請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90142完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙修武 | zh_TW |
| dc.contributor.advisor | Shiu-Wu Chau | en |
| dc.contributor.author | 林奕明 | zh_TW |
| dc.contributor.author | Daniel Alexandru Lam Gurau | en |
| dc.date.accessioned | 2023-09-22T17:35:35Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-13 | - |
| dc.identifier.citation | [1] Abkar, Mahdi and Parviz Moin (2017). “Large-eddy simulation of thermally stratified atmospheric boundary-layer flow using a minimum dissipation model”. Boundary-layer meteorology 165, pp. 405–419.
[2] Allaerts, Dries and Johan Meyers (2018). “Gravity waves and wind-farm efficiency in neutral and stable conditions”. Boundary-layer meteorology 166.2, pp. 269–299. [3] Andren A.; Brown, A.R.; Mason P.J.; Graf J.; Schumann U.; Moeng C.H.; Nieuwstadt F.T.M. (1994). “Large-eddy simulation of a neutrally stratified boundary layer: A comparison of four computer codes”. Quarterly Journal of the Royal Meteorological Society 120.520, pp. 1457–1484. [4] Arakawa, A. (1997). “Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I”. Journal of computational physics 135.2, pp. 103–114. [5] Armfield, S and R Street (2002a). “An analysis and comparison of the time accuracy of fractional-step methods for the Navier–Stokes equations on staggered grids”. International Journal for Numerical Methods in Fluids 38.3, pp. 255–282. [6] — (2002b). “The pressure accuracy of fractional-step methods for the Navier-Stokes equations on staggered grids”. ANZIAM Journal 44, pp. C20–C39. [7] Armfield, SW and R Street (2000). “Fractional step methods for the Navier–Stokes equations on non-staggered grids”. ANZIAM J 42.20, p. 0. [8] Bastankhah M.; Porté-Agel, F. (2014). “A new analytical model for wind-turbine wakes”. Renewable energy 70, pp. 116–123. [9] Beare R.J.; Macvean, M.K.; Holtslag A.M.; Cuxart J.; Esau I.; Golaz J.C.; Jimenez M.A.; Khairoutdinov M.; Kosovic B.; Lewellen D. et al. (2006). “An intercomparison of large-eddy simulations of the stable boundary layer”. Boundary-Layer Meteorology 118, pp. 247–272. [10] Blaisdell, GA, ET Spyropoulos, and JH Qin (1996). “The effect of the formulation of nonlinear terms on aliasing errors in spectral methods”. Applied Numerical Mathematics 21.3, pp. 207–219. [11] Bou-Zeid E.; Meneveau, C.; Parlange M. (2005). “A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows”. Physics of fluids 17.2, p. 025105. [12] Boussinesq, Joseph (1877). Essai sur la théorie des eaux courantes. Impr. nationale. [13] Businger, Joost A et al. (1971). “Flux-profile relationships in the atmospheric surface layer”. Journal of the atmospheric Sciences 28.2, pp. 181–189. [14] Chamorro, Leonardo P and Fernando Porté-Agel (2009). “A wind-tunnel investigation of wind-turbine wakes: boundary-layer turbulence effects”. Boundary-layer meteorology 132, pp. 129–149. [15] Chiang, Y.C. (2019). “Wind Farm Power Prediction via Actuator Disk Model”. MA thesis. National Taiwan University. [16] Chiang Y.C.; Hsu, Y.C.; Chau S.W. (2020). “Power Prediction of Wind Farms via a Simplified Actuator Disk Model”. Journal of Marine Science and Engineering 8.8, p. 610. [17] Chow, Fotini Katopodes (2004). Subfilter-scale turbulence modeling for large-eddy simulation of the atmospheric boundary layer over complex terrain. Stanford University. [18] Coppola, Gennaro, Francesco Capuano, and Luigi de Luca (2019). “Discrete energy-conservation properties in the numerical simulation of the Navier–Stokes equations”. Applied Mechanics Reviews 71.1. [19] Dagum, Leonardo and Ramesh Menon (1998). “OpenMP: an industry standard API for shared-memory programming”. IEEE computational science and engineering 5.1, pp. 46– 55. [20] Deardorff, J.W. et al. (1970). “Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection”. J. atmos. Sci 27.8, pp. 1211– 1213. [21] Demmel, James W (1997). Applied numerical linear algebra. SIAM. [22] Fang, Jiannong and Fernando Porté-Agel (2015). “Large-eddy simulation of very-large-scale motions in the neutrally stratified atmospheric boundary layer”. Boundary-Layer Meteorology 155, pp. 397–416. [23] Ferziger, Joel H, Milovan Perić, and Robert L Street (2020). Computational methods for fluid dynamics. Vol. 4. Springer. [24] Froude, Robert Edmund (1889). “On the part played in propulsion by differences of fluid pressure”. Trans. Inst. Naval Architects 30, p. 390. [25] Garratt, John Roy (1994). “The atmospheric boundary layer”. Earth-Science Reviews 37.1-2, pp. 89–134. [26] Germano M.; Piomelli, U.; Moin P.; Cabot W.H. (1991). “A dynamic subgrid-scale eddy viscosity model”. Physics of Fluids A: Fluid Dynamics 3.7, pp. 1760–1765. [27] Ghosal, Sandip et al. (1995). “A dynamic localization model for large-eddy simulation of turbulent flows”. Journal of fluid mechanics 286, pp. 229–255. [28] Ham, Frank and Gianluca Iaccarino (2004). “Energy conservation in collocated discretization schemes on unstructured meshes”. Annual Research Briefs 2004, pp. 3–14. [29] Harlow, Francis H and J Eddie Welch(1965). “Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface”. The physics of fluids 8.12, pp. 2182–2189. [30] Hsu, Y.C. (2021). “Wind Farm Wake Prediction via a Large Eddy Simulation Approach”. MA thesis. National Taiwan University. [31] Jacobson Mark, Z (2005). Fundamentals of Atmospheric Modelling. [32] Jonkman, Bonnie J (2006). TurbSim user’s guide. Tech. rep. National Renewable Energy Lab.(NREL), Golden, CO (United States). [33] Katic, I, Jørgen Højstrup, and Niels Otto Jensen (1986). “A simple model for cluster efficiency”. European wind energy association conference and exhibition. Vol. 1. A. Raguzzi Rome, Italy, pp. 407–410. [34] Kravchenko, AG and Parviz Moin (1997). “On the effect of numerical errors in large eddy simulations of turbulent flows”. Journal of computational physics 131.2, pp. 310–322. [35] Li, Dan, Gabriel G Katul, and Sergej S Zilitinkevich (2015). “Revisiting the turbulent Prandtl number in an idealized atmospheric surface layer”. Journal of the Atmospheric Sciences 72.6, pp. 2394–2410. [36] Lilly, Douglas K (1992). “A proposed modification of the Germano subgrid-scale closure method”. Physics of Fluids A: Fluid Dynamics 4.3, pp. 633–635. [37] Lu, Hao and Fernando Porté-Agel (2010). “A modulated gradient model for large-eddy simulation: application to a neutral atmospheric boundary layer”. Physics of Fluids 22.1. [38] Lund, T.S. (2003). “The use of explicit filters in large eddy simulation”. Computers & Mathematics with Applications 46.4, pp. 603–616. [39] Mason P.J.; Callen, N.S. (1986). “On the magnitude of the subgrid-scale eddy coefficient in large-eddy simulations of turbulent channel flow”. Journal of Fluid Mechanics 162, pp. 439–462. [40] Mason, Paul J and Andy R Brown (1999). “On subgrid models and filter operations in large eddy simulations”. Journal of the Atmospheric Sciences 56.13, pp. 2101–2114. [41] Mason, RJ and DJ Thompson (1991). “Stochastic backscatter in the near wall region of largeeddy simulation”. Proc. 8th Symposium on Turbulent Shear Flows, Technical University of Munich, pp. 19–2. [42] Meyers, Johan and Pierre Sagaut (2007). “Is plane-channel flow a friendly case for the testing of large-eddy simulation subgrid-scale models?” Physics of Fluids 19.4, p. 048105. [43] Mittal, Rajat and Parviz Moin (1997). “Suitability of upwind-biased finite difference schemes for large-eddy simulation of turbulent flows”. AIAA journal 35.8, pp. 1415–1417. [44] Moeng, C.H. (1984). “A large-eddy-simulation model for the study of planetary boundary-layer turbulence”. Journal of the Atmospheric Sciences 41.13, pp. 2052–2062. [45] Moeng, Chin-Hoh and Peter P Sullivan (1994). “A comparison of shear-and buoyancy-driven planetary boundary layer flows”. Journal of Atmospheric Sciences 51.7, pp. 999–1022. [46] Moeng, Chin-Hoh and John C Wyngaard (1988). “Spectral analysis of large-eddy simulations of the convective boundary layer”. Journal of Atmospheric Sciences 45.23, pp. 3573– 3587. [47] Morinishi, Yohei et al. (1998). “Fully conservative higher order finite difference schemes for incompressible flow”. Journal of computational physics 143.1, pp. 90–124. [48] Orszag, Steven A (1970). “Transform method for the calculation of vector-coupled sums: Application to the spectral form of the vorticity equation”. Journal of Atmospheric Sciences 27.6, pp. 890–895. [49] Orszag, Steven A and Yih-Ho Pao (1975). “Numerical computation of turbulent shear flows”. Advances in Geophysics. Vol. 18. Elsevier, pp. 225–236. [50] Peña, Alfredo, Sven-Erik Gryning, and Charlotte B Hasager (2008). “Measurements and modelling of the wind speed profile in the marine atmospheric boundary layer”. Boundary-layer meteorology 129, pp. 479–495. [51] Piacsek, Steve A and Gareth P Williams (1970). “Conservation properties of convection difference schemes”. Journal of Computational Physics 6.3, pp. 392–405. [52] Porté-Agel F.; Meneveau, C.; Parlange M.B. (2000). “A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer”. Journal of Fluid Mechanics 415, pp. 261–284. [53] Porté-Agel, Fernando, Majid Bastankhah, and Sina Shamsoddin (2020). “Wind-turbine and wind-farm flows: A review”. Boundary-layer meteorology 174, pp. 1–59. [54] Rankine, William John Macquorn (1865). “On the mechanical principles of the action of propellers”. Transactions of the Institution of Naval Architects 6. [55] Rhie, Chae M and Wei-Liang Chow (1983). “Numerical study of the turbulent flow past an airfoil with trailing edge separation”. AIAA journal 21.11, pp. 1525–1532. [56] Rogallo R.S.; Moin, P. (1984). “Numerical simulation of turbulent flows”. Annual review of fluid mechanics 16.1, pp. 99–137. [57] Saad, Yousef (2003). Iterative methods for sparse linear systems. SIAM. [58] Schumann, U, G Grötzbach, and L Kleiser (1979). “Direct numerical simulation of turbulence”. Von Karman Inst. for Fluid Dynamics: Prediction Methods for Turbulent Flows. [59] Smagorinsky, J. (1963). “General circulation experiments with the primitive equations: I. The basic experiment”. Monthly weather review 91.3, pp. 99–164. [60] Stevens, Richard JAM, Jason Graham, and Charles Meneveau (2014). “A concurrent precursor inflow method for large eddy simulations and applications to finite length wind farms”. Renewable energy 68, pp. 46–50. [61] Stoll, Rob et al. (2020). “Large-eddy simulation of the atmospheric boundary layer”. Boundary-Layer Meteorology 177, pp. 541–581. [62] Sullivan, Peter P, James C McWilliams, and Edward G Patton (2014). “Large-eddy simulation of marine atmospheric boundary layers above a spectrum of moving waves”. Journal of the Atmospheric Sciences 71.11, pp. 4001–4027. [63] Tatebe, Osamu (1993). “The multigrid preconditioned conjugate gradient method”. NASA. Langley Research Center, The Sixth Copper Mountain Conference on Multigrid Methods, Part 2. [64] Trottenberg, Ulrich, Cornelius W Oosterlee, and Anton Schuller (2000). Multigrid. Elsevier. [65] Vermeer, LJ, Jens Nørkær Sørensen, and Antonio Crespo (2003). “Wind turbine wake aerodynamics”. Progress in aerospace sciences 39.6-7, pp. 467–510. [66] Verstappen, RWCP and AEP Veldman (2003). “Symmetry-preserving discretization of turbulent flow”. Journal of Computational Physics 187.1, pp. 343–368. [67] Wu Y.T.; Porté-Agel, F. (2012). “Atmospheric turbulence effects on wind-turbine wakes: An LES study”. energies 5.12, pp. 5340–5362. [68] Wu, Yu-Ting (2013). Large-Eddy Simulation of Turbulent Boundary Layer Flow through Wind Turbines and Wind Farms. Tech. rep. EPFL. [69] Wu, Yu-Ting and Fernando Porté-Agel (2015). “Modeling turbine wakes and power losses within a wind farm using LES: An application to the Horns Rev offshore wind farm”. Renewable Energy 75, pp. 945–955. [70] Zang, Thomas A (1991). “On the rotation and skew-symmetric forms for incompressible flow simulations”. Applied Numerical Mathematics 7.1, pp. 27–40. [71] Zhang, Wei, Corey D Markfort, and Fernando Porté-Agel (2012). “Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer”. Experiments in fluids 52, pp. 1219–1235. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90142 | - |
| dc.description.abstract | 本研究建立大渦流法(LES)計算框架,以渦黏度模型估算次網格尺度 剪應力,通過 Lagrangian-Averaging Scale-Independent Dynamic Wong-Lilly Model (LASI-DWLM)獲取紊流模型係數,並以致動盤模型(ADM)模擬風機造成的 影響,以模擬在大氣邊界層正常運轉的風機流場。本研究以有限體積法離散統御 方程式,通過二階近似在空間中計算動量方程式各項,並以二階 Adams-Bashforth 方法計算時間項。在空間中使用一階迎風近似,在時間上以一階正向歐拉法積分, 求解 LASI-DWLM 中的兩個附加的輸運鬆弛方程式。本研究以大氣邊界層理想案 例驗證所提出的 LES 框架,並通過參數研究評估 LES 框架的性能,發現大氣中性 分層條件下可獲得良好結果。對於在大氣邊界層中單獨運轉的風機流場模擬中, 本研究結果與先前研究相比,獨立風機後方的跡流速度有較大損失,但兩者在附 加紊流強度的表現上具有良好一致性。本研究進行基於中性大氣邊界層的紊流入 流的 Horns Rev 離岸風場的模擬。本研究使用移位週期邊界條件能夠顯著減少入 流條件導致的非均勻性,本研究發現目前使用的數值模型與先前研究相比改善紊 流行為預測以及風場功率的預測精度。 | zh_TW |
| dc.description.abstract | This study develops a large-eddy simulation (LES) framework for the flow simulation of wind turbines. The subgrid-scale stresses are modeled through an eddy viscosity model, where the Lagrangian-averaging scale-independent dynamic Wong-Lilly model (LASI-DWLM) is employed to obtain the coefficients of the turbulence model, and the influence of the wind turbines in the atmospheric boundary layer are modeled through an actuator disk model. The momentum equations are discretized via second-order scheme in-space and a second-order Adams-Bashforth scheme in-time. The LASI-DWLM in- troduces two additional transport equations, which are discretized via first-order upwind schemes in-space and first-order Forward Euler scheme in-time. The proposed LES frame- work is validated with idealized cases of the atmospheric boundary layer. A parametric study is done to identify the performance of the proposed framework, where satisfactory results are delivered for neutrally stratified conditions. The simulation of undisturbed wind turbines where turbulence effects are considered is done. The results of stand-alone wind turbines are compared to a reference study, showing a slightly larger wake veloc- ity deficit in our current model due to differences in the actuator disk model, but obtain good agreement in the behavior of the added turbulent intensity. In the simulation of the Horns Rev offshore wind farm, the usage of shifted periodic boundary conditions reduces the non-homogeneities introduced by the inflow conditions if non-shifted conditions were used instead. The results are compared with two references and the previous version of the current LES framework, where improved turbulent flow prediction is obtained with respect to the previous version, which leads to improved power prediction in reference to the SCADA data for the purpose of validation. The current framework respect to SCADA data have a relative error of 21%, while for the comparison of the current LES framework with that of the reference study, the maximum error is 14.7%. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:35:35Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T17:35:35Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Nomenclature xi
List of Figures xv List of Tables xxi 1 Introduction 1 1.1 Motivation 1 1.2 Background 2 1.3 Literature Review and Overview 7 1.3.1 Large-Eddy Simulation of the Atmospheric Boundary Layer 7 1.3.2 Numerical Discretization of the Governing Equations 9 1.3.3 Large-Eddy Simulation of Wind Turbine Flows 12 2 Mathematical Framework 15 2.1 Governing Equations 15 2.1.1 Basic Equations 15 2.1.2 Filtered Equations 16 2.2 Subgrid-Scale Modeling 19 2.2.1 Brief Review of Some Aspects of Turbulence Modeling 20 2.2.2 Lagrangian Scale-Independent Dynamic Wong-Lilly Model 26 2.2.3 Anisotropic Minimum-Dissipation Model 28 2.3 Body Force Terms 30 2.3.1 Rayleigh Damping Layer 30 2.3.2 Actuator Disk Model 32 2.4 Boundary Conditions 34 2.4.1 Bottom Boundary Condition 34 2.4.2 Lateral Boundary Conditions 35 2.4.3 Top Boundary Condition 36 2.4.4 Test Filter Boundary Conditions 37 2.4.5 Inflow: Concurrent Precursor Simulation 37 3 Numerical Method 41 3.1 Numerical Discretization 41 3.1.1 Finite-Volume Method 42 3.1.2 Numerical Grid 43 3.2 Spatial Discretization of the Continuity Equation 44 3.3 Spatial Discretization of the Momentum Transport Equations 47 3.3.1 Discretization of the Convection Term 48 3.3.2 Discretization of the Pressure Term 50 3.3.3 Discretization of the SGS Stress Tensor Term 51 3.3.4 Discretization of the Body Force Term 52 3.4 Spatial Discretization of the Potential Temperature Transport Equation 53 3.4.1 Discretization of the Convection Term 53 3.4.2 Discretization of the SGS Diffusion Term 53 3.5 Spatial Discretization of the Lagrangian-Averaging Scalars Transport-Relaxation Equations 54 3.6 Temporal Discretization of the Governing Equations 55 3.6.1 Momentum Equations 55 3.6.2 Potential Temperature and Turbulence Model Equations 57 3.7 Preconditioned Conjugate Gradient and Parallelization 58 3.7.1 Preconditioner: Multigrid Method 60 3.7.2 Parallelization of the Code 61 3.8 Filtering Procedure 65 4 Atmospheric Boundary Layer Flow 67 4.1 Neutral Atmospheric Boundary Layer 68 4.1.1 Preliminary Study 68 4.1.2 Time-step Size 74 4.1.3 Spanwise Length 77 4.1.4 Streamwise Length 80 4.1.5 Shifted Periodic Boundary Conditions 84 4.2 Rotationally Influenced Neutral Atmospheric Boundary Layer 88 4.3 Convective Atmospheric Boundary Layer 93 5 Wind Turbine Flow 103 5.1 The Influence of Atmospheric Turbulence 104 5.1.1 Case Description 105 5.1.2 Wind Turbine Operating Condition 107 5.1.3 Predicted Results 109 5.2 Correlation Curve 117 6 Horns Rev Offshore Wind Farm Flow 123 6.1 Preliminary Study 126 6.1.1 Predicted Results 126 6.1.2 Issue 1: Eddy Locking 128 6.1.3 Issue 2: Boundary Layer Height 128 6.2 Shifted Periodic Boundary Conditions 133 6.3 Validation 137 7 Concluding Remarks 141 7.1 Conclusion 141 7.2 Future Work 144 Appendices 155 A The Conservation Properties of the Navier-Stokes Equations 155 A.1 Conservation Properties: Analytical Considerations 155 A.2 Regular and Collocated Grid Approaches 159 A.3 Staggered Grid Approach 162 B Analytical Model for Wind Turbine Wake 165 B.1 Analytical Wake Modeling 165 B.2 Superposition Method 166 C Performance of the Anisotropic-Minimum Dissipation Model 169 C.1 Convective Atmospheric Boundary Layer 169 C.2 Turbulent Ekman Flow 170 C.3 Stable Atmospheric Boundary Layer 171 C.4 Concluding Remark 175 | - |
| dc.language.iso | en | - |
| dc.subject | 大渦流模擬 | zh_TW |
| dc.subject | 風電場 | zh_TW |
| dc.subject | 致動盤模型 | zh_TW |
| dc.subject | 風機跡流 | zh_TW |
| dc.subject | 移位週期邊界條件 | zh_TW |
| dc.subject | Actuator Disk Model | en |
| dc.subject | Wind Farm | en |
| dc.subject | Wind Turbine Wake | en |
| dc.subject | Large-eddy Simulation | en |
| dc.subject | Shifted-periodic Boundary Condition | en |
| dc.title | 應用對稱性守恆離散法於風機流場模擬 | zh_TW |
| dc.title | Application of Symmetry-Preserving Discretization to Wind Turbine Flow Simulation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳毓庭;杜佳穎;鍾年勉;盧南佑;林宗岳 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Ting Wu;Chia-Ying Tu;Nien-Mien Chung;Nan-You Lu;Tsung-Yue Lin | en |
| dc.subject.keyword | 大渦流模擬,致動盤模型,風電場,風機跡流,移位週期邊界條件, | zh_TW |
| dc.subject.keyword | Large-eddy Simulation,Actuator Disk Model,Wind Farm,Wind Turbine Wake,Shifted-periodic Boundary Condition, | en |
| dc.relation.page | 175 | - |
| dc.identifier.doi | 10.6342/NTU202304155 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-14 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 91.71 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
