Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90143
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂東武zh_TW
dc.contributor.advisorTung-Wu Luen
dc.contributor.author歐熙杭zh_TW
dc.contributor.authorOscar Gustavo Orellana Lacsen
dc.date.accessioned2023-09-22T17:35:54Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-10-
dc.identifier.citation1. Majewski, M., Susanne, H., & Klaus, S., Epidemiology of athletic knee injuries: A 10-year study. The Knee, 2006, 13(3), p. 184-188.
2. Woo, S. L. Y., Abramowitch, S. D., Kilger, R., & Liang, R., Biomechanics of knee ligaments: injury, healing, and repair. Journal of Biomechanics, 2006, 39(1), p. 1-20.
3. Buckwalter, J. A., & Mankin, H. J., Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instructional Course Lectures, 1998, 47, p. 487-504.
4. Buckwalter, J. A., Mankin, H. J., & Grodzinsky, A. J., Articular cartilage and osteoarthritis. Instructional Course Lectures-American Academy of Orthopaedic Surgeons, 2005, 54, p. 465.
5. Mononen, M. E., Mikkola, M. T., Julkunen, P., Ojala, R., Nieminen, M. T., Jurvelin, J. S., & Korhonen, R. K., Effect of superficial collagen patterns and fibrillation of femoral articular cartilage on knee joint mechanics—A 3D finite element analysis. Journal of Biomechanics, 2012, 45(3), p. 579-587.
6. Saarakkala, S., Julkunen, P., Kiviranta, P., Mäkitalo, J., Jurvelin, J. S., & Korhonen, R. K., Depth-wise progression of osteoarthritis in human articular cartilage: investigation of composition, structure and biomechanics. Osteoarthritis and Cartilage, 2010, 18(1), p. 73-81.
7. Silver, F. H., Bradica, G., & Tria, A., Viscoelastic behavior of osteoarthritic cartilage. Connective Tissue Research, 2001, 42(3), p. 223-233.
8. Li, G., Lopez, O., & Rubash, H., Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis. Journal of Biomechanics Eng., 2001, 123(4), p. 341-346.
9. Jeffery, A. K., Blunn, G. W., Archer, C. W., & Bentley, G., Three-dimensional collagen architecture in bovine articular cartilage. The Journal of Bone and Joint Surgery. British volume, 1991, 73(5), p. 795-801.
10. Buckwalter, J. A., & Mankin, H. J., Articular cartilage: tissue design and chondrocyte-matrix interactions. Instructional Course Lectures, 1998, 47, p. 477-486.
11. Caplan, A. I., Cartilage. Scientific American, 1984, 251(4), p. 84-97.
12. Chen, Y. C., Chen, M., Gaffney, E. A., & Brown, C. P., Effect of crosslinking in cartilage-like collagen microstructures. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 66, p. 138-143.
13. Komala, I., Multi-Scale Finite Element Modeling of Knee Cartilage with Applications to Cycling. [Master Thesis, National Taiwan University], 2020.
14. Depalle, B., Qin, Z., Shefelbine, S. J., & Buehler, M. J. (2015). Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils. Journal of the Mechanical Behavior of Biomedical Materials, 52, p. 1-13.
15. Benninghoff, A., Form und bau der Gelenkknorpel in ihren Beziehungen zur Funktion: Zweiter teil: Der Aufbau des Gelenkknorpels in seinen Beziehungen zur Funktion. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 1925, 2(5), p. 783-862.
16. Mitchell, B. R., Nassiri, A., Locke, M. R., Klewicki, J. C., Korkolis, Y. P., & Kinsey, B. L., Experimental and numerical framework for study of low velocity water droplet impact dynamics. In International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2016, Vol. 49897, p. V001T02A047.
17. Fusheng, L., Xianmong, C., Pansen, C., Juxing, C., Hua, T., Qingquan, G., & Fuqian, J., Equation of state and conductivity of shocked heavy water. In AIP Conference Proceedings, American Institute of Physics, 1996, 370(1), p. 57-60.
18. Kanungo, B. P., & Gibson, L. J., Density–property relationships in mineralized collagen–glycosaminoglycan scaffolds. Acta Biomaterialia, 2009, 5(4), p. 1006-1018.
19. Yuguing, Z., & Hordan Joanne, M., Epidemiology of osteoarthritis. Clin Geriatr Med, 2010, 26(3), p. 355-369.
20. Spector, T. D., Hart, D. J., Byrne, J., Harris, P. A., Dacre, J. E., & Doyle, D. V., Definition of osteoarthritis of the knee for epidemiological studies. Annals of the Rheumatic Diseases, 1993, 52(11), p.790-794.
21. Centers for Disease Control and Prevention, Osteoarthritis (OA). Centers for Disease Control and Prevention, 2020. Retrieved April 10, 2023, from https://www.cdc.gov/arthritis/basics/osteoarthritis.htm
22. Simon, D., Mascarenhas, R., Saltzman, B. M., Rollins, M., Bach, B. R., & MacDonald, P., The relationship between anterior cruciate ligament injury and osteoarthritis of the knee. Advances in Orthopedics, 2015.
23. INDELICATO, P. A., & BITTAR, E. S., A perspective of lesions associated with ACL insufficiency of the knee: a review of 100 cases. Clinical Orthopaedics and Related Research, 1985, 198, p. 77-80.
24. McGinty, G., Irrgang, J. J., & Pezzullo, D., Biomechanical considerations for rehabilitation of the knee. Clinical Biomechanics, 2000, 15(3), p. 160–166.
25. Kogarah, Miranda & Sydney. Sydney Knee Specialists, 2021. Retrieved April 10, 2023, from https://www.sydneyknee.com.au/knee-info/knee-anatomy/
26. Hirschmann, M. T., & Müller, W., Complex function of the knee joint: the current understanding of the knee. Knee Surgery, Sports Traumatology, Arthroscopy, 2015, 23, p. 2780-2788.
27. Sophia Fox, A. J., Bedi, A., & Rodeo, S. A., The basic science of articular cartilage: structure, composition, and function. Sports health, 2009, 1(6), p. 461-468.
28. Chaudhari, A. M., Briant, P. L., Bevill, S. L., Koo, S., & Andriacchi, T. P., Knee kinematics, cartilage morphology, and osteoarthritis after ACL injury. Medicine and Science in Sports and Exercise, 2008, 40(2), p. 215-222.
29. Poole, A. R., Kojima, T., Yasuda, T., Mwale, F., Kobayashi, M., & Laverty, S. Composition and structure of articular cartilage: a template for tissue repair. Clinical Orthopaedics and Related Research, 2001, 391, p. 26-33.
30. Laasanen, M. S., Töyräs, J., Korhonen, R. K., Rieppo, J., Saarakkala, S., Nieminen, M. T., & Jurvelin, J. S., Biomechanical properties of knee articular cartilage. Biorheology, 2003, 40(1, 2, 3), p. 133-140.
31. Foster, A., Butcher, C., & Turner, P. G., Changes in arthroscopic findings in the anterior cruciate ligament deficient knee prior to reconstructive surgery. The Knee, 2005, 12(1), p. 33-35.
32. Lu, T. W., Tsai, T. Y., Kuo, M. Y., Hsu, H. C., & Chen, H. L., In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy. Medical Engineering & Physics, 2008, 30(8), p. 1004-1012.
33. Lin, Y. T., In-vivo stress distribution of the knee ligaments during functional activities. [Master thesis, National Taiwan University], 2008.
34. Guo, J. A., In-vivo three-dimensional finite element simulation and analyses of the knee ligaments during functional activities. [Master thesis, National Taiwan University], 2010.
35. Keng, C.W., Three-dimensional finite element analysis of the knee-joint ligaments during sit-to-stand. [Master thesis, National Taiwan University], 2012.
36. Lin, T. C., Three-dimensional finite element analysis of the knee-joint ligament during sit-to-stand, [Master thesis, National Taiwan University], 2014.
37. Zhang, Y., & Jordan, J. M., Epidemiology of osteoarthritis. Clinics in geriatric medicine, 2010, 26(3), p. 355-369.
38. Heidari, B., Knee osteoarthritis prevalence, risk factors, pathogenesis and features: Part I. Caspian Journal of Internal Medicine, 2011, 2(2), p. 205.
39. Buckwalter, J. A., Mow, V. C., & Ratcliffe, A., Restoration of injured or degenerated articular cartilage. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 1994, 2(4), p. 192-201.
40. BUCKWALTER, J., & MARTIN, J., Osteoarthritis. Advanced Drug Delivery Reviews, 2006, 58(2), p. 150–167.
41. Soltz, M. A., & Ateshian, G. A., Interstitial fluid pressurization during confined compression cyclical loading of articular cartilage. Annals of Biomedical Engineering, 2000, 28, p. 150-159.
42. Van Der Rijt, J. A., Van Der Werf, K. O., Bennink, M. L., Dijkstra, P. J., & Feijen, J., Micromechanical testing of individual collagen fibrils. Macromolecular Bioscience, 2006, 6(9), p. 697-702.
43. Pierce, D. M., Trobin, W., Trattnig, S., Bischof, H., & Holzapfel, G. A., A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking, 2009.
44. Lu, H.-Y., Shih, K.-S., Lin, C.-C., Lu, T.-W., Li, S.-Y., Kuo, H.-W., & Hsu, H.-C., Three-dimensional subject-specific knee shape reconstruction with asynchronous fluoroscopy images using statistical shape modeling. Frontiers in Bioengineering and Biotechnology, 2021, 9.
45. Heimann, T., & Meinzer, H.-P., Statistical shape models for 3D Medical Image Segmentation: A Review. Medical Image Analysis, 2009, 13(4), p. 543–563.
46. Cootes, T. F., & Taylor, C. J., Statistical models of appearance for medical image analysis and computer vision. In Medical Imaging 2001: Image Processing, 2001, Vol. 4322, p. 236-248. SPIE.
47. Pedoia, V., Lansdown, D., Zaid, M., McCulloch, C., Souza, R., Ma, C., & Li, X., Three-dimensional MRI-based statistical shape model and application to a cohort of knees with acute ACL injury. Osteoarthritis and Cartilage, 2015, 23(10), p. 1695–1703.
48. Andriy Myronenko, Xubo Song, & Miguel Á. Carreira-Perpiñán, Non-rigid point set registration: Coherent Point Drift. Neural Information Processing Systems, 2006, 19, p. 1009–1016.
49. Myronenko, A., and Xubo Song, X., Point Set Registration: Coherent Point Drift. IEEE Trans. Pattern Anal. Mach. Intell, 2010, 32 (12), p. 2262–2275.
50. Abdi, H., & Williams, L. J., Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(4), p. 433-459.
51. Abdi, H., The method of least squares. Encyclopedia of measurement and statistics, 2007, 1, p. 530-532.
52. Sigalotti, L. D. G., Klapp, J., & Gesteira, M. G., The mathematics of smoothed particle hydrodynamics (SPH) consistency. Frontiers in Applied Mathematics and Statistics, 2021, 7, p. 797455.
53. Mocz, P., Smoothed particle hydrodynamics: theory, implementation, and application to toy stars. Monthly Notices of the Royal Astronomical Society, 2011, 10(1), p.1-9.
54. Stegmann, M. B., & Gomez, D. D., A brief introduction to statistical shape analysis. Informatics and mathematical modelling, Technical University of Denmark, DTU, 2002, 15(11).
55. Ambellan, F., Lamecker, H., von Tycowicz, C., & Zachow, S., Statistical Shape Models: Understanding and Mastering Variation in Anatomy. Advances in Experimental Medicine and Biology, 2019, p. 67–84.
56. Jaadi, Z. (2021). A step-by-step explanation of principal component analysis (PCA). Retrieved June, 7, 2021.
57. Wong, T. T., Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognition, 2015, 48(9), p. 2839–2846.
58. Zheng, L., Harner, C. D., & Zhang, X., The morphometry of soft tissue insertions on the tibial plateau: data acquisition and statistical shape analysis. PLoS One, 2014, 9(5), p. e96515.
59. Sarkalkan, N., Weinans, H., & Zadpoor, A. A., Statistical shape and appearance models of bones. Bone. 2014, 60, p. 129–140.
60. Peña, E., Calvo, B., Martínez, M., & Doblaré, M., A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. Journal of Biomechanics, 2006, 39(9), p. 1686–1701.
61. Godest, A., Beaugonin, M., Haug, E., Taylor, M., & Gregson, P., Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis. Journal of Biomechanics. 2002, 35(2), p. 267–275.
62. Myronenko, A., and Xubo Song, X., Point Set Registration: Coherent Point Drift. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32 (12), p. 2262–2275.
63. Peiffer, M., Burssens, A., Duquesne, K., Last, M., De Mits, S., Victor, J., & Audenaert, E., Personalised statistical modelling of soft tissue structures in the ankle. Computer Methods and Programs in Biomedicine, 2022, 218, p. 106701.
64. Eggerding, V., van Kuijk, K. S. R., van Meer, B. L., Bierma-Zeinstra, S. M. A., van Arkel, E. R. A., Reijman, M., Waarsing, J. H., & Meuffels, D. E., Knee shape might predict clinical outcome after an anterior cruciate ligament rupture. The Bone &Amp; Joint Journal, 2014, 96–B(6), p. 737–742.
65. Polamalu, S. K., Musahl, V., & Debski, R. E., Tibiofemoral bony morphology features associated with ACL injury and sex utilizing three‐dimensional statistical shape modeling. Journal of Orthopaedic Research, 2021. 40(1): p. 87–94.
66. Abulhasan, Jawad F., and Michael J. Grey. Anatomy and physiology of knee stability. Journal of Functional Morphology and kinesiology, 2017. 2(4), p. 34.
67. Adler, W. F., Waterdrop impact modeling. Wear, 1995, 186, p. 341-351.
68. Desrochers, J., Amrein, M. W., & Matyas, J. R., Viscoelasticity of the articular cartilage surface in early osteoarthritis. Osteoarthritis and Cartilage, 2012, 20(5), p. 413-421.
69. Fine, R. A., & Millero, F. J., Compressibility of water as a function of temperature and pressure. The Journal of Chemical Physics, 1973, 59(10), p. 5529-5536.
70. Gil, I., Galdos, L., Mugarra, E., Mendiguren, J., & De Argandoña, E. S., Influence of the tool temperature increment on the coefficient of friction behavior on the deep drawing process of HSS. In IOP Conference Series: Materials Science and Engineering, 2016, 159(1), p. 012019.
71. Huber, M., Trattnig, S., & Lintner, F., Anatomy, biochemistry, and physiology of articular cartilage. Investigative Radiology, 2000, 35(10), p. 573-580.
72. Lozano, E., Aslam, T., Petr, V., & Jackson, G. S., Comparing different water equations of state for aquarium tests. In AIP Conference Proceedings, 2020, 2272(1), p. 070030
73. Temple-Wong, M. M., Bae, W. C., Chen, M. Q., Bugbee, W. D., Amiel, D., Coutts, R. D., & Sah, R. L., Biomechanical, structural, and biochemical indices of degenerative and osteoarthritic deterioration of adult human articular cartilage of the femoral condyle. Osteoarthritis and Cartilage, 2009, 17(11), p. 1469-1476.
74. Silver, F. H., Bradica, G., & Tria, A., Elastic energy storage in human articular cartilage: estimation of the elastic modulus for type II collagen and changes associated with osteoarthritis. Matrix Biology, 2002, 21(2), p. 129-137.
75. Neville, A., Morina, A., Liskiewicz, T., & Yan, Y., Synovial joint lubrication—does nature teach more effective engineering lubrication strategies? Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2007, 221(10), p. 1223-1230.
76. Tanaka, H., & Shuto, N., Friction coefficient for a wave-current coexistent system. Coastal Engineering in Japan, 1981, 24(1), p. 105-128.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90143-
dc.description.abstractnonezh_TW
dc.description.abstractOsteoarthritis greatly impacts the quality of life for those affected. Diagnosis usually occurs when symptoms become constant and unbearable, leaving only treatment options for alleviation without a complete cure. The sedentary lifestyle prevalent in modern society often leads to prolonged inactivity, resulting in weakened joints and the early onset of osteoarthritis. Conversely, overexertion during exercise can also contribute to injuries and the development of osteoarthritis in young adults. Extensive studies have investigated joint cartilage dynamics during everyday movements, with a focus on the role of collagen content in early detection of osteoarthritis.
This project aims to enhance the existing collagen model within cartilage by integrating a water content model, which is a fundamental component of cartilage. By employing finite element analysis (FEA) on the cartilage model, valuable insights into its behavior under mechanical loads can be gained, leading to a deeper understanding of its role in movement. To analyze the movement and the resulting loads on the cartilage, three-dimensional knee joint models have been created from finite element mesh preparation. However, the time-consuming preparation process and significant computational requirements associated with these models pose challenges. To address these challenges and improve efficiency, a statistical shape modeling (SSM) approach has been adopted. This approach establishes a comprehensive database of knee joint models, accessible for subsequent analyses.
The successful investigation of the interaction between collagen and water content during mechanical loads has provided valuable insights into model behavior. The SSM process enables easy retrieval of knee joint models from the database, with an approximate root mean squared error (RMSE) of 0.5%. Additionally, the generation of subject-specific models achieves an RMSE of approximately 1.3%. Understanding the interaction between collagen and water content models is crucial for comprehending cartilage functioning under load during movement. Comprehensive joint analyses offer valuable insights into cartilage behavior, facilitating early detection of osteoarthritis. The advantage of the current approach lies in the ease of reproducing these analyses, as the preparation process no longer requires extensive time and computational resources as it did previously.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:35:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:35:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsACKNOWLEDGEMENT…………………………………………………………………………i
ABSTRACT…………………………………………………………………………………….ii
TABLE OF CONTENTS…………………………………………………………………….…iii
LIST OF TABLES…………………………………………………………………………….….v
LIST OF FIGURES………………………………………………………………………….…vi
CHAPTER I – INTRODUCTION…………………………………………………….…………..1
1.1 Research Background…………………………….………………………………………..1
1.2 Osteoarthritis……………………………………………………………………….……...5
1.3 Literature Review: Knee joints…………………………………………………………..7
1.3.1 Anatomy of the Knee Joint……………………………………………….………..7
1.3.2 Composition of Articular Cartilage………………………………………….…...10
1.4 Literature Review: Collagen……………………………………………………….…...12
1.4.1 Current Collagen Fibril Network Model…………………….……………………12
1.5 Research Purposes………………………………………………………………………..17
CHAPTER II – METHODOLOGY……………………………………………………………...18
2.1 Modelling of the Knee Joint…...…..………………………………………………….….18
2.2 Finite Element Analysis………………………………………………………………..19
2.2.1 2D FE Model of Collagen Fibril Network………………….……….…………21
2.2.2 3D FE Model of Collagen Fibril Network…………………………………..…23
2.2.3 Water Content of Articular Cartilage……………………….…………………....24
2.2.4 Material Properties of Collagen…………………………….……………………25
2.2.5 Material Properties of Water Content……………………….………………..….26
2.3 Statistical Shape Modeling……………………………………………………………….31
2.3.1 Subjects and Experimental Procedure…………………………………………31
2.3.2 Statistical Shape Modelling of Knee Ligaments…………………………………31
2.3.3 Model Preparation……………………………………………………………….32
2.3.4 Variation of Knee Shape…………………………………………………………34
2.3.5 Reconstruction of Statistical Shape based models……………………………….35
2.3.6 Error Calculation…………………...……………………………………………35
CHAPTER III – RESULTS & DISCUSSION……………………………………………………37
3.1 Articular Cartilage………………………………………………………………………..37
3.2 Knee Joint Ligaments…………………………………………………………………….41
3.2.1. Comparison of Deformed and Reconstructed Models with CT Scan Based Model…………………………………………………………………………………………….49
CHAPTER IV – CONCLUSIONS……………………………………………………………….63
CHAPTER V – FUTURE WORK……………………………………………..…………………65
REFERENCES…………………………………………………………………………………..67
-
dc.language.isoen-
dc.subjectnonezh_TW
dc.subjectcollagenen
dc.subjectcartilageen
dc.subjectFinite element analysisen
dc.subjectwater contenten
dc.subjectStatistical Shape Modelingen
dc.subjectknee jointen
dc.title利用統計形狀建模預測個人化三維膝關節有限元素模型並結合微觀關節軟骨模型進行踩踏力學分析zh_TW
dc.titlePrediction of Subject-Specific 3D Finite Element Model of the Knee Using Statistical Shape Modelling Integrating with a Microscopic Articular Cartilage Model for Mechanical Analysis of Pedalingen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林正忠;彭志維zh_TW
dc.contributor.oralexamcommitteeZheng-Zhong Lin;Zhi-Wei Pengen
dc.subject.keywordnone,zh_TW
dc.subject.keywordFinite element analysis,knee joint,collagen,cartilage,water content,Statistical Shape Modeling,en
dc.relation.page82-
dc.identifier.doi10.6342/NTU202302408-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved