請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90135完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳右人 | zh_TW |
| dc.contributor.advisor | Iou-Zen Chen | en |
| dc.contributor.author | 羅士凱 | zh_TW |
| dc.contributor.author | Shih-Kai Lo | en |
| dc.date.accessioned | 2023-09-22T17:33:39Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-12 | - |
| dc.identifier.citation | 1.丁昭伶等. 2019. 2018油茶栽培管理&利用手冊 行政院農業委員會農糧署. 南投縣.
2.王郁、江昌俊、張和禹. 2008. 茶樹自交花粉管在活體花柱中的不親和性觀察. 茶葉科學 28(6): 429-435. 3.王欽麗、盧龍斗、吳小琴、陳祖鏗、林金星. 2002. 花粉的保存及其生活力測定. 植物學通報 19(3): 365-373. 4.王湘南. 2011. 油茶物候期及開花生物學特性研究.中南林業科技大學碩士論文. 5.王湘南、陳永忠、王瑞、彭邵鋒、陳隆升、馬力、唐煒、羅健. 2013. 油茶主栽品種的開花授粉習性. 中南林業科技大學學報 33: 1-6. 6.王德斌、陳永忠. 1992. 油茶授粉生物學特性及脂肪酸組成的研究. 湖南林業科技: 5-9. 7.左繼林、王玉娟、周文才、孫穎、劉小平. 2019. 盛果期油茶配置栽培與熊蜂授粉效應研究. 南方林業科學 47: 31-34. 8.江麗、李朵姣、胡新榮、祝澤剛、樓宇濤、孔向軍、鄭寨生、袁名安. 2017. 培養基組分、類比降水及溫度對茶樹花粉特性的影響. 茶葉學報 58(3). 9.何春燕. 2009. 普通油茶有性生殖過程的解剖學研究. 中南林業科技大學碩士論文. 10.何禎元、薛銘童、林書妍. 2020. 木虌果花粉體外發芽培養基配方與花粉懸浮液應用初探. 臺灣園藝 66: 25-36. 11.李臺強、張清寬. 2003. 臺灣茶樹種原圖誌. 茶業改良場慶祝建場100週年紀念特刊. 12.林開勤、劉聲傳、梁思慧、鄢東海. 2018. 茶樹花粉離體萌發條件優化及活力快速檢測. 種子 37(12): 14-18. 13.吳家禎. 2013. 臺灣早期油茶文獻蒐集與整理-日據時代文獻與其栽培管理介紹. 林業研究專訊20(5):48-53. 14.邱建生. 2015. 中國西南山茶屬植物傳粉昆蟲研究.中國林業科學研究院博士論文. 15. 邱翊. 2019. 烹飪溫度對短柱山茶油性質及氧化穩定性之影響. 國立臺灣大學碩士論文. 16. 胡智益、羅士凱、劉秋芳、蕭建興、邱垂豐. 2017. 臺灣油茶品系篩選與豐產省工栽培. 農業世界雜誌411:6-12. 17.姬婷婷、魏美才、李澤建. 2018. 論油茶傳粉問題的一些看法. 南方林業科學 46: 22-25. 18.孫達、凌益春、王岳飛、楊賢強. 2010. 茶葉籽油的加工工藝及其保健功效研究進展. 茶葉 36(3):144-147,51. 19.陳右人. 2013. 臺灣茶業的發展歷程. 新活水雜誌 49:45-49;50:93-96. 20.常維霞、姚小華. 2016. 油茶無性系自交親和性分析. 林業科學研究 29: 508-514. 21.康仁東. 2016. 以ISSR分析台灣短柱山茶族群之遺傳變異. 中國文化大學碩士論文. 22.張東、張東生、薛雅琳、鍾誠、徐冉、朱琳. 2014. 油茶籽油及茶葉籽油特徵組分分析與比較. 中國糧油學報 29(12):69-72. 23.郭宏遠、宋妤. 2007. 花粉保存與利用. 植物種苗 9(3): 48-58. 24.曾燕如、黎章矩、戴文聖. 2009. 油茶開花習性的觀察研究. 浙江林學院學報 26: 802-809. 25.黃瑜君. 2006. 大果油茶之保肝活性成分研究. 臺北醫學大學碩士論文. 26.黃倉海、鄭怡婷、朱建鏞. 2009. 鵝鑾鼻燈籠草與長壽花重瓣品種之花粉活力與雜交結實. 臺灣園藝 55: 151-159. 27.黃信章. 2015. 小果茶油冷壓製程前處理對品質影響之研究. 國立嘉義大學碩士論文. 28.黃郁珺、陳右人、羅士凱、石正中、阮素芬. 2016. 三種茶屬植物種子油脂含量與脂肪酸組成比較. 臺灣園藝 62: 193-198. 29.楊小胡、陳隆升、彭映赫、陳永忠、彭邵鋒、王湘南、唐煒. 2015. 不同油茶無性系組合授粉親和力的研究. 中南林業科技大學學報 35: 30-33. 30.楊美珠、陳右人. 2000. 茶樹自交不親和現象之觀察. 中國園藝46(1): 83-92. 31.楊盛美、宋維希、唐一春、馬玲、汪雲剛、成浩. 2010. 茶組植物花粉生活力測定及種間雜交研究. 中國農學通報. 26(8): 115-118. 32.楊遠波, 劉和義, 呂勝由. 2000. 臺灣維管束植物簡誌 II:189. 行政院農業委員會, 臺灣臺北. 33.葉冠宏. 2015. 芝麻、油茶與短柱山茶油體及油茶種皮之二次代謝物分析. 國立虎尾科技大學碩士論文. 34.詹文君. 2019. 炒焙溫度對大果苦茶油性質及揮發性成分之影響. 國立臺灣大學碩士論文. 35.鄒健. 2013. 福建省主栽油茶品種生殖生物學及其環剝效應的研究. 福建農林大學碩士論文. 36.廖婷. 2013. 油茶自交不親和性初步研究.中南林業科技大學碩士論文. 37.劉素玲、趙國建、吳欣、張百行、高嶺巍、丁美玲、陳威. 2016. 植物自交不親和機制研究進展. 中國農業科技導報 18: 31-37. 38.劉慧敏、敖書飛、烏云塔娜. 2016. ‘湘林’系列油茶授粉品種配置模式研究. 中南林業科技大學學報 36: 17-24. 39.劉瓊峰. 2016. 短柱山茶苦茶油及其茶粕酒精萃取物對硝化精胺酸誘導高血壓小鼠之血壓調控作用. 國立中興大學碩士論文. 40.謝一青. 2015. 普通油茶和小果油茶花性狀及柱頭可授性. 森林與環境學報 35: 249-254. 41.謝再成、鐘培星、魏本柱、康金林、徐鑫、吳志強. 2020. ‘贛州油’系列油茶品種配置篩選. 經濟林研究 38: 9-15. 42.蘇宗振等. 2023. 臺灣主要茶樹品種 臺灣茶作學pp 85-104. 五南圖書出版公司. 臺北市. 43.蘇彥碩、羅士凱、劉千如、邱垂豐. 2012. 油茶低產林改造. 茶業專訊 80:8-10. 44.蘇夢淮. 2015. 臺灣原生山茶屬分類概述. 林業研究專訊 22: 11-16. 45.鐘義海、趙冬香、王釋婕、韓文素、趙珊、劉俊峰、高景林. 2020. 海南油茶傳粉昆蟲及其訪花行為的初步研究. 中國蜂業 71: 63-66. 46.Altuntas, E. and M. Yildiz. 2017. Some engineering properties of shelled and kernel tea (Camellia sinensis) seeds. African Journal of Traditional, Complementary and Alternative Medicines 14: 39-45. 47.Ariyarathna, C., J. Kottawa-Arachchi, and M. Gunasekare. 2007. Floral biology and breeding system of Tea (Camellia sinensis L.): Implication on the tea breeding programme. Sri Lanka Journal of Tea Science72(2):31-43. 48.Ariyarathna, H.A.C.K., M.T.K. Gunasekare, J.D. Kottawa-Arachchige, R. Paskarathevan, K.K. Ranaweera, M. Ratnayake, and J.A. Kumara. 2011. Morpho-physiological and phenological attributes of reproductive biology of tea (Camellia sinensis (L.) O. Kuntze) in Sri Lanka. Euphytica 181: 203-215. 49.Barooah, A.K., S.K. Singh, B. Das, R. Sarma, and P.K. Patel. 2020. Tea seed oil: Physicochemical profiling. Journal of Plantation Crops: 247-251. 50.Barua, P.K. 1963. Classification of the tea plant. Two and a Bud 10: 3-11. 51.Bernad, D. and R. Socias i Company. 1995. Characterization of some self-compatible almonds. II. Flower phenology and morphology. HortScience 30: 321-324. 52.Brewbaker, J. L. and Kwack, B. H.. 1963. The essential role of calcium ion in pollen germination and pollen tube growth. Amer. J. Bot. 50: 859-865. 53.Brown, W. V. 1954. A preliminary study of the staining of plant cells by tetrazolium chloride. Bulletin of the Torrey Botanical Club 81(2):127–136. 54.Chao Gao , D.Y., Ya Yang , Bifang Wang , Dongming Liu , and Feng Zou. 2015. Pollen tube growth and double fertilization in Camellia oleifera. Journal of the American Society for Horticultural Science 140: 12-18. 55.Chen, X., S. Hao, L. Wang, W. Fang, Y. Wang, and X. Li. 2012. Late-acting self-incompatibility in tea plant (Camellia sinensis). Biologia 67(2):347-351. 56.Chiu, T.F. 1988. Tea production and research in Taiwan. In T.F. Chiu and C.H. Wang (eds.), Recent development in tea production. Taiwan Tea Experiment Station, Taoyuan, Taiwan. pp. 121-129. 57.Council of Agriculture. 2021. Agricultural Statistics Yearbook in 2020. Council of Agriculture, Executive Yuan, Taiwan, R.O.C. , Taipei, Taiwan. pp. 40. 58.Dafni, A. 1992. Pollination biology: A practical approach. Oxford University Press, Oxford, UK. 59.Gao, C., D. Yuan, B.F. Wang, Y. Yang, D.M. Liu, and Z.Q. Han. 2015. A cytological study of anther and pollen development in Camellia oleifera. Genetics and molecular research : GMR 14 3: 8755-8765. 60.Gao, C., R. Yang, and D. Yuan. 2017. Characteristics of developmental differences between fertile and aborted ovules in Camellia oleifera. Journal of the American Society for Horticultural Science 142: 330-336. 61.Gao, C., R. Yang, and D. Yuan. 2018. Structural characteristics of the mature embryo sac of Camellia oleifera. Nordic Journal of Botany 36: njb-01673. 62.George, K.O., J.K. Wanyoko, T. Kinyanjui, K.O. Moseti, and F.N. Wachira. 2016. Comparative assessment of the fatty acid profiles of crude oils extracted from seeds of selected tea (Camellia sinensis L.) Cultivars. Food and Nutrition Sciences 07: 1-7. 63.George, K.O., Kinyanjui, T., Wanyoko, J., Moseti, O.K. and Wachira, F. 2013. Extraction and analysis of tea (Camellia sinensis) seed oil from different clones in Kenya. African Journal of Biotechnology 12(8): 841-846. 64.George, K.O., K.O.O. Moseti, J.K. Wanyoko, T. Kinyanjui, and F.N. Wachira. 2015. Quantitation of the total catechin content in oils extracted from seeds of selected tea (Camellia sinensis (L) O. Kuntze, Theaceae) Clones by RP-HPLC. American Journal of Plant Sciences 06: 1080-1089. 65.Hayata, B. 1919. Icones plantarum formosanarum VIII:11. Bureau of Productive Industries, Taipei. 66.He, Y., Q. Song, S. Chen, Y. Wu, G. Zheng, J. Feng, Z. Yang, W. Lin, Y. Li, and H. Chen. 2020. Transcriptome analysis of self- and cross-pollinated pistils revealing candidate unigenes of self-incompatibility in Camellia oleifera. The Journal of Horticultural Science and Biotechnology 95: 19-31. 67.Hepler, P. K., Lovy-Wheeler, A., McKenna, S. T., Kunkel, J. G., 2006. Ions and Pollen Tube Growth. In: Malhó, R. (Ed.), The Pollen Tube: A Cellular and Molecular Perspective. Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 47-69. 68.Houng Y.C., I.Z. Chen, S.K. Lo, J.J. Shyr, and S.F. Roan. 2016. Comparison among seed oil content and fatty acid composition of three Camellia plants. Journal of the Taiwan Society for Horticultural Science. 63(3):193-198. 69.Hu, C.Y. 2004. Studies on the variations in leaf characters and DNA sequences of tea germplasm in Taiwan. Master Thesis, National Taiwan University. 70.Hu, C.Y., Y.C. Lin, W.T. Hsieh, Y.H. Tseng, S.F. Lin, and Y.Z. Tsai. 2011. Using EST-SSR markers to identify tea (Camellia sinensis) cultivars in Taiwan. Taiwan Tea Res. Bull. 30: 9-22. 71.Hu, C.Y., Y.Z. Tsai, and S.F. Lin. 2005. Using ISSR DNA markers to evaluate genetic diversity of tea germplasm in Taiwan. J. Agri. Assoc. China 6: 463-480. 72.Hu, C.Y., Y.Z. Tsai, and S.F. Lin. 2006. Evaluating the feasibility of molecular identification for made tea varieties. J. Agri. Assoc. China 7: 499-510. 73.Hu, G., C. Gao, X. Fan, W. Gong, and D. Yuan. 2020. Pollination compatibility and xenia in Camellia oleifera. HortScience 55: 898-905. 74.Jun, I.M. and M.L. Lin. 1997. Present status of tea industry in Taiwan. Taiwan Tea Res. Bull. 16: 87-97. 75.Kodad, O. and R. Socias i Company, 2005. Floral characterization of some self-compatible almond selections. In : Oliveira M.M. (ed.), Cordeiro V. (ed.). XIII GREMPA Meeting on Almonds and Pistachios . Options Méditerranéennes : Série A. Séminaires Méditerranéens 63:161-166. 76.Koo, T.K. and M.Y. Li. 2016. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15: 155-163. 77.Kottawa-Arachchi, J.D., M.A.B. Ranatunga, and K.K. Ranaweera. 2019. Recent progress of intra-specific hybridization of tea (Camellia sinensis (L.) O. Kuntze) in Sri Lanka. Sri Lanka Journal of Food and Agriculture 5(1):19-26. 78.Kumarihami, H.M.P.C., U.O. Eun, N. Atsushi, and J.S. Kwan. 2016. Comparative study on cross-compatibility between Camellia sinensis var. sinensis (China type) and C. sinensis var. assamica (Assam type) tea. African Journal of Agricultural Research 11: 1092-1101. 79.Lansac, A. R., Sullivan, C. Y., Johnson, B. E., Lee, K. W., 1994. Viability and germination of the pollen of sorghum [Sorghum bicolor (L.) Moench]. Annals of Botany 74(1): 27-33. 80.Li, H. L., Huang T. C. 1996. ‘Camellia’ in ‘flora of Taiwan’, 2nd ed.; Editorial Committee of the Flora of Taiwan: Taipei, Taiwan, Vol. 2, pp 668-673. 81.Liao, T., D.Y. Yuan, F. Zou, C. Gao, Y. Yang, L. Zhang, and X.F. Tan. 2014. Self-sterility in Camellia oleifera may be due to the prezygotic late-acting self-incompatibility. PLoS One 9: e99639. 82.Liu, L., Huang, L. and Li, Y. 2013. Influence of boric acid and sucrose on the germination and growth of areca pollen. Amer. J. Plant Sci. 4:1669-1674. 83.Ma, J., H. Ye, Y. Rui, G. Chen, and N. Zhang. 2010. Fatty acid composition of Camellia oleifera oil. Journal für Verbraucherschutz und Lebensmittelsicherheit 6: 9-12. 84.Ma, Q., C. Chen, Z. Zeng, Z. Zou, H. Li, Q. Zhou, X. Chen, K. Sun, and X. Li. 2018. Transcriptomic analysis between self- and cross-pollinated pistils of tea plants (Camellia sinensis). BMC Genomics 19: 289. 85.MartÍNez-GarcÍA, P.J., E. Ortega, and F. Dicenta. 2011. Analysis of the expression of partial self-incompatibility in almond (Prunus dulcis). The Journal of Horticultural Science and Biotechnology 86: 284-290. 86.Mitra, B., S. Kumar Shah, and P. Mishra. 2018. Insect Fauna associated with the Tea Ecosystem of North Bengal, India. Records of the Zoological Survey of India 118(2):178-193. 87.Muoki, C., F. Wachira, R. Pathak, and S. Kamunya. 2010. Potential male gametophyte competition among Camellia sinensis genotypes in isolated biclonal seed orchards. African Crop Science Journal 15(2):59-66. 88.Peterson, R., Slovin, J. P., Chen, C., 2010. A simplified method for differential staining of aborted and non-aborted pollen grains. Int J Plant Biol. 1: 66-69. 89.Piyasundara, J.H.N., I.P. Wickramasinghe, M.T.K. Gunesekara, M.A. Wijeratne, S.A.C.N. Perera, M.A.B. Ranathunga, and A. Mudalige. 2018. Reproductive phenology of tea (Camellia sinensis (L.) O. Kuntze) cultivars in Sri Lanka. Tropical Agricultural Research 29(3):288-301. 90.Radičević, S., Nikolic, D., Cerović, R., Đorđević, M., 2013. In vitro pollen germination and pollen grain morphology in some sweet cherry (Prunus avium L.) cultivars. Romanian Biotechnological Letters 18: 8341-8349. 91.Sanui, H. 2011. Tea breeding in Taiwan. In Y.S. Shyu (ed.), Tea breeding in Taiwan during Japanese occupation period. Tea Research and Extension Station, Taoyaun, Taiwan pp. 4-51. 92.Seth, R., A. Bhandawat, R. Parmar, P. Singh, S. Kumar, and R.K. Sharma. 2019. Global Transcriptional Insights of Pollen-Pistil Interactions Commencing Self-Incompatibility and Fertilization in Tea [Camellia sinensis (L.) O. Kuntze]. Int J Mol Sci 20(3):539. 93.Shivanna, R. K. and Mohan Ram, Y. H. 1993. Pollination biology: Contributions to fundamental and applied aspects. Current Science 65(3): 226-233. 94.Shyu, Y.S. and I.M. Juan. 1993. Retrospect of tea breeding in Taiwan. Taiwan Tea Res. Bull. 12: 1-17. 95.Su, M.-H., C.-F. Hsieh, J.-C. Wang, and C.H. Tsou. 2012. A taxonomic study of Camellia brevistyla and C. tenuiflora (Theaceae) based on phenetic analyses. Botanical Studies 53: 275-282. 96.Su, M.H., M.C. Shih, and K.H. Lin. 2014. Chemical composition of seed oils in native Taiwanese Camellia species. Food Chem 156: 369-373. 97.Sulusoglu, M., Cavusoglu, A., 2014. In vitro pollen viability and pollen germination in cherry laurel (Prunus laurocerasus L.). Scientific World Journal 2014: 657123. 98.Tan, L.Q., Q.L. Liu, B. Zhou, C.J. Yang, X. Zou, Y.Y. Yu, Y. Wang, J.H. Hu, Y. Zou, S.X. Chen, P.W. Li, and Q. Tang. 2019. Paternity analysis using SSR markers reveals that the anthocyanin-rich tea cultivar ‘Ziyan’ is self-compatible. Scientia Horticulturae 245: 258-262. 99.Taniguchi, F., K. Kimura, T. Saba, A. Ogino, S. Yamaguchi, and J. Tanaka. 2014. Worldwide core collections of tea (Camellia sinensis) based on SSR markers. Tree Genetics & Genomes 10: 1555-1565. 100.Tsai, H.T., I.C. Tsai, W.R. Liaw, C.K. Chang, and Y.W. Wang. 2003. Study on the genetic diversity among the selected Taiwan tea cultivars/ lines using AFLP and RAPD markers. Taiwan Tea Res. Bull. 22: 17-32. 101.Wachira, F.N. and S.K. Kamunya. 2005. Pseudo-self-incompatibility in some tea clones (Camellia sinensis(L.) O. Kuntze). The Journal of Horticultural Science and Biotechnology 80: 716-720. 102.Wang, R.-Y., Y.-T. Tung, S.-Y. Chen, Y.-L. Lee, and G.-C. Yen. 2019a. Protective effects of camellia oil (Camellia brevistyla) against indomethacin-induced gastrointestinal mucosal damage in vitro and in vivo. Journal of Functional Foods 62. 103.Wang, W., S. Han, Z. Jiao, J. Cheng, and J. Song. 2019b. Antioxidant activity and total polyphenols content of camellia oil extracted by optimized supercritical carbon dioxide. Journal of the American Oil Chemists' Society 96: 1275-1289. 104.Wei, D., C. Gao, and D. Yuan. 2015. Calcium Distribution during Anther Development in Oil Tea (Camellia oleifera Abel.). Journal of the American Society for Horticultural Science. American Society for Horticultural Science 140: 88-93. 105.Wei, W., H. Wu, X. Li, X. Wei, W. Lu, and X. Zheng. 2019. Diversity, Daily Activity Patterns, and Pollination Effectiveness of the Insects Visiting Camellia osmantha, C. vietnamensis, and C. oleifera in South China. Insects 10(4):98. 106.Wright, S.I., S. Kalisz, and T. Slotte. 2013. Evolutionary consequences of self-fertilization in plants. Proceedings of the Royal Society B: Biological Sciences 280:20130133. 107.Wu, J., X. Fan, X. Huang, G. Li, J. Guan, X. Tang, M. Qiu, S. Yang, and S. Lu. 2021. Effect of different drying treatments on the quality of camellia oleifera seed oil. South African Journal of Chemical Engineering 35: 8-13. 108.Xie, Y. and X. Wang. 2018. Comparative transcriptomic analysis identifies genes responsible for fruit count and oil yield in the oil tea plant Camellia chekiangoleosa. Sci Rep 8: 6637. 109.Xiong, H., P. Chen, Z. Zhu, Y. Chen, F. Zou, and D. Yuan. 2019. Morphological and cytological characterization of petaloid-type cytoplasmic male sterility in Camellia oleifera. HortScience 54: 1149-1155. 110.Yang, M.J. 1998. Studies on the Self-Incompatibility of Tea. Master Thesis, National Taiwan University. 111.You, L., S. Yu, H. Liu, C. Wang, Z. Zhou, L. Zhang, and D. Hu. 2019. Effects of biogas slurry fertilization on fruit economic traits and soil nutrients of Camellia oleifera Abel. PLoS One 14: e0208289. 112.Yue, W., S. C. Su, L. Y. Ma, S. Y. Yang, Y. W. Wang, and X. N. Wang. 2018. Effects of canopy microclimate on fruit yield and quality of Camellia oleifera. Scientia Horticulturae 235: 132-141. 113.Zhang, C.C., L.Y. Wang, K. Wei, L.Y. Wu, H.L. Li, F. Zhang, H. Cheng, and D.J. Ni. 2016. Transcriptome analysis reveals self-incompatibility in the tea plant (Camellia sinensis) might be under gametophytic control. BMC Genomics 17: 359. 114.Zhou, J., M. Lu, S. Yu, Y. Liu, J. Yang, and X. Tan. 2020. In-depth understanding of Camellia oleifera self-incompatibility by comparative transcriptome, proteome and metabolome. Int J Mol Sci 21:1-23. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90135 | - |
| dc.description.abstract | 茶樹是臺灣重要的經濟作物,種植面積廣大且具有多樣性,茶葉採摘是主要利用方式,2022年臺灣茶葉種植面積達到12,192公頃,但目前茶樹種植油用品種尚未規模化,茶籽油生產主要依賴進口,本土生產的茶籽經濟栽培很少。臺灣的油茶產業包括普通油茶和細葉山茶,主要種植在臺灣中南部和東部地區,2022年生產總面積約1,569.6公頃。油茶的果實在10月至11月成熟,可榨取食用或工業用的茶油,而其它部分如殼、種殼和木材也有其他用途。油茶的種植面積相對不高,如何提高單位面積產量是一個重要的課題。
為發展茶樹油用品種篩選指標,以加速育種時間,並針對不同茶樹品種的含油率及脂肪酸組成,本研究調查超過100個茶樹品種,進行研究以篩選育種指標,並選育高含油率及較佳脂肪酸組成之品種。首先,調查106個茶樹品種,以確定茶樹花朵性狀與果實產量之間的關係,結果顯示雄蕊束外徑寬度為主要影響因素,柱頭寬度為次要影響因素,這兩個性狀有潛力成為茶樹育種計劃中的重要早期篩選指標。接著,比較不同茶樹種類在果實產量、結果率、株高和株寬等性狀上的差異,結果顯示大小葉雜交種和大葉種在果實產量上表現較佳,結果率、株高和株寬與單株果實產量呈現正相關,這些性狀可作為茶樹育種選拔的重要指標。另外,進行比較了不同茶樹種類間果實農藝性狀的差異,結果顯示大小葉雜交種在單顆種子重和種子直徑方面優於大葉種和小葉種,而果實內種子重、種子粒數和種子直徑對單顆果實重有正面影響。最後,比較了104個茶樹品種的種子含油率與脂肪酸組成,結果顯示小葉種具有較高的含油率及較高的亞油酸含量,而大小葉雜交種在棕櫚酸含量上高於大葉種和小葉種。 本研究選取臺東縣鹿野鄉定植的75株實生細葉山茶成木進行研究,結果顯示細葉山茶的產量保持一致,而花朵性狀受氣候和生理調節影響,且開放授粉結果率與套袋結果率呈正相關,套袋結果率可正面影響開放授粉結果率。因此,建議選擇具有較大雄蕊束內徑和突出柱頭的花朵性狀、較高套袋結果率和良好果實產量的單株作為早期篩選標的,以提高細葉山茶的自然結果率和豐產品系的培育。另外進行高產量單株的篩選,依據5年間細葉山茶群體平均產量及2年平均結果率、果實農藝性狀分析。結果顯示,細葉山茶的平均產量為1.68 kg,平均開放授粉結果率為12.48%,最高產量可達9.65 kg。結果率和果實重量對產量有影響,篩選時應考慮果實重量。篩選出的穩定的高產量品系包括B79、B55和B25,它們的平均產量分別達到9.65 kg、5.26 kg和5.26 kg,果實重量達3.79 g、4.05 g及4.96 g,可供將來進入品系比較試驗。 普通油茶花朵性狀在2018年相較於2017年顯示出雄蕊束外徑及內徑減少,雌蕊長度縮短,而雄蕊束外內徑差減少,雄蕊減雌蕊長度差增加的趨勢。2018年普通油茶的自然授粉結果率(8.89%)顯著較2017年(4.26%)提高,而套袋結果率則未有變化。根據2017年和2018年的分析結果顯示,2017普通油茶的花朵性狀對開放授粉結果率的影響不具有統計顯著性,而2018年雄蕊束內徑對開放授粉有正面影響,每增加1 mm的雄蕊束內徑,開放授粉結果率將增加3.951%。然而,其他花朵性狀開放授粉結果率及套袋結果率影響不明顯。普通油茶的套袋結果率與開放授粉結果率呈現顯著正相關,隨著套袋結果率的提高,開放授粉結果率也相應增加。迴歸分析顯示2017年,每增加1%的套袋結果率,開放授粉結果率將增加2.004%;2018年則為每增加1%的套袋結果率,開放授粉結果率將增加1.486%。 本研究中普通油茶,過去三年間的普通油茶單株果實產量呈現相關性,調查平均果實鮮重為17.39 g、平均果實內鮮種子重為6.90 g、平均果實種子粒數為3.24粒、平均果實縱徑為30.00 mm、平均果實橫徑為32.26 mm。過去三年間的普通油茶果實平均單粒重與果實粒數呈現相關性,代表除了產量之外,果實重量與單株果實粒數亦有相關性。2017年自然授粉結果率與單株果實產量以及單株粒數之間呈現顯著正相關。然而,在2015年和2016年的研究中並未觀察到相關性。此外,自然授粉結果率與套袋結果率對平均單粒重並無統計上顯著的相關性,表示平均單粒重不受結果率的影響。 花粉活力檢測對於育種至為重要,本試驗比較了不同花粉發芽培養液與TTC染色配方對茶樹、細葉山茶及普通油茶的花粉活力檢測影響。結果顯示,茶樹、細葉山茶及普通油茶的花粉發芽培養液配方最佳者為「100 g/L蔗糖+150 mg/L硼酸+200 mg/L硝酸鈣」,而茶樹及普通油茶的花粉TTC染色配方最佳者為「100 g/L蔗糖+ 5 g/L TTC」。使用TTC染色法可以獲得較理想的花粉活力檢測結果,且添加蔗糖可以維持花粉外壁的完整性,方便長時間觀察花粉染色。對於75個茶樹品種的TTC染色檢測結果顯示,約80%的品種具有高於70%的花粉活力,僅臺茶19號、水仙和小葉鐵觀音的花粉活力較低,說明絕大多數茶樹品種的花粉可用於育種。在28個細葉山茶單株的檢測中,超過90%的單株花粉活力高於全體的89.3%,超過80%的單株占96.4%,最低花粉活力為60%,這表示大多數的細葉山茶具有正常的花粉可供授粉使用。將來發展本土油用山茶屬植物品種,選育高產量甚至高自交親和性的細葉山茶及普通油茶品系,以提升油茶整體產量,應是重要的課題。 | zh_TW |
| dc.description.abstract | Tea tree is an important economic crop in Taiwan, with a large and diverse cultivation area. Tea leaf picking is the main utilization method. In 2022, the tea cultivation area in Taiwan reached 12,192 hectares. However, the cultivation of oil-producing tea tree varieties has not been scaled up, and the production of tea seed oil relies mainly on imports, with very little locally grown tea seeds for economic cultivation. Taiwan's oil tea industry includes Camellia oleifera and C. tenuifolia, primarily grown in central and southern Taiwan, as well as the eastern region. The total production area in 2022 was approximately 1,569.6 hectares. The fruits of oil tea ripen from October to November and can be pressed to extract edible or industrial tea oil. Other parts, such as shells, seed coats, and wood, also have various uses. The cultivation area of oil tea is relatively low, making it an important challenge to increase the yield per unit area.
To develop selection criteria for oil-producing tea tree varieties and accelerate the breeding process, this study investigated over 100 tea tree varieties to screen for breeding indicators and select varieties with high oil content and desirable fatty acid composition. Firstly, 106 tea tree varieties were surveyed to determine the relationship between floral traits and fruit yield. The results showed that the outer diameter of the stamen bundle was the main influencing factor, followed by the width of the pistil head. These two traits have the potential to become important early selection indicators in tea tree breeding programs. Next, the differences in fruit yield, fruiting rate, plant height, and plant width among different tea tree types were compared. The results showed that hybrids between large and small leaf varieties and large leaf varieties performed better in terms of fruit yield. The fruiting rate, plant height, and plant width were positively correlated with individual fruit yield, indicating that these traits could serve as important indicators for tea tree breeding and selection. Furthermore, the differences in agronomic traits of fruits among different tea tree types were compared. The results showed that hybrids between large and small leaf varieties had superior individual seed weight and seed diameter compared to large leaf and small leaf varieties. The seed weight, number of seeds, and seed diameter within the fruit had a positive impact on individual fruit weight. Finally, the seed oil content and fatty acid composition of 104 tea tree varieties were compared. The results showed that small leaf varieties had higher oil content and higher linoleic acid content, while hybrids between large and small leaf varieties had higher palmitic acid content compared to large leaf and small leaf varieties. This study selected 75 seed-grown C. tenuifolia trees in Luye Township, Taitung County, for research. The results showed consistent yield in C. tenuifolia, while floral traits were influenced by climate and physiological regulation. Furthermore, the fruiting rate through open pollination was positively correlated with the fruiting rate through bagging, indicating that bagging can have a positive impact on the fruiting rate in open pollination. Therefore, it is suggested to select individual plants with larger inner diameter of stamen bundles and prominent pistil heads, higher bagging fruiting rate, and good fruit yield as early screening targets to improve the natural fruiting rate and cultivate high-yielding germplasms of C. tenuifolia. Additionally, selection of high-yielding individual plants was conducted based on the analysis of the average yield and fruit agronomic traits over a 5-year period and the average fruiting rate over 2 years. The results showed that the average yield of C. tenuifolia was 1.68 kg, with an average open pollination fruiting rate of 12.48%. The highest yield recorded was 9.65 kg. The fruiting rate and fruit weight had an impact on the yield, and fruit weight should be considered during selection. Stable high-yielding strains selected included B79, B55, and B25, with average yields reaching 9.65 kg, 5.26 kg, and 5.26 kg, and fruit weights of 3.79 g, 4.05 g, and 4.96 g, respectively. These strains can be further evaluated in comparative trials in the future. In comparison to 2017, the floral traits of C. oleifera in 2018 showed a decrease in the outer and inner diameter of stamen bundles, as well as a reduction in the length of pistils. Additionally, there was a decrease in the difference between the outer and inner diameter of stamen bundles, while the difference in length between stamens and pistils increased. The natural pollination fruiting rate of C. oleifera significantly increased from 4.26% in 2017 to 8.89% in 2018, while the bagging fruiting rate remained unchanged. The analysis of 2017 and 2018 data revealed that the floral traits of C. oleifera in 2017 did not have a statistically significant impact on the open pollination fruiting rate. However, in 2018, the inner diameter of stamen bundles had a positive effect on open pollination, with an increase of 3.951% in the fruiting rate for every 1 mm increase in the inner diameter of stamen bundles. However, the influence of other floral traits on the open pollination fruiting rate and bagging fruiting rate was not significant. There was a significant positive correlation between the bagging fruiting rate and the open pollination fruiting rate in Camellia oleifera. As the bagging fruiting rate increased, the open pollination fruiting rate also increased accordingly. Regression analysis indicated that in 2017, for every 1% increase in the bagging fruiting rate, the open pollination fruiting rate would increase by 2.004%. In 2018, for every 1% increase in the bagging fruiting rate, the open pollination fruiting rate would increase by 1.486%. In this study on C. oleifera, there was a correlation observed in the individual fruit yield of C. oleifera over the past three years. The average fresh fruit weight was recorded as 17.39 g, average fresh seed weight within the fruit was 6.90 g, average number of seeds per fruit was 3.24, average fruit length was 30.00 mm, and average fruit width was 32.26 mm. The average weight per individual fruit and the number of seeds per fruit showed a correlation over the past three years, indicating that fruit weight is correlated with the number of seeds per individual fruit, in addition to overall yield. In 2017, there was a significant positive correlation observed between the natural pollination fruit set rate and the individual fruit yield as well as the number of seeds per individual plant. However, no significant correlation was observed between these factors in the studies conducted in 2015 and 2016. Furthermore, there was no statistically significant correlation observed between the natural pollination fruit set rate, bagging fruit set rate, and the average weight per individual seed, indicating that the average weight per individual seed is not influenced by the fruit set rate. Pollen viability testing is crucial for breeding purposes. In this experiment, the effects of different pollen germination media and TTC staining formulations on the pollen viability testing of tea plants, C. tenuifolia, and C. oleifera were compared. The results showed that the optimal pollen germination media for tea plants, C. tenuifolia, and C. oleifera were "100 g/L sucrose + 150 mg/L boric acid + 200 mg/L calcium nitrate." As for the TTC staining formulation, the optimal one for tea plants and C. oleifera was "100 g/L sucrose + 5 g/L TTC." Using the TTC staining method yielded more desirable results for pollen viability testing, and the addition of sucrose helped maintain the integrity of the pollen exine, facilitating long-term observation of stained pollen. The TTC staining results for 75 tea plant varieties showed that approximately 80% of the varieties had pollen viability above 70%. Only Taiwan Tea No. 19, Shui Xian and Xiao Ye Tie Guan Yin had lower pollen viability, indicating that the majority of tea plant varieties can be used for breeding purposes. Among the 28 tested C. tenuifolia individual plants, over 90% of them had higher pollen viability than the overall average of 89.3%, with over 80% of the individual plants accounting for 96.4%. The lowest pollen viability recorded was 60%, indicating that the majority of C. tenuifolia plants have normal pollen that can be used for pollination. In the future, the development of local oil-bearing Camellia species, selecting high-yielding and even high-selfing affinity varieties of C. tenuifolia and C. oleifera, to enhance the overall yield of oil tea, should be an important task. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:33:39Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T17:33:39Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 ii
誌謝 iii 中文摘要 ix Abstract vi 目錄 - 1 - 圖目錄 - 3 - 表目錄 - 4 - 第一章 臺灣重要油用山茶屬植物豐產指標篩選與產業利用概況 1 1.1 臺灣重要油用山茶屬植物豐產指標篩選 3 1.2臺灣茶樹、細葉山茶與普通油茶介紹 5 1.3臺灣茶樹、細葉山茶與普通油茶產業利用概況 8 第二章 茶樹豐產油用品種(系)篩選之研究 12 2.1 文獻回顧 13 2.2 茶樹油用品種早期育種篩選指標建立 15 2.3 茶樹油用品種主要篩選指標建立-茶樹種類與單株果實產量、結果率、株高、株寬與缺株率分析 32 2.4 茶樹油用品種輔助篩選指標建立-茶樹果實大小之影響因子 46 2.5 茶樹品種種子含油率及脂肪酸分析 66 第三章 細葉山茶豐產品系篩選之研究 83 3.1文獻回顧 84 3.2細葉山茶早期育種篩選指標建立-細葉山茶花朵性狀、套袋與開放授粉對結果的影響 87 3.3細葉山茶高產量單株篩選及結果率與果實性狀分析 104 第四章 普通油茶豐產品系篩選之研究 113 4.1文獻回顧 114 4.2普通油茶早期育種篩選指標建立-普通油茶花朵性狀、套袋與開放授對結果的影響 120 4.3普通油茶主要育種篩選指標建立-普通油茶產量、結果數及果實性狀與結果率的關係 132 第五章 茶樹、細葉山茶、普通油茶花粉活力檢測之研究 146 參考文獻 159 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 茶樹 | zh_TW |
| dc.subject | 豐產指標 | zh_TW |
| dc.subject | 性狀 | zh_TW |
| dc.subject | 花朵 | zh_TW |
| dc.subject | 果實 | zh_TW |
| dc.subject | 普通油茶 | zh_TW |
| dc.subject | 細葉山茶 | zh_TW |
| dc.subject | Camellia tenuifolia | en |
| dc.subject | Camellia sinensis | en |
| dc.subject | High-yielding index | en |
| dc.subject | Characteristics | en |
| dc.subject | Fruit | en |
| dc.subject | Flower | en |
| dc.subject | Camellia oleifera | en |
| dc.title | 臺灣重要油用山茶屬植物(Camellia spp.)豐產指標篩選之研究 | zh_TW |
| dc.title | Study on the Screening of High-Yielding Index of Important Oil Tea Plants (Camellia spp.) in Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 李金龍;阮素芬;蘇宗振;林書妍 | zh_TW |
| dc.contributor.oralexamcommittee | Ching-Luung Lee;Su-Fen Roan;Tsung-Chen Su;Shu-Yen Lin | en |
| dc.subject.keyword | 茶樹,細葉山茶,普通油茶,果實,花朵,性狀,豐產指標, | zh_TW |
| dc.subject.keyword | Camellia sinensis,Camellia tenuifolia,Camellia oleifera,Fruit,Flower,Characteristics,High-yielding index, | en |
| dc.relation.page | 170 | - |
| dc.identifier.doi | 10.6342/NTU202303968 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-12 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 園藝暨景觀學系 | - |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 4.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
