Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90156
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳岳隆zh_TW
dc.contributor.advisorYueh-Lung Wuen
dc.contributor.author張維展zh_TW
dc.contributor.authorWei-Chan Changen
dc.date.accessioned2023-09-22T17:39:04Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-09-
dc.identifier.citationAlaux C, Ducloz F, Crauser D, Le Conte Y. 2010. Diet effects on honeybee immunocompetence. Biology letters 6: 562-565.
Ament SA. 2010. Nutrition, hormones, transcriptional regulatory networks and division of labor in honey bee colonies. University of Illinois at Urbana-Champaign. pp.
Ando T, Imamura H, Suzuki R, Aizaki H, Watanabe T, Wakita T, Suzuki T. 2012. Visualization and measurement of ATP levels in living cells replicating hepatitis C virus genome RNA. PLoS pathogens 8: e1002561.
Bailey L, Fernando E. 1972. Effects of sacbrood virus on adult honey‐bees. Annals of Applied Biology 72: 27-35.
Bajgar A, Dolezal T. 2018. Extracellular adenosine modulates host-pathogen interactions through regulation of systemic metabolism during immune response in Drosophila. PLoS pathogens 14: e1007022.
Bajgar A, Kucerova K, Jonatova L, Tomcala A, Schneedorferova I, Okrouhlik J, Dolezal T. 2015. Extracellular adenosine mediates a systemic metabolic switch during immune response. PLoS biology 13.
Becker A, Schlöder P, Steele J, Wegener G. 1996. The regulation of trehalose metabolism in insects. Experientia 52: 433-439.
Benaets K, Van Geystelen A, Cardoen D, De Smet L, de Graaf DC, Schoofs L, Larmuseau MH, Brettell LE, Martin SJ, Wenseleers T. 2017. Covert deformed wing virus infections have long-term deleterious effects on honeybee foraging and survival. Proceedings of the Royal Society B: Biological Sciences 284: 20162149.
Bomtorin AD, Mackert A, Rosa GCC, Moda LM, Martins JR, Bitondi MMG, Hartfelder K, Simões ZLP. 2014. Juvenile hormone biosynthesis gene expression in the corpora allata of honey bee (Apis mellifera L.) female castes. Plos One 9: e86923.
Bours M, Swennen E, Di Virgilio F, Cronstein B, Dagnelie P. 2006. Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacology & therapeutics 112: 358-404.
Buck LT. 2004. Adenosine as a signal for ion channel arrest in anoxia-tolerant organisms. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 139: 401-414.
Chang Y, Tang C-K, Lin Y-H, Tsai C-H, Lu Y-H, Wu Y-L. 2020. Snellenius manilae bracovirus suppresses the host immune system by regulating extracellular adenosine levels in spodoptera litura. Scientific reports 10: 1-11.
Chauzat M, Higes M, Martín-Hernández R, Meana A, Cougoule N, Faucon J. 2007. Presence of Nosema ceranae in French honey bee colonies. Journal of Apicultural Research 46: 127.
de Groot AP. 1953. Protein and Amino Acid Requirements of the Honeybee (Apis Mellifica L.). W. Junk. pp.
De Miranda JR, Genersch E. 2010. Deformed wing virus. Journal of invertebrate pathology 103: S48-S61.
Decourtye A, Armengaud C, Renou M, Devillers J, Cluzeau S, Gauthier M, Pham-Delègue M-H. 2004. Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.). Pesticide biochemistry and physiology 78: 83-92.
Dolezelova E, Nothacker H-P, Civelli O, Bryant PJ, Zurovec M. 2007. A Drosophila adenosine receptor activates cAMP and calcium signaling. Insect biochemistry and molecular biology 37: 318-329.
Doublet V, Labarussias M, de Miranda JR, Moritz RF, Paxton RJ. 2015. Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environmental microbiology 17: 969-983.
Downey D, Higo T, Winston M. 2000. Single and dual parasitic mite infestations on the honey bee, Apis mellifera L. Insectes sociaux 47: 171-176.
Fahrbach SE, Robinson GE. 1996. Juvenile hormone, behavioral maturation, and brain structure in the honey bee. Developmental neuroscience 18: 102-114.
Fontaine KA, Sanchez EL, Camarda R, Lagunoff M. 2015. Dengue virus induces and requires glycolysis for optimal replication. Journal of virology 89: 2358-2366.
Genersch E, von Der Ohe W, Kaatz H, Schroeder A, Otten C, Büchler R, Berg S, Ritter W, Mühlen W, Gisder S. 2010. The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie 41: 332-352.
Gisder S, Möckel N, Eisenhardt D, Genersch E. 2018. In vivo evolution of viral virulence: switching of deformed wing virus between hosts results in virulence changes and sequence shifts. Environmental microbiology 20: 4612-4628.
Gold PE, Vogt J, Hall JL. 1986. Glucose effects on memory: behavioral and pharmacological characteristics. Behavioral and neural biology 46: 145-155.
Goulson D, Nicholls E, Botías C, Rotheray EL. 2015. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347: 1255957.
Huang Z-Y, Robinson GE. 1992. Honeybee colony integration: worker-worker interactions mediate hormonally regulated plasticity in division of labor. Proceedings of the National Academy of Sciences 89: 11726-11729.
Huang Z-Y, Robinson GE. 1996. Regulation of honey bee division of labor by colony age demography. Behavioral Ecology and Sociobiology 39: 147-158.
Iqbal J, Mueller U. 2007. Virus infection causes specific learning deficits in honeybee foragers. Proceedings of the Royal Society B: Biological Sciences 274: 1517-1521.
Johnson BR. 2008a. Global information sampling in the honey bee. Naturwissenschaften 95: 523-530.
Johnson BR. 2008b. Within-nest temporal polyethism in the honey bee. Behavioral Ecology and Sociobiology 62: 777-784.
Johnson BR, Nieh JC. 2010. Modeling the adaptive role of negative signaling in honey bee intraspecific competition. Journal of Insect Behavior 23: 459-471.
Koupenova M, Ravid K. 2013. Adenosine, adenosine receptors and their role in glucose homeostasis and lipid metabolism. Journal of cellular physiology 228: 1703-1712.
Kralj J, Fuchs S. 2010. Nosema sp. influences flight behavior of infected honey bee (Apis mellifera) foragers. Apidologie 41: 21-28.
Li Z, Zhou C, Chen Y, Ma W, Cheng Y, Chen J, Bai Y, Luo W, Li N, Du E. 2022. Egfr signaling promotes juvenile hormone biosynthesis in the German cockroach. BMC biology 20: 1-16.
Lin Y-C, Lu Y-H, Tang C-K, Yang E-C, Wu Y-L. 2023. Honey bee foraging ability suppressed by imidacloprid can be ameliorated by adding adenosine. Environmental Pollution: 121920.
Murphree LJ, Linden J. 2004. Adenosine receptors.
Newby AC. 1984. Adenosine and the concept of ‘retaliatory metabolites’. Trends in Biochemical Sciences 9: 42-44.
Perry CJ, Søvik E, Myerscough MR, Barron AB. 2015. Rapid behavioral maturation accelerates failure of stressed honey bee colonies. Proceedings of the National Academy of Sciences 112: 3427-3432.
Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. 2010. Global pollinator declines: trends, impacts and drivers. Trends in ecology & evolution 25: 345-353.
Reim T, Scheiner R. 2014. Division of labour in honey bees: age‐and task‐related changes in the expression of octopamine receptor genes. Insect molecular biology 23: 833-841.
Rivera-Perez C, Nouzova M, Lamboglia I, Noriega FG. 2014. Metabolic analysis reveals changes in the mevalonate and juvenile hormone synthesis pathways linked to the mosquito reproductive physiology. Insect biochemistry and molecular biology 51: 1-9.
Robinson GE. 1987. Regulation of honey bee age polyethism by juvenile hormone. Behavioral ecology and sociobiology 20: 329-338.
Sasagawa H, Kuwahara Y. 1988. Quantitative determination method for a juvenile hormone III titer in honeybee haemolymph by high-performance liquid chromatography. Agricultural and biological chemistry 52: 1295-1297.
Seeley TD. 1989. The honey bee colony as a superorganism. American Scientist 77: 546-553.
Suchail S, Guez D, Belzunces LP. 2001. Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environmental Toxicology and Chemistry: An International Journal 20: 2482-2486.
Vanengelsdorp D, Traynor KS, Andree M, Lichtenberg EM, Chen Y, Saegerman C, Cox-Foster DL. 2017. Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology. Plos One 12: e0179535.
Visscher PK, Seeley TD. 1982. Foraging strategy of honeybee colonies in a temperate deciduous forest. Ecology 63: 1790-1801.
Xie K-q, Zhang L-m, Cao Y, Zhu J, Feng L-y. 2009. Adenosine A1 receptor-mediated transactivation of the EGF receptor produces a neuroprotective effect on cortical neurons in vitro. Acta Pharmacologica Sinica 30: 889-898.
Yang E-C, Chang H-C, Wu W-Y, Chen Y-W. 2012. Impaired olfactory associative behavior of honeybee workers due to contamination of imidacloprid in the larval stage. PloS one 7: e49472.
Yang E, Chuang Y, Chen Y, Chang L. 2008. Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). Journal of economic entomology 101: 1743-1748.
Zhao L, Fletcher S, Weaver C, Leonardi-Bee J, May J, Fox S, Willmot M, Heptinstall S, Bath P. 2005. Effects of aspirin, clopidogrel and dipyridamole administered singly and in combination on platelet and leucocyte function in normal volunteers and patients with prior ischaemic stroke. Thrombosis and haemostasis 93: 527-534.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90156-
dc.description.abstract蜜蜂 (Apis mellifera) 是一種真社會性昆蟲,具備共同育幼、世代重疊以及生殖分工的特性。除了生殖分工,工蜂還可依工作任務分為內勤蜂和外勤蜂。隨著年齡的增長,工蜂會改變任務,新羽化的工蜂在最初的兩周於蜂巢中負責育幼和蜂巢維護,這段時間過後,它們便轉為外勤蜂外出覓食。但分工並非一成不變的,當殺蟲劑、病原菌等不力於生存的負面因子出現時,族群內的各項分工條件在不同的環境條件下將改變,以對抗外來生存壓力。畸翅病毒 (Deformed Wing Virus, DWV)是全球最廣泛分布之蜜蜂病毒,在台灣約有九成的蜂巢可見其感染蹤跡,也被認為是共同蜂群衰竭失調症 (Colony Collapse Disorder, CCD)的幕後推手之一。當蜜蜂被病毒感染後,內勤蜂會提前轉換為外勤蜂。先前研究表明,感染畸翅病毒的蜜蜂腺苷代謝與健康蜜蜂有很大差異。受感染的蜜蜂體內能量會從大腦轉移到免疫系統,協助蜜蜂對抗病原,這種改變可能導致生理機制改變。目前尚不清楚畸翅病毒感染如何影響工蜂的分工,本實驗透過測量感染畸翅病毒工蜂之ATP、腺苷和醣類濃度和相關基因來了解能量代謝的改變,並分析分工相關激素、基因在不同日齡的變化,嘗試解釋外來病原對能量代謝、激素生理及分工行為上的影響。病毒感染後的蜜蜂腦部能量消耗減少,醣類代謝相關基因表現下降,作為分工依據的青春激素相關基因卻更早受到活化,進而導致青春激素濃度上升,促使工蜂更快轉變為外勤蜂。本研究點出了病毒感染對蜜蜂能量代謝的影響進而導致分工改變的可能,闡明在逆境下相關激素和基因的變化,進而解釋病毒對工蜂分工之影響。zh_TW
dc.description.abstractHoneybees (Apis mellifera) are eusocial insects reproductive division of labor. In addition to the division in the reproductive class, worker bees can also be divided into house-keeping bees and forager bees based on the task they carry out. The division of labor is achieved by workers changing tasks as they aged. The newly-emerged worker bees spend their first two to three weeks in the hive. After this period, they will start foraging. Honey bees can be considered as superorganisms because specialized division of labor within hives is essential for their survival. Manipulation of this highly specialized division may help honey bees fight against survival pressure. When honey bees are infected by virus, they start their first forage at an earlier time. Our previous research demonstrates that the adenosine metabolism of honey bees infected with deformed wing virus was greatly different from that of the healthy ones. Energy was transferred from brain to immune system in DWV-infected honeybees and this altered energy transfer subsequently affected several physiological mechanisms. It is not yet known whether DWV infection would affect the division of labor in worker bees. The hormones and genes related to the division of labor in DWV-infected honeybees were measured to elucidate changes in energy metabolism through ATP, adenosine, and hemolymph sugar concentration of worker bees under adversity. As well as analyzing the changes in division of labor-related hormones synthesis genes. After DWV infection, honey bees experience a decrease in brain energy consumption, a reduction in the expression of genes related to carbohydrate metabolism, and an earlier activation of genes associated with juvenile hormone, resulting in an increase in juvenile hormone concentration. The hormonal change accelerates the transition of housekeeping bees into forager bees. This study highlights the impact of viral infection on honey bee energy metabolism, leading to changes in division of labor. It elucidates the alterationsen
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:39:04Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:39:04Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書……………………………………………………………………i
中文摘要………………………………………………………………………………ii
Abstract…………………………………………………………………………………iii
圖次…………………………………………………………………………………·vii
表次……………………………………………………………………………………viii
壹、前言………………………………………………………………………………1
貳、往昔研究…………………………………………………………………………5
2.1蜜蜂與病毒…………………………………………………………………5
2.1.1 蜂群衰竭失調症………………………………………………………5
2.1.2 畸翅病毒 (Deformed Wing Virus, DWV) ……………………………5
2.1.3 工蜂分工(division of labor)……………………………………………6
2.1.4 青春激素………………………………………………………………7
2.2 腺苷與能量代謝………………………………………………………………8
2.2.1腺苷 (adenosine, Ado) ………………………………………………8
2.2.2 腺苷受體 (Adenosine receptor, Ado-R)……………………………9
2.2.3醣解作用與克式循環…………………………………………………9
2.2.4能量關係與神經分泌…………………………………………………10
參、材料方法…………………………………………………………………………11
3.1.蜜蜂之飼養及收集…………………………………………………………12
3.2 病毒感染試驗………………………………………………………………12
3.3. 葡萄糖分析…………………………………………………………………12
3.4. 樣本處理及cDNA收集……………………………………………………13
3.5. RT-qPCR定量及引子設計…………………………………………………13
3.6.利用RT-qPCR分析腺苷受體表現量之變化………………………………14
3.7. 蜜蜂感染DWV病毒後進行醣解作用與克式循環表現量分析…………14
3.8. 利用RT-qPCR分析青春激素合成基因表現量之變化……………………15
3.9. 利用RT-qPCR分析卵黃生成素合成基因表現量之變化…………………15
3.10. 三磷酸腺苷 (ATP) 分析…………………………………………………16
3.11. 感染DWV蜜蜂野放回蜂巢………………………………………………16
3.12. 餵食腺苷分析……………………………………………………………16
肆、結果………………………………………………………………………………17
4.1感染DWV病毒對蜜蜂能量路徑之影響……………………………………17
4.2感染DWV病毒對蜜蜂青春激素之影響……………………………………18
4.3巢內感染DWV病毒對蜜蜂代謝之影響……………………………………19
4.4餵食腺苷補救受感染之蜜蜂代謝表現……………………………………20
伍、討論………………………………………………………………………………23
陸、附件………………………………………………………………………………28
柒、參考文獻…………………………………………………………………………42
-
dc.language.isozh_TW-
dc.title畸翅病毒改變醣類代謝影響蜜蜂工蜂分工之研究zh_TW
dc.titleAlteration of carbohydrate metabolism by DWV affects division of labor in honeybees (Apis mellifera)en
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee唐政綱;趙裕展;乃育昕;蔡智瑄zh_TW
dc.contributor.oralexamcommitteeCheng-Kang Tang;Yu-Chan Chao;Yu-Shin Nai;Chih-Hsuan Tsaien
dc.subject.keyword腺苷,義大利蜂,畸翅病毒,分工,能量代謝,zh_TW
dc.subject.keywordAdenosine,Apis mellifera,Division of labor in honeybees,DWV,energy metabolism,en
dc.relation.page67-
dc.identifier.doi10.6342/NTU202303133-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-10-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept昆蟲學系-
dc.date.embargo-lift2028-08-05-
顯示於系所單位:昆蟲學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
4.14 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved