請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90147
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 朱雪萍 | zh_TW |
dc.contributor.advisor | Hsueh-Ping Chu | en |
dc.contributor.author | 謝宥宏 | zh_TW |
dc.contributor.author | Yu-Hung Hsieh | en |
dc.date.accessioned | 2023-09-22T17:36:54Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-22 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-09 | - |
dc.identifier.citation | 1. Harley, C.B., A.B. Futcher, and C.W. Greider, Telomeres shorten during ageing of human fibroblasts. Nature, 1990. 345(6274): p. 458-460.
2. Fagagna, F.d.A.d., et al., A DNA damage checkpoint response in telomere-initiated senescence. Nature, 2003. 426(6963): p. 194-198. 3. de Lange, T., Shelterin-Mediated Telomere Protection. Annual Review of Genetics, 2018. 52(1): p. 223-247. 4. van Steensel, B., A. Smogorzewska, and T. de Lange, TRF2 Protects Human Telomeres from End-to-End Fusions. Cell, 1998. 92(3): p. 401-413. 5. Yang, Z., et al., Break-induced replication promotes fragile telomere formation. Genes & Development, 2020. 34(19-20): p. 1392-1405. 6. Choudhury, A.R., et al., Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nature Genetics, 2007. 39(1): p. 99-105. 7. Rudolph, K.L., et al., Longevity, Stress Response, and Cancer in Aging Telomerase-Deficient Mice. Cell, 1999. 96(5): p. 701-712. 8. Gottschling, D.E., et al., Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell, 1990. 63(4): p. 751-62. 9. Baur, J.A., et al., Telomere Position Effect in Human Cells. Science, 2001. 292(5524): p. 2075-2077. 10. Azzalin, C.M., et al., Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science, 2007. 318(5851): p. 798-801. 11. Schoeftner, S. and M.A. Blasco, Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nature Cell Biology, 2008. 10(2): p. 228-236. 12. Luke, B., et al., The Rat1p 5′ to 3′ Exonuclease Degrades Telomeric Repeat-Containing RNA and Promotes Telomere Elongation in Saccharomyces cerevisiae. Molecular Cell, 2008. 32(4): p. 465-477. 13. Feretzaki, M. and J. Lingner, A practical qPCR approach to detect TERRA, the elusive telomeric repeat-containing RNA. Methods, 2017. 114: p. 39-45. 14. Nergadze, S.G., et al., CpG-island promoters drive transcription of human telomeres. Rna, 2009. 15(12): p. 2186-94. 15. Silva, B., et al., TERRA transcription destabilizes telomere integrity to initiate break-induced replication in human ALT cells. Nature Communications, 2021. 12(1): p. 3760. 16. Deng, Z., et al., A role for CTCF and cohesin in subtelomere chromatin organization, TERRA transcription, and telomere end protection. Embo j, 2012. 31(21): p. 4165-78. 17. Yehezkel, S., et al., Hypomethylation of subtelomeric regions in ICF syndrome is associated with abnormally short telomeres and enhanced transcription from telomeric regions. Hum Mol Genet, 2008. 17(18): p. 2776-89. 18. Lundblad, V. and E.H. Blackburn, An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell, 1993. 73(2): p. 347-360. 19. Bryan, T.M., et al., Telomere elongation in immortal human cells without detectable telomerase activity. Embo j, 1995. 14(17): p. 4240-8. 20. Bryan, T.M., et al., Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nature Medicine, 1997. 3(11): p. 1271-1274. 21. Doksani, Y. and T. de Lange, Telomere-Internal Double-Strand Breaks Are Repaired by Homologous Recombination and PARP1/Lig3-Dependent End-Joining. Cell Rep, 2016. 17(6): p. 1646-1656. 22. Dilley, R.L., et al., Break-induced telomere synthesis underlies alternative telomere maintenance. Nature, 2016. 539(7627): p. 54-58. 23. Roumelioti, F.M., et al., Alternative lengthening of human telomeres is a conservative DNA replication process with features of break-induced replication. EMBO Rep, 2016. 17(12): p. 1731-1737. 24. Grobelny, J.V., A.K. Godwin, and D. Broccoli, ALT-associated PML bodies are present in viable cells and are enriched in cells in the G(2)/M phase of the cell cycle. J Cell Sci, 2000. 113 Pt 24: p. 4577-85. 25. Draskovic, I., et al., Probing PML body function in ALT cells reveals spatiotemporal requirements for telomere recombination. Proc Natl Acad Sci U S A, 2009. 106(37): p. 15726-31. 26. Wang, Y., et al., An increase in telomere sister chromatid exchange in murine embryonic stem cells possessing critically shortened telomeres. Proc Natl Acad Sci U S A, 2005. 102(29): p. 10256-60. 27. Feretzaki, M., et al., RAD51-dependent recruitment of TERRA lncRNA to telomeres through R-loops. Nature, 2020. 587(7833): p. 303-308. 28. Petti, E., et al., SFPQ and NONO suppress RNA:DNA-hybrid-related telomere instability. Nature Communications, 2019. 10(1): p. 1001. 29. Lander, E.S., et al., Initial sequencing and analysis of the human genome. Nature, 2001. 409(6822): p. 860-921. 30. Nurk, S., et al., The complete sequence of a human genome. Science, 2022. 376(6588): p. 44-53. 31. Feuerbach, L., et al., TelomereHunter – in silico estimation of telomere content and composition from cancer genomes. BMC Bioinformatics, 2019. 20(1): p. 272. 32. Feretzaki, M., P. Renck Nunes, and J. Lingner, Expression and differential regulation of human TERRA at several chromosome ends. Rna, 2019. 25(11): p. 1470-1480. 33. Episkopou, H., et al., Alternative Lengthening of Telomeres is characterized by reduced compaction of telomeric chromatin. Nucleic Acids Res, 2014. 42(7): p. 4391-405. 34. Arora, R., et al., RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat Commun, 2014. 5: p. 5220. 35. Mason-Osann, E., et al., Identification of a novel gene fusion in ALT positive osteosarcoma. Oncotarget, 2018. 9(67): p. 32868-32880. 36. Shokhirev, M.N. and A.A. Johnson, Modeling the human aging transcriptome across tissues, health status, and sex. Aging Cell, 2021. 20(1): p. e13280. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90147 | - |
dc.description.abstract | TERRA(Telomeric repeats containing RNAs),是起源於端粒序列的長非編碼RNA,已知是一種表觀遺傳調節因子,並在端粒功能中扮演重要角色。在人類基因組中,已知次端粒具有GpG islands含有重複的61-29-37 nt序列模式,具有啟動子功能並與TERRA轉錄相關聯。儘管已經識別了這些TERRA啟動子,TERRA轉錄體於每條染色體上的精確轉錄起始位點、全長RNA序列和表達水平仍然不清楚。在這項研究中,我利用探針純化了U2OS細胞中的TERRA,並採用Illumina和Nanopore平台测序,所得之序列讀值不只有端粒重複序列,也包含特定染色體的次端粒序列,能夠定義和量化特定染色體末端的TERRA轉錄區域。通過將讀數對應到提供完整人類端粒序列組合的CHM13基因組,發現大多數TERRA轉錄體來自帶有GpG islands啟動子的次端粒區域,另外,本研究也發現ITSs區域會表現的TERRA。本研究還構建了染色體末端的TERRA表達區域,並開發了一個RNA-seq pipeline,使用來自人類骨肉瘤和與血液組織的RNA-seq數據集來測量染色體特異性TERRA水平。通過這個分析,闡明了TERRA水平與ALT活性和衰老之間的相關性。意外的是,本研究中還發現了TERRA與核糖體RNA的融合轉錄體,表明端粒序列插入到人類基因組的核醣體基因作當中。這些發現提供了對TERRA轉錄體的全面描述,並為未來研究TERRA功能和轉錄調節奠定了基礎。 | zh_TW |
dc.description.abstract | Telomeric repeats containing RNA, TERRA, a long non-coding RNA that is transcribed from telomeres, which is known as an epigenetic regulator and plays a crucial role in telomere functions. In humans, subtelomeric GpG islands containing the 61-29-37 repetitive sequence motif show promoter activity and regulate TERRA transcription. Despite the discovery of these TERRA promoters, the precise transcriptional start sites, full sequences, and the expression of TERRA from different telomeres remain unclear. In this study, TERRA was purified using C-rich antisense probes (TERRA-capture) in U2OS cells, and both short- and long-read sequencing methods, Illumina and Nanopore platforms, respectively, were employed. Long-read direct RNA sequencing enables the identification and quantification of TERRA transcription regions on specific chromosome ends. By aligning the reads to the CHM13 reference genome, which provides comprehensive subtelomere information, I found that the majority of TERRA transcripts are derived from chromosome ends with 61-29-37 repeat promoters in the subtelomeric regions. In addition, TERRA originating from the interstitial telomeric repeat sequences was also identified. Moreover, TERRA expression profiles were constructed for each chromosome end, and a new bioinformatic pipeline was developed to measure chromosome-specific TERRA levels using RNA-seq datasets from human osteosarcomas and blood cells collected from people of different ages. Through this analysis, telomere-specific TERRA expression levels were quantified. A positive correlation between TERRA level and alternative lengthening of telomeres (ALT) activity was observed. Interestingly, TERRA expression in human blood cells is associated with human aging. Unexpectedly, chimeric transcripts of TERRA and ribosomal RNA were discovered in cancer cell lines, suggesting the insertion of telomeric sequences into rDNA in the human genome in cancers. These findings provide a comprehensive characterization of the TERRA transcriptome and establish a foundation for future studies on the functions and transcriptional regulation of TERRA. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:36:54Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-22T17:36:54Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Contents
誌謝 i 中文摘要 ii Abstract iii Contents v Content of figures viii Content of supplementary figures x Content of tables xi Abbreviations xii Chapter 1. Introduction 1 1.1 Telomere 1 1.2 Telomeric repeat-containing RNA (TERRA) 2 1.3 Alternative Lengthening of telomeres (ALT) 5 1.4 The complete human genome CHM13 8 Chapter 2. Materials and methods 10 2.1 Cell culture 10 2.2 RNA extraction 10 2.3 Genomic DNA extraction 11 2.4 TERRA capture for Illumina RNA-seq 12 2.5 Reverse transcription and Quantitative PCR 14 2.6 Illumina RNA-seq library preparation 17 2.7 TERRA capture for Nanopore Direct RNA-seq 20 2.8 Illumina TERRA-captured RNA-seq data process 21 2.9 Nanopore Direct RNA-seq data process 22 2.10 Data process of ChIP-seq from online datasets 23 2.11 Data process of RNA-seq from online datasets 24 Chapter 3. Results 26 3.1 TERRA is enriched by TERRA-capture. 26 3.2 Three types of TERRA transcription regions. 27 3.3 Interstitial telomeric sequences transcribe TERRA. 29 3.4 TERRA expression from different chromosome ends and the length of telomeric repeats in TERRA transcripts. 31 3.5 ALT positive osteosarcomas exhibit higher TERRA expression level. 33 3.6 TERRA expression level is positive correlated to Age. 34 3.7 TERRA promoter epigenetics profiles. 35 3.8 Discovery of ribosomal RNA and TERRA fusions. 36 3.9 Ribosomal to telomeric transcripts were originated from genomic DNA fusions. 38 Chapter 4. Discussion 71 4.1 Limitations of TERRA-captured RNA-seq. 71 4.2 The telomeric repeat length estimation of TERR molecule. 74 4.3 TERRA transcription regulation at its promoter. 75 4.4 The fusions of ribosomal and telomeric transcripts. 77 Chapter 5. Supplementary information 79 Chapter 6. Reference 96 Content of figures Figure 1. TERRA is enriched by TERRA capture. 40 Figure 2. Classification of TERRA transcription regions. 41 Figure 3. Genome browser views of TERRA transcription regions. 42 Figure 4. Interstitial telomeric sequences regions transcribe TERRA. 45 Figure 5. Type III TERRA transcription regions on CHM13. 46 Figure 6. Genome browser views of Type III TERRA transcription regions. 48 Figure 7. Heatmap of TERRA expression level at each telomere. 49 Figure 8. TERRA expression from different chromosomes in osteosarcomas. 51 Figure 9. Genome browser view of TERRA levels in ALT+ and ALT- RNA-seq datasets. 53 Figure 10. The quantification of TERRA expression of human blood cells collected from different ages. 54 Figure 11. Genome browser views of TERRA expression in human blood cells with different ages. 56 Figure 12. The epigenetic profiles of the 61-29-37 TERRA promoter. 57 Figure 13. Model of epigenetic profiles at 61-29-37 TERRA promoter. 58 Figure 14. Genome browser views of epigenetic marks around TERRA promoter. 59 Figure 15. Ribosomal RNA fused to TERRA UUAGGG repeats. 60 Figure 16. qPCR detected ribosomal fusion on telomeric repeats in human cells. 62 Content of supplementary figures Figure S1: TERRA-capture specific enrich TERRA. 64 Figure S2: RNA-seq pipeline for counting and normalizing TERRA expression in publish datasets. 65 Figure S3. Ribosomal and telomeric fusions were identified in genomic DNA samples. 67 Figure S4. Ribosomal and telomeric fusions were identified in RNA samples. 68 Figure S5: Fusion Primer 2 qPCR amplicon sequences. 69 Figure S6: Fusion Primer 3 qPCR amplicon sequences. 70 Content of tables 5.1 Supplementary Table1: Type I, II TERRA transcription regions 79 5.2 Supplementary Table2: Type I, II TERRA transcription region annotation 81 5.3 Supplementary Table3: Type III TERRA transcription regions 83 5.4 Supplementary Table4: TERRA transcript assembly regions 85 5.5 Supplementary Table5: Primers and probes used in qPCR and TERRA-capture experiments 87 5.6 Supplementary Table6: Reagent for first strand synthesis 88 5.7 Supplementary Table7: Chemicals and reagents 89 5.8 Supplementary Table8: Code list for RNA-seq pipeline 92 | - |
dc.language.iso | en | - |
dc.title | 人類細胞中 TERRA 轉錄體之全面分析 | zh_TW |
dc.title | A comprehensive TERRA transcriptome in human cells | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳柏仰;陳律佑 | zh_TW |
dc.contributor.oralexamcommittee | Pao-Yang Chen;Liuh-Yow Chen | en |
dc.subject.keyword | 端粒,長鏈非編碼RNA,端粒重複序列RNA,次世代定序,納米孔測序, | zh_TW |
dc.subject.keyword | Telomere,long non-coding RNA,TERRA,Nanopore,Next Generation Sequencing, | en |
dc.relation.page | 98 | - |
dc.identifier.doi | 10.6342/NTU202303330 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-08-11 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 分子與細胞生物學研究所 | - |
顯示於系所單位: | 分子與細胞生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.37 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。