Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90138
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林忠緯zh_TW
dc.contributor.advisorChung-Wei Linen
dc.contributor.author林謙zh_TW
dc.contributor.authorChien Linen
dc.date.accessioned2023-09-22T17:34:34Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-10-
dc.identifier.citationPablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-Pang Flotterod, Robert Hilbrich, Leonhard Lucken, Johannes Rummel, Peter Wagner, and Evamarie Wiebner. Microscopic traffic simulation using SUMO. In IEEE International Conference on Intelligent Transportation Systems (ITSC), 2018.
Julia Nilsson, Jonas Fredriksson, and Erik Coelingh. Rule-based highway maneuver intention recognition. In IEEE International Intelligent Transportation Systems Conference (ITSC), 2015.
Jennie Lioris, Annie Bracquemond, Gildas Thiolon, and Laurent Bonic. Lane change detection algorithm on real world driving for arbitrary road infrastructures. In Annual Computer Software and Applications Conference, 2018.
Puttipong Leakkaw and Sooksan Panichpapiboon. Real-time lane change detection through steering wheel rotation. In IEEE Vehicular Networking Conference (VNC), 2018.
Basma Khelfa and Antoine Tordeux. Lane-changing prediction in highway: Comparing empirically rule-based model mobil and a naive bayes algorithm. In IEEE International Intelligent Transportation Systems Conference (ITSC), 2021.
Seungjin Park, Wonteak Lim, and Myoungho Sunwoo. Robust lane-change recognition based on an adaptive hidden markov model using measurement uncertainty. In International Journal of Automotive Technology, 2019.
Omveer Sharma, N.C. Sahoo, and N.B. Puhan. Recent advances in motion and behavior planning techniques for software architecture of autonomous vehicles: A state-of-the-art survey. In Engineering Applications of Artificial Intelligence, 2021.
Omveer Sharma, N. C. Sahoo, and N. B. Puhan. Highway discretionary lane changing behavior recognition using continuous and discrete hidden markov model. In IEEE International Intelligent Transportation Systems Conference (ITSC), 2021.
Junde Li, Navyata Gattu, and Swaroop Ghosh. An efficient gmm-hmm fpga implementation for behavior estimation in autonomous systems. In International Joint Conference on Neural Networks (IJCNN), 2020.
Qi Deng and Dirk Soffker. Improved driving behaviors prediction based on fuzzy logic-hidden markov model (FL-HMM). In IEEE Intelligent Vehicles Symposium (IV), 2018.
Liu Tong, Shuo Shi, and Xuemai Gu. Naive bayes classifier based driving habit prediction scheme for vanet stable clustering. In Mobile Networks and Applications, 2020.
Wirthmuller Florian, Klimke Marvin, Schlechtriemen Julian, Hipp Jochen, and Reichert Manfred. Predicting the time until a vehicle changes the lane using lstm-based recurrent neural networks. In IEEE Robotics and Automation Letters, 2021.
Alex Zyner, Stewart Worrall, James Ward, and Eduardo Nebot. Long short term memory for driver intent prediction. In IEEE Intelligent Vehicles Symposium (IV), 2017.
Y. Xing, C. Lv, H. Wang, D. Cao, and E. Velenis. An ensemble deep learning approach for driver lane change intention inference. In Transportation Research Part C: Emerging Technologies, 2020.
L. Xin, P. Wang, C.-Y. Chan, J. Chen, S. E. Li, and B. Cheng. Intention aware long horizon trajectory prediction of surrounding vehicles using dual lstm networks. In IEEE International Intelligent Transportation Systems Conference (ITSC), 2018.
Z. Yan, K. Yang, Z. Wang, B. Yang, T. Kaizuka, and K. Nakano. Time to lane change and completion prediction based on gated recurrent unit network. In IEEE Intelligent Vehicles Symposium (IV), 2019.
Seong Hyeon Park, ByeongDo Kim, Chang Mook Kang, Chung Choo Chung, and Jun Won Choi. Sequence-to-sequence prediction of vehicle trajectory via lstm encoder-decoder architecture. In IEEE Intelligent Vehicles Symposium (IV), 2018.
D. Lee, Y. P. Kwon, S. McMains, and J. K. Hedrick. Convolution neural network-based lane change intention prediction of surrounding vehicles for acc. In International Conference on Intelligent Transportation Systems (ITSC), 2017.
Oliver De Candido, Maximilian Binder, and Wolfgang Utschick. An interpretable lane change detector algorithm based on deep autoencoder anomaly detection. In IEEE Intelligent Vehicles Symposium (IV), 2021.
Y. Hu, W. Zhan, and M. Tomizuka. Probabilistic prediction of vehicle semantic intention and motion. In IEEE Intelligent Vehicles Symposium (IV), 2018.
D.-F. Xie, Z.-Z. Fang, B. Jia, and Z. He. A data-driven lane-changing model based on deep learning. In Transportation Research Part C: Emerging Technologies, 2019.
Sheng-Li Wang, Chien Lin, Srivalli Boddupalli, Chung-Wei Lin, and Sandip Ray. Deep-learning-based anomaly detection for lane-changing decisions. In IEEE Intelligent Vehicles Symposium (IV), 2022.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90138-
dc.description.abstract自動駕駛車輛可以利用各種感測器或或透過通訊系統來獲取周圍環境數據,以便在自主操控中做出決策。然而,感知或接收到的數據可能因惡意攻擊而導致錯誤。這對於具有高度安全性要求的自動駕駛車輛構成了嚴重威脅。在本文中,我們提出了基於深度學習的模型,用於偵測在具有切換車道意圖時是否受到攻擊,包括長短期記憶(LSTM)模型和深度神經網絡(DNN)模型。我們提出了兩種隱蔽攻擊模型,它們可以欺騙基於規則的偵測方法。我們在城市交通模擬軟體(SUMO)中直接部署這些攻擊,以生成異常數據。我們的異常檢測流程具有通用性,可應用於不同的變道環境,我們設計了三種環境進行實驗,包括高速公路、環狀交叉路口和對向超車。結果顯示,我們所提出的基於深度學習的方法對異常具有良好的偵測性能。zh_TW
dc.description.abstractAutonomous vehicles can use various sensors or wireless networks to acquire their environmental data for making decisions in autonomous maneuvers. However, the sensed or received data can be malicious due to the attacks. This poses a serious threat to autonomous vehicles which are safety-critical systems. In this thesis, we propose deep-learning-based models, which are Long Short-Term Memory (LSTM) model and Deep Neural Network (DNN) model, to detect whether a vehicle is attacked while it has the lane-changing intention. We propose two stealthy attacks as attack models, which can deceive the detection by a rule-based detection approach. Then we directly deploy the attacks into Simulation of Urban Mobility (SUMO) during the simulation to generate the anomalous data. We also establish the standards and specifications for modifying simulation inputs in SUMO. Our anomaly detection workflow has the generality that can be used in different lane-changing environments, we design three environments to conduct experiments, including highway, roundabout, and opposite overtaking. As a result, the proposed deep-learning-based approach achieves a decent detection performance against the anomaly.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:34:34Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:34:34Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements ii
Abstract (Chinese) iii
Abstract iv
List of Figures viii
List of Tables x
1 Introduction 1
1.1 Related Work 2
1.1.1 Rule-Based Approaches 2
1.1.2 Probabilistic Models 2
1.1.3 Deep-Learning-Based Approaches 3
1.2 Contributions 4
1.3 Organization 6
2 Problem Formulation 7
2.1 System Model 7
2.2 Attack Model 9
2.2.1 Attack 1: Acceleration Bias Attack 9
2.2.2 Attack 2: Mistiming Trajectory Attack 10
2.3 Detection Goal 11
2.4 Traffic Environments 17
2.4.1 Highway 18
2.4.2 Roundabout 18
2.4.3 Opposite Overtaking 18
3 Proposed Approaches 20
3.1 Long Short-Term Memory 22
3.2 Deep Neural Network 23
4 Experimental Results 26
4.1 Experimental Setup 26
4.2 Attack Deployment 26
4.3 Comparative Detection Model 28
4.3.1 Rule-Based Approach 29
4.3.2 Support Vector Machine 29
4.3.3 Random Forest 29
4.4 Traffic Environments 30
4.4.1 Highway 30
4.4.2 Roundabout 30
4.4.3 Opposite Overtaking 30
4.5 Experimental Results with Acceleration Bias Attack 31
4.6 Experimental Results with Mistiming Trajectory Attack 33
4.7 Runtimes 35
5 Conclusions 38
Bibliography 40
-
dc.language.isoen-
dc.subject侵入偵測zh_TW
dc.subject聯網自駕車zh_TW
dc.subject機器學習zh_TW
dc.subject智慧車zh_TW
dc.subject異常偵測zh_TW
dc.subject深度學習zh_TW
dc.subjectConnected and Autonomous Vehicleen
dc.subjectMachine Learningen
dc.subjectDeep Learningen
dc.subjectIntrusion Detectionen
dc.subjectAnomaly Detectionen
dc.subjectIntelligence Vehicleen
dc.title基於深度學習之聯網自駕車切換車道異常偵測zh_TW
dc.titleDeep-Learning-Based Anomaly Detection for Connected and Autonomous Vehicles in Lane-Changing Scenariosen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳尚澤;蕭旭君;江介宏zh_TW
dc.contributor.oralexamcommitteeShang-Tse Chen;Hsu-Chun Hsiao;Jie-Hong Roland Jiangen
dc.subject.keyword聯網自駕車,智慧車,異常偵測,侵入偵測,深度學習,機器學習,zh_TW
dc.subject.keywordConnected and Autonomous Vehicle,Intelligence Vehicle,Anomaly Detection,Intrusion Detection,Deep Learning,Machine Learning,en
dc.relation.page43-
dc.identifier.doi10.6342/NTU202303898-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-12-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf2.47 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved