc.date.accessioned | 2023-09-22T17:40:02Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-22 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-09 | - |
dc.identifier.citation | Alshameri, B., Madun, A., & Bakar, I. (2017). Comparison of the effect of fines content and density towards the shear strength parameters. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 48(2), 104-110.
Araujo, W., & Ledezma, C. (2020). Factors that affect liquefaction-induced lateral spreading in large subduction earthquakes. Applied Sciences, 10(18), 6503. ASTM D422–63. (2007). Standard test methods for particle-size analysis of soils. ASTM International, West Conshohocken, PA ASTM D5311–11. (2011). Standard test methods for load controlled cyclic triaxial strength of soil. ASTM International, West Conshohocken, PA. ASTM D6836–16. (2019). Standard test methods for determination of the soil water characteristic curve for desorption using hanging column, pressure extractor, chilled mirror hygrometer, or centrifuge. ASTM International, West Conshohocken, PA. ASTM D854–10. (2010). Standard test methods for specific gravity of soil solids by water pycnometer. ASTM International, West Conshohocken, PA. Bocking, K. A., & Fredlund, D. G. (1980). Limitations of the axis translation technique. In Expansive Soils (pp. 117-135). ASCE. Committee on Soil Dynamics of the Geotechnical Engineering Division (1978). "Definition of Terms Related to Liquefaction." Journal of Geotechnical Engineering, 104(GT9), 1197-1120. Elkady, T. Y., Dafalla, M. A., Al-Mahbashi, A. M., & Al Shamrani, M. (2013). Evaluation of soil water characteristic curves of sand-clay mixtures. GEOMATE Journal, 4(8), 528-532. Ellithy, G. S., Vahedifard, F., & Rivera-Hernandez, X. A. (2012). Accuracy assessment of predictive SWCC models for estimating the van Genuchten model parameters. In PanAm Unsaturated Soils 2017 (pp. 1-10). Eyo, E. U., Ng'ambi, S., & Abbey, S. J. (2020). An overview of soil–water characteristic curves of stabilised soils and their influential factors. Journal of King Saud University-Engineering Sciences. Fredlund, D. G. (2006). Unsaturated soil mechanics in engineering practice. Journal of geotechnical and geoenvironmental engineering, 132(3), 286-321. Fredlund, D. G., & Rahardjo, H. (1993). Soil mechanics for unsaturated soils. John Wiley & Sons. Fredlund, D. G., & Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian geotechnical journal, 31(4), 521-532. Hosseini, S. M. R., Naeini, S. A., & Hassanlourad, M. (2017). Monotonic, cyclic and post-cyclic behaviour of an unsaturated clayey soil. International Journal of Geotechnical Engineering, 11(3), 225-235. Ishihara, K. (1993). Liquefaction and flow failure during earthquakes. Geotechnique, 43(3), 351-451. Ishihara, K., & Tsukamoto, Y. (2004). Cyclic strength of imperfectly saturated sands and analysis of liquefaction. Proceedings of the Japan Academy, Series B, 80(8), 372-391. Janalizadeh Choobbasti, A., Selatahneh, H., & Karimi Petanlar, M. (2020). Effect of fines on liquefaction resistance of sand. Innovative Infrastructure Solutions, 5(3), 1-16. Jiaer, W. U., Kammerer, A. M., Riemer, M. F., Seed, R. B., & Pestana, J. M. (2004, August). Laboratory study of liquefaction triggering criteria. In 13th world conference on earthquake engineering, Vancouver, BC, Canada, Paper (No. 2580). Jiang, X., Wu, L., & Wei, Y. (2020). Influence of fines content on the soil–water characteristic curve of unsaturated soils. Geotechnical and Geological Engineering, 38(2), 1371-1378. Kim, U. G., Zhuang, L., Kim, D., & Lee, J. (2017). Evaluation of cyclic shear strength of mixtures with sand and different types of fines. Marine Georesources & Geotechnology, 35(4), 447-455. Kim, U., Kim, D., & Zhuang, L. (2016). Influence of fines content on the undrained cyclic shear strength of sand–clay mixtures. Soil Dynamics and Earthquake Engineering, 83, 124-134. Kramer, S. L., & Seed, H. B. (1988). Initiation of soil liquefaction under static loading conditions. Journal of Geotechnical Engineering, 114(4), 412-430. Lee, K.I., Lee, J., & Baek, W.J. (2009). Soil-Water Characteristic Curve of Weathered Granite Soils in Pocheon Area using Flow Pump Technique. Journal of The Korean Society of Agricultural Engineers, 51(1), 11–20. Lee, H. J. (2021). Experimental Investigation on Dynamic Properties and Liquefaction Behavior of Unsaturated Sand with Clayey Fines. Master’s thesis, National Taiwan University, Taiwan. Li, P. T. (2018). Measurement of Drying and Wetting SWCCs by Flow Pump Method. Master’s thesis, National Taiwan University, Taiwan. Lien, C. Y. (2018). Dynamic properties of Penghu calcareous sand by resonant column and cyclic triaxial tests. Master’s thesis, National Taiwan University, Taiwan. Lin, B., & Cerato, A. B. (2012). Investigation on soil–water characteristic curves of untreated and stabilized highly clayey expansive soils. Geotechnical and Geological Engineering, 30(4), 803-812. Liu, J. R. (2020a). Influence of Fines Contents on Soil Liquefaction Resistance in Cyclic Triaxial Test. Geotechnical and Geological Engineering, 38(5), 4735-4751. Liu, J. R. (2020b). Experimental Investigation of the Liquefaction Behavior of Unsaturated Sandy Soil under Cyclic Loading. Master’s thesis, National Taiwan University, Taiwan. Marto, A., Tan, C. S., Makhtar, A. M., & Jusoh, S. N. (2016). Cyclic behaviour of Johor sand. GEOMATE Journal, 10(21), 1891-1898. Mavroulis, S., Lekkas, E., & Carydis, P. (2021). Liquefaction Phenomena Induced by the 26 November 2019, Mw= 6.4 Durrës (Albania) Earthquake and Liquefaction Susceptibility Assessment in the Affected Area. Geosciences, 11(5), 215. Menezes, L. P., Oliveira Filho, W. L., & Silva, C. H. C. (2015). Determination of the Soil Water Retention Curve Using the Flow Pump. Rem: Revista Escola de Minas, 68, 207-213. Miller CJ, Yesiller N, Yaldo K, Merayyan S (2002) Impact of soil type and compaction conditions on soil water characteristic. J Geotech Geoenviron Eng 128(9):733–742 Mogami, T. & Kubo, K. (1953). The behaviour of soil during vibration. Proc. 3rd Int. Conf Soil Mech., 1, 152-153. Mojezi, M., Jafari, M. K., & Biglari, M. (2015). Effects of mean net stress and cyclic deviatoric stress on the cyclic behavior of normally consolidated unsaturated kaolin. International Journal of Civil Engineering, 13(3), 175-184. Noda, S., & Hyodo, M. (2013, January). Effects of fines content on cyclic shear characteristics of sand-clay mixtures. In Proceedings of the Eighteenth International Soil Mechanics and Geotechnical Engineering Conference (pp. 1551-1554). Okamura, M., & Noguchi, K. (2009). Liquefaction resistances of unsaturated non-plastic silt. Soils and Foundations, 49(2), 221-229. Pandya, S., & Sachan, A. (2018). Effect of matric suction and initial static loading on dynamic behaviour of unsaturated cohesive soil. International Journal of Geotechnical Engineering, 12(5), 438-448. Prakasha, K. S., & Chandrasekaran, V. S. (2005). Behavior of marine sand-clay mixtures under static and cyclic triaxial shear. Journal of geotechnical and geoenvironmental engineering, 131(2), 213-222. Reddi, L. N., & Bonala, M. V. (1997). Critical shear stress and its relationship with cohesion for sand. kaolinite mixtures. Canadian geotechnical journal, 34(1), 26-33. Safdar, M. (2018). Monotonic stress-strain behaviour of fibre reinforced cemented Toyoura sand. Seed, H. B. and Lee, K. L. (1966). "Liquefaction of saturated sands during cyclic loading." Journal of Soil Mechanics and Foundations Division, ASCE, 92(SM6), 105-134. Taban, A., Sadeghi, M. M., & Rowshanzamir, M. A. (2018). Estimation of van Genuchten SWCC model for unsaturated sands by means of the genetic programming. Scientia Iranica, 25(4), 2026-2038. Tarantino, A., Romero, E., & Cui, Y. J. (Eds.). (2009). Laboratory and field testing of unsaturated soils (p. 220). Amsterdam, Netherlands Terzaghi, K. & Peck, R. B. (1948). Soil mechanics in engineering practice. 2nd edn, p. 108. Chichester: Wiley. Tinjum JM, Benson CH, Blotz LR (1997) Soil–water characteristic curves for compacted clays. J Geotech Geoenviron Eng 123(11):1060–1069 Unno, T., Kazama, M., Uzuoka, R., & Sento, N. (2008). Liquefaction of unsaturated sand considering the pore air pressure and volume compressibility of the soil particle skeleton. Soils and foundations, 48(1), 87-99. Vanapalli, S. K., Nicotera, M. V., & Sharma, R. S. (2008). Axis translation and negative water column techniques for suction control. In Laboratory and field testing of unsaturated soils (pp. 33-48). Springer, Dordrecht. Verdonck, P. J. (2019). Evaluation of the critical state line of sands to characterize their mechanical behavior under static and cyclic loading. Doctoral dissertation, Ph. D. thesis, Dept. of Civil Engineering, Ghent Univ. Wang, W. C. (2018). Experimental Investigation of the Liquefaction Behavior of Unsaturated Sand with Non-plastic fines. Master’s thesis, National Taiwan University, Taiwan. Yang, H., Rahardjo, H., Leong, E. C., and Fredlund, D. G. (2004). A study of infiltration on three sand capillary barriers. Can. Geotech. J., 41(4), 629–643. Yang, X., & You, X. (2013). Estimating parameters of van Genuchten model for soil water retention curve by intelligent algorithms. Applied Mathematics & Information Sciences, 7(5), 1977. Youd, T.L. Application of MLR Procedure for Prediction of Liquefaction-Induced Lateral Spread Displacement., J. Geotech. Geoenvironmental Eng. 2018, 6, 144. Zhang, B., Muraleetharan, K. K., & Liu, C. (2016). Liquefaction of unsaturated sands. International Journal of Geomechanics, 16(6), D4015002. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90160 | - |
dc.description.abstract | 地球上每年都會發生許多地震,臺灣更是高度好發地震地區,這些地震往往對建築物和人民生命造成嚴重的破壞。地震引發的問題之一就是液化,液化現象對我們的結構物會造成難以控制的影響。然而,大多數對抗液化的研究都集中在飽和沙土方面,未飽和沙土或含有不同細粒料的沙土卻未受到足夠的關注。為了更好地了解這些土壤的液化特性,我將對不同的飽和度和皂土含量下的沙土進行一系列動態三軸試驗。不同飽和度、黏土粒料含量之試體在加載不同的循環應力之後可以計算得可以計算得各試體之CSR以及LRR,並進行流量幫浦試驗以獲取土壤水特性曲線(SWCC)。在流量幫浦試驗期間,每個試體提取的水量會被控制以達到預期的飽和度。在進行循環動態加載時,將監測試體之孔隙氣壓、孔隙水壓和基質吸力的變化。最後,將討論皂土含量和基質吸力之間的關係,並根據這一系列實驗研究的結果評估含皂土細粒料之未飽和土壤的抗液化能力。
動態三軸試驗是用於評估土壤動態強度的一種常用實驗方法,通過對土壤進行壓密和施加循環剪切應力,可以了解其變形和破壞特性。CSR和LRR是評估土壤液化特性的重要參數,能夠幫助我們預測在地震等自然災害中土壤的反應。另外,流量幫浦試驗是一種測量土壤水力特性曲線(SWCC)的有效方法,可以獲得土壤基質吸力曲線、孔隙比和飽和度 | zh_TW |
dc.description.abstract | Taiwan experiences a high frequency of earthquakes every year, which often result in significant damages to buildings and human life. One of the major issues caused by earthquakes is liquefaction, a problem that requires our attention. Liquefaction can have an uncontrollable impact on our country. Most research related to liquefaction focused on saturated sands, unsaturated sands or sands containing fines have received less attention. To better understand the liquefaction properties of such soils, a series of cyclic triaxial tests were conducted under varying degrees of saturation and fines content in this study. Flow pump tests were performed to obtain the soil water characteristic curve (SWCC). Water extracted from each specimen during the pump test would be controlled to achieve the intended degree of saturation. During the application of cyclic loading, changes in pore air pressure, pore water pressure, and matric suction were monitored. The cyclic shear resistance (CSR) and liquefaction resistance ratio (LRR) were determined and compared with those for saturated material. It’s observed that saturated sand with plastic fines can liquefy, but as the degree of saturation decreases, the liquefaction resistance significantly increases. Also, the addition of bentonite in silica sand provides a more noticeable increase in liquefaction resistance compared to the addition of silt or kaolinite. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:40:02Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-22T17:40:02Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii TABLE OF CONTENTS iv List of Figures vii Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Research Method 2 1.3 Thesis Organization 3 Chapter 2 Literature Review 4 2.1 Principles of Unsaturated Soil Behavior 4 2.1.1 Conformation of Unsaturated Soil 4 2.1.2 Stress State for Unsaturated Soil 6 2.1.3 Soil-Water Characteristic Curve 8 2.1.4 Effect of Fines Content and Soil Condition on Soil-Water Characteristic Curve 10 2.1.5 Axis Translation Technique 13 2.1.6 Laboratory Testing of Unsaturated Soil 14 2.2 Soil Liquefaction 18 2.2.1 Introduction of Soil Liquefaction 18 2.2.2 Liquefaction Failure Criteria 19 2.2.3 Liquefaction Resistance 22 2.2.4 Unsaturated Soil Liquefaction 24 2.2.5 Effects of Fine Content on Cyclic Triaxial Test 28 Chapter 3 Experimental Program 32 3.1 Objectives 32 3.2 Apparatus 33 3.2.1 GDS Instrument System 33 3.2.2 Modified pedestal and High entry value ceramic plate 41 3.2.3 Flow pump device 42 3.3 Physical Properties of Soil Material 44 3.3.1 Silica Sand 44 3.3.2 Bentonite 48 3.4 Soil-Water Characteristic Curve (SWCC) Test 51 3.4.1 Pressure Plate Test 51 3.4.2 Flow Pump Test 53 3.5 Specimen Preparation of Modified Isotropic Undrained Cyclic Triaxial Test 54 3.5.1 Saturation of HAE ceramic 54 3.5.2 Step of Soil Preparation 55 3.5.3 Step of Specimen Remold 56 3.5.4 Step of Specimen Saturation 60 3.5.5 Step of Consolidation 65 3.5.6 Step of Docking 66 3.5.7 Step of Extracting Water from Specimen 67 3.5.8 Step of Isotropic Undrained Cyclic Loading 69 Chapter 4 Experimental Results and Discussions 70 4.1 Results and Discussions of Soil-Water Characteristic Curve of Sand with Plastic Fines 70 4.2 Results and Discussions of Modified Cyclic Triaxial Test 71 4.2.1 Saturated Sand with Fines Content Specimens 74 4.2.2 Unsaturated Sand with Fines Content Specimens 79 4.2.3 Specimen Form after Liquefaction 82 4.2.4 Effects of Degree of Saturation and Fines Content on Liquefaction Curves 84 4.2.5 Liquefaction Resistance of Saturated and Unsaturated Sand-Clay Mixtures 87 Chapter 5 Conclusions and Recommendations 90 5.1 Conclusions 90 5.2 Recommendations for Future Researches 92 REFERENCES 93 Appendix 100 | - |
dc.language.iso | en | - |
dc.title | 以實驗方法探討非飽和含皂土細粒料砂土之液化行為研究 | zh_TW |
dc.title | Experimental Investigation on Dynamic Properties and Liquefaction Behavior of Unsaturated Sand with Highly Plastic Bentonite Clayey Fines | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 楊國鑫;鄧福宸 | zh_TW |
dc.contributor.oralexamcommittee | Kuo-Hsin Yang;Fu-Chen Teng | en |
dc.subject.keyword | 皂土,非飽和土壤,土壤液化,基質吸力,動三軸試驗, | zh_TW |
dc.subject.keyword | Unsaturated soil,Liquefaction,Matric Suction,Cyclic Triaxial Test, | en |
dc.relation.page | 118 | - |
dc.identifier.doi | 10.6342/NTU202303866 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-08-11 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 土木工程學系 | - |
dc.date.embargo-lift | 2028-08-09 | - |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 7.7 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。