請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90132完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 薛景中 | zh_TW |
| dc.contributor.advisor | Jing-Jong Shyue | en |
| dc.contributor.author | 謝博鈞 | zh_TW |
| dc.contributor.author | Pochun Hsieh | en |
| dc.date.accessioned | 2023-09-22T17:32:48Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-11 | - |
| dc.identifier.citation | (1) Rajkumar, T.; Kukkar, D.; Kim, K. H.; Sohn, J. R.; Deep, A.Cyclodextrin-Metal–Organic Framework (CD-MOF): From Synthesis to Applications. J. Ind. Eng. Chem. 2019, 72, 50–66. https://doi.org/10.1016/j.jiec.2018.12.048.
(2) Nadar, S. S.; Vaidya, L.; Maurya, S.; Rathod, V. K.Polysaccharide Based Metal Organic Frameworks (Polysaccharide–MOF): A Review. Coord. Chem. Rev. 2019, 396, 1–21. https://doi.org/10.1016/j.ccr.2019.05.011. (3) Liu, C.; Wang, J.; Wan, J.; Yu, C.MOF-on-MOF Hybrids: Synthesis and Applications. Coord. Chem. Rev. 2021, 432, 213743. https://doi.org/10.1016/j.ccr.2020.213743. (4) Amombo Noa, F. M.; Svensson Grape, E.; Brülls, S. M.; Cheung, O.; Malmberg, P.; Inge, A. K.; Mckenzie, C. J.; Mårtensson, J.; Öhrström, L.Metal-Organic Frameworks with Hexakis(4-Carboxyphenyl)Benzene: Extensions to Reticular Chemistry and Introducing Foldable Nets. J. Am. Chem. Soc. 2020, 142 (20), 9471–9481. https://doi.org/10.1021/jacs.0c02984. (5) Liu, R.; Xie, Y.; Cui, K.; Xie, J.; Zhang, Y.; Huang, Y.Adsorption Behavior and Adsorption Mechanism of Glyphosate in Water by Amino-MIL-101(Fe). J. Phys. Chem. Solids 2022, 161 (September 2021), 110403. https://doi.org/10.1016/j.jpcs.2021.110403. (6) Tanaka, S.; Fujita, K.; Miyake, Y.; Miyamoto, M.; Hasegawa, Y.; Makino, T.; Van DerPerre, S.; Cousin Saint Remi, J.; VanAssche, T.; Baron, G.V.; Denayer, J. F. M.Adsorption and Diffusion Phenomena in Crystal Size Engineered ZIF-8 MOF. J. Phys. Chem. C 2015, 119 (51), 28430–28439. https://doi.org/10.1021/acs.jpcc.5b09520. (7) Sabale, S.; Barpaga, D.; Yao, J.; Kovarik, L.; Zhu, Z.; Chatterjee, S.; McGrail, B. P.; Motkuri, R. K.; Yu, X. Y.Understanding Time Dependence on Zinc Metal-Organic Framework Growth Using in Situ Liquid Secondary Ion Mass Spectrometry-SI. ACS Appl. Mater. Interfaces 2020, 12 (4), 5090–5098. https://doi.org/10.1021/acsami.9b19991. (8) Noël, C.; Pescetelli, S.; Agresti, A.; Franquet, A.; Spampinato, V.; Felten, A.; diCarlo, A.; Houssiau, L.; Busby, Y.Hybrid Perovskites Depth Profiling with Variable-Size Argon Clusters and Monatomic Ions Beams. Materials (Basel). 2019, 12 (5). https://doi.org/10.3390/ma12050726. (9) Hou, C. H.; Hung, S. H.; Jhang, L. J.; Chou, K. J.; Hu, Y. K.; Chou, P. T.; Su, W. F.; Tsai, F. Y.; Shieh, J.; Shyue, J. J.Validated Analysis of Component Distribution Inside Perovskite Solar Cells and Its Utility in Unveiling Factors of Device Performance and Degradation. ACS Appl. Mater. Interfaces 2020, 12 (20), 22730–22740. https://doi.org/10.1021/acsami.9b22492. (10) Chiang, P.-H.Effect of Energy per Atom (E/n) in Ar Gas Cluster Ion Beam (Ar1000,2500+) with Ar+ Cosputter on Depth Profile of Metal-Organic Framework Thin Film by Secondary Ion Mass Spectroscopy, National Taiwan University, 2021. https://doi.org/10.6342/NTU202102598. (11) Tovar, T. M.; Zhao, J.; Nunn, W. T.; Barton, H. F.; Peterson, G. W.; Parsons, G. N.; LeVan, M. D.Diffusion of CO2 in Large Crystals of Cu-BTC MOF. J. Am. Chem. Soc. 2016, 138 (36), 11449–11452. https://doi.org/10.1021/jacs.6b05930. (12) Mu, X.; Chen, Y.; Lester, E.; Wu, T.Optimized Synthesis of Nano-Scale High Quality HKUST-1 under Mild Conditions and Its Application in CO2 Capture. Microporous Mesoporous Mater. 2018, 270 (January), 249–257. https://doi.org/10.1016/j.micromeso.2018.05.027. (13) Liédana, N.; Galve, A.; Rubio, C.; Téllez, C.; Coronas, J.CAF@ZIF-8: One-Step Encapsulation of Caffeine in MOF. ACS Appl. Mater. Interfaces 2012, 4 (9), 5016–5021. https://doi.org/10.1021/am301365h. (14) Wei, R.; Chi, H. Y.; Li, X.; Lu, D.; Wan, Y.; Yang, C. W.; Lai, Z.Aqueously Cathodic Deposition of ZIF-8 Membranes for Superior Propylene/Propane Separation. Adv. Funct. Mater. 2020, 30 (7), 1–7. https://doi.org/10.1002/adfm.201907089. (15) Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M.Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework. Nature 1999, 402 (6759), 276–279. https://doi.org/10.1038/46248. (16) Biradha, K.; Ramanan, A.; Vittal, J. J.Coordination Polymers Versus Metal−Organic Frameworks. Cryst. Growth Des. 2009, 9 (7), 2969–2970. https://doi.org/10.1021/cg801381p. (17) Abrahams, B. F.; Hoskins, B. F.; Robson, R.A New Type of Infinite 3D Polymeric Network Containing 4-Connected, Peripherally-Linked Metalloporphyrin Building Blocks. J. Am. Chem. Soc. 1991, 113 (9), 3606–3607. https://doi.org/10.1021/ja00009a065. (18) Yaghi, O. M.; Li, H.Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels. J. Am. Chem. Soc. 1995, 117 (41), 10401–10402. https://doi.org/10.1021/ja00146a033. (19) Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D.A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2 (H2O)3](N). Science (80-. ). 1999, 283 (5405), 1148–1150. https://doi.org/10.1126/science.283.5405.1148. (20) Serpaggi, F.; Férey, G.Hybrid Open Frameworks (MIL-n). Part 4 Synthesis and Crystal Structure of MIL-8, a Series of Lanthanide Glutarates with an Open Framework, [Ln(H2O)]2[O2C(CH2)3CO2]3·4H2O. J. Mater. Chem. 1998, 8 (12), 2737–2741. https://doi.org/10.1039/a802713g. (21) Serpaggi, F.; Férey, G.Hybrid Open Frameworks (MIL-n). Part 6 Hydrothermal Synthesis and X-Ray Powder Ab Initio Structure Determination of MIL-11, a Series of Lanthanide Organodiphosphonates with Three-Dimensional Networks, LnIIIH[O3P(CH2)NPO3] (N=1-3). J. Mater. Chem. 1998, 8 (12), 2749–2755. https://doi.org/10.1039/a802715c. (22) Livage, C.; Egger, C.; Nogues, M.; Férey, G.Hybrid Open Frameworks (MIL-n). Part 5 Synthesis and Crystal Structure of MIL-9: A New Three-Dimensional Ferrimagnetic Cobalt(II) Carboxylate with a Two-Dimensional Array of Edge-Sharing Co Octahedra with 12-Membered Rings. J. Mater. Chem. 1998, 8 (12), 2743–2747. https://doi.org/10.1039/a802714e. (23) Serre, C.; Férey, G.Hydrothermal Synthesis and Crystal Structure of a New Three-Dimensional Titanium(IV) Phosphate with an Open Structure: Ti6O3(H2O)3(PO4)7•(H3O)3•H2O or MIL-18. Comptes Rendus l’Académie des Sci. - Ser. IIC - Chem. 1999, 2 (2), 85–91. https://doi.org/10.1016/S1387-1609(99)80006-1. (24) Simon, N.; Loiseau, T.; Férey, G.Synthesis and Crystal Structure of MIL-14: A New Layered Fluoroaluminophosphate Templated with Tris(2-Aminoethylamine): Al2(HPO4)3F2·H2PO4·N4C6H21. J. Mater. Chem. 1999, 9 (2), 585–589. https://doi.org/https://doi.org/10.1021/cm980781r. (25) Livage, C.; Egger, C.; Férey, G.Hybrid Open Networks (MIL 16): Synthesis, Crystal Structure, and Ferrimagnetism of Co 4 (OH) 2 (H 2 O) 2 (C 4 H 4 O 4 ) 3 ·2H 2 O, a New Layered Cobalt(II) Carboxylate with 14-Membered Ring Channels. Chem. Mater. 1999, 11 (6), 1546–1550. https://doi.org/10.1021/cm980781r. (26) Faulet, C.; Serre, C.; Loiseau, T.; Riou, D.; Férey, G.Hybrid Open-Frameworks (MIL-n): Syntheses and Structures of 2-Dimensional Gallium Methylphosphonates (MIL-23) and 3-Dimensional Copper Vanadium Methyldiphosphonate (MIL-24). Comptes Rendus l’Académie des Sci. - Ser. IIC - Chem. 1999, 2 (11–13), 631–636. https://doi.org/10.1016/S1387-1609(00)88576-X. (27) Serpaggi, F.; Férey, G.Hybrid Organic-Inorganic Frameworks (MIL-n). Hydrothermal Synthesis of a Series of Pillared Lanthanide Carboxyethylphosphonates and x-Ray Powder Ab Initio Structure Determination of MIL-19, Pr[O3P(CH2)2CO2]. Inorg. Chem. 1999, 38 (21), 4741–4744. https://doi.org/10.1021/ic981440i. (28) Simon, N.; Loiseau, T.; Férey, G.Synthesis and Crystal Structure of MIL-27, a New Oxyfluorinated Three-Dimensional Framework Metallophosphate Obtained with Aluminium in Four, Five and Sixfold Coordination and Templated with the Tris(2-Aminoethyl)Amine. Solid State Sci. 1999, 1 (6), 339–349. https://doi.org/10.1016/S1293-2558(00)80088-6. (29) Serre, C.; Férey, G.Hydrothermal Synthesis, Structure Determination from Powder Data of a Three-Dimensional Zirconium Diphosphonate with an Exceptionally High Thermal Stability: Zr(O3P-(CH2)-PO3) or MIL-57. J. Mater. Chem. 2002, 12 (8), 2367–2369. https://doi.org/10.1039/b202188a. (30) Riou-Cavellec, M.; Férey, G.A New Three-Dimensional Iron Trimesate: [Fe3(H2O)5(C9 O6H3)2·3H2O] or MIL-65. Solid State Sci. 2002, 4 (9), 1221–1225. https://doi.org/10.1016/S1293-2558(02)01381-X. (31) Serpaggi, F.; Férey, G.Hybrid Open Frameworks (MIL-n): Synthesis and Crystal Structure of MIL-17 - A Rare-Earth Dicarboxylate with a Relatively Open Framework, [Pr(H2O)]2[O2C(CH2) 2CO2]3·H2O. Microporous Mesoporous Mater. 1999, 32 (3), 311–318. https://doi.org/10.1016/S1387-1811(99)00120-1. (32) Simon, N.; Loiseau, T.; Férey, G.Synthesis and Crystal Structure of MIL-32: A New Chiral Layered Aluminophosphate Templated with Non Chiral Tris(2-Aminoethyl)Amine: Al3(PO4)4, N4C6H21, H2O. Solid State Sci. 2000, 2 (3), 391–397. https://doi.org/10.1016/s1293-2558(00)00142-4. (33) Livage, C.; Egger, C.; Nogues, M.; Férey, G.Synthesis, Structural and Magnetic Characterisation of MIL 36, Co(C 7 H 10 O 4 ), a Three-Dimensional Coordination Polymer. Comptes Rendus l’Académie des Sci. - Ser. IIC - Chem. 2001, 4 (3), 221–226. https://doi.org/10.1016/S1387-1609(00)01214-7. (34) Riou-Cavellec, M.; Sanselme, M.; Grenèche, J.-M.; Férey, G.Hydrothermal Synthesis, Structural Approach, Magnetic and Mössbauer Study of the Layered Fe(III) Carboxyethylphosphonate [Fe(OH)(H2O)(O3P-(CH2)2-CO2H)] or MIL-37. Solid State Sci. 2000, 2 (7), 717–724. https://doi.org/10.1016/S1293-2558(00)01080-3. (35) Barthelet, K.; Jouve, C.; Riou, D.; Férey, G.Hybrid Open-Frameworks: Structure Determinations and Ferromagnetism of MIL-41 or (V(IV)O)2M(II)(H2O)4{HO3P-CH2-PO3}2 · 2H2O (M = MN, Co, Ni, Zn): Four Mixed Metallomethylendiphosphonates Hydrothermally Synthesized by Using Pre-Assembled Building Units. Solid State Sci. 2000, 2 (8), 871–876. https://doi.org/10.1016/S1293-2558(00)01093-1. (36) Barthelet, K.; Riou, D.; Férey, G.Hydrothermal Synthesis and Structure Determination of Ag3(VvO2){O3P-CH2-PO 3} or MIL-42: A New Vanadium(V) Methylendiphosphonate Inserting Silver Cations. Solid State Sci. 2001, 3 (1–2), 203–209. https://doi.org/10.1016/S1293-2558(00)01132-8. (37) Serre, C.; Taulelle, F.; Ferey, G.Synthesis and Characterisation of MIL-43 and MIL-44, Two New Layered Templated Tetravalent Phosphates: Zr(PO4)2·N2C2H10 and Ti2(PO4)2(HPO4)2·N2C2H10. Solid State Sci. 2001, 3 (5), 623–632. https://doi.org/10.1016/S1293-2558(01)01171-2. (38) Serre, C.; Férey, G.Hydrothermal Synthesis and Structure Determination from Powder Data of New Three-Dimensional Titanium(IV) Diphosphonates Ti(O3P-(CH2)n-PO3) or MIL-25n (N=2, 3). Inorg. Chem. 2001, 40 (21), 5350–5353. https://doi.org/10.1021/ic010260x. (39) Riou-Cavellec, M.; Albinet, C.; Livage, C.; Guillou, N.; Noguès, M.; Grenèche, J. M.; Férey, G.Ferromagnetism of the Hybrid Open Framework K[M3(BTC)3]·5H2O (M = Fe, Co) or MIL-45. Solid State Sci. 2002, 4 (2), 267–270. https://doi.org/10.1016/S1293-2558(01)01225-0. (40) Riou-Cavellec, M.; Sanselme, M.; Noguès, M.; Grenèche, J.-M.; Férey, G.Synthesis, Structure and Metamagnetic Behaviour of a Three-Dimensional Fe(II) Carboxyethylphosphonate: [Fe3(OH)2(H2O)4(O3P(CH2)2CO2H)2] or MIL-38. Solid State Sci. 2002, 4 (5), 619–625. https://doi.org/10.1016/S1293-2558(02)01305-5. (41) Barthelet, K.; Riou, D.; Férey, G.Hydrothermal Synthesis and Structure Determination of Na2Zn{O3P-CH2-PO3}.H2O (MIL-58): A New Zincomethylenediphosphonate Exhibiting a Hybrid Zeotype. Solid State Sci. 2002, 4 (6), 841–844. https://doi.org/10.1016/S1293-2558(02)01331-6. (42) Horcajada, P.; Serre, C.; Grosso, D.; Boissière, C.; Perruchas, S.; Sanchez, C.; Férey, G.Colloidal Route for Preparing Optical Thin Films of Nanoporous Metal-Organic Frameworks. Adv. Mater. 2009, 21 (19), 1931–1935. https://doi.org/10.1002/adma.200801851. (43) Serre, C.; Millange, F.; Thouvenot, C.; Noguès, M.; Marsolier, G.; Louër, D.; Férey, G.Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C-C6H4- CO2}·{HO2C-C6H4 -CO2H}x·H2Oy. J. Am. Chem. Soc. 2002, 124 (45), 13519–13526. https://doi.org/10.1021/ja0276974. (44) Férey, C.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I.Chemistry: A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science (80-. ). 2005, 309 (5743), 2040–2042. https://doi.org/10.1126/science.1116275. (45) Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M.Exceptional Chemical and Thermal Stability of Zeolitic Imidazolate Frameworks. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (27), 10186–10191. https://doi.org/10.1073/pnas.0602439103. (46) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P.A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130 (42), 13850–13851. https://doi.org/10.1021/ja8057953. (47) Nabipour, H.; Mansoorianfar, M.; Hu, Y.Carboxymethyl Cellulose-Coated HKUST-1 for Baclofen Drug Delivery in Vitro. Chem. Pap. 2022. https://doi.org/10.1007/s11696-022-02348-0. (48) Alsaiari, S. K.; Patil, S.; Alyami, M.; Alamoudi, K. O.; Aleisa, F. A.; Merzaban, J. S.; Li, M.; Khashab, N. M.Endosomal Escape and Delivery of CRISPR/Cas9 Genome Editing Machinery Enabled by Nanoscale Zeolitic Imidazolate Framework. J. Am. Chem. Soc. 2018, 140 (1), 143–146. https://doi.org/10.1021/jacs.7b11754. (49) Jiang, K.; Ni, W.; Cao, X.; Zhang, L.; Lin, S.A Nanosized Anionic MOF with Rich Thiadiazole Groups for Controlled Oral Drug Delivery. Mater. Today Bio 2022, 13 (December 2021), 100180. https://doi.org/10.1016/j.mtbio.2021.100180. (50) Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.Metal À Organic Frameworks in Biomedicine. 2012, 1232–1268. (51) Jodłowski, P. J.; Kurowski, G.; Skoczylas, N.; Pajdak, A.; Kudasik, M.; Jędrzejczyk, R. J.; Kuterasiński, Ł.; Jeleń, P.; Sitarz, M.; Li, A.; Mazur, M.Silver and Copper Modified Zeolite Imidazole Frameworks as Sustainable Methane Storage Systems. J. Clean. Prod. 2022, 352 (March). https://doi.org/10.1016/j.jclepro.2022.131638. (52) Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T. H.; Long, J. R.Carbon Dioxide Capture in Metal-Organic Frameworks. Chem. Rev. 2012, 112 (2), 724–781. https://doi.org/10.1021/cr2003272. (53) Peng, X.; Chen, L.; Li, Y.Ordered Macroporous MOF-Based Materials for Catalysis. Mol. Catal. 2022, 529 (July), 112568. https://doi.org/10.1016/j.mcat.2022.112568. (54) Dhakshinamoorthy, A.; Garcia, H.Metal-Organic Frameworks as Solid Catalysts for the Synthesis of Nitrogen-Containing Heterocycles. Chem. Soc. Rev. 2014, 43 (16), 5750–5765. https://doi.org/10.1039/c3cs60442j. (55) Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T.Metal-Organic Framework Materials as Catalysts. Chem. Soc. Rev. 2009, 38 (5), 1450–1459. https://doi.org/10.1039/b807080f. (56) Li, D.; Xu, F.Removal of Cu (II) from Aqueous Solutions Using ZIF-8@GO Composites. J. Solid State Chem. 2021, 302 (May), 122406. https://doi.org/10.1016/j.jssc.2021.122406. (57) Li, J. R.; Kuppler, R. J.; Zhou, H. C.Selective Gas Adsorption and Separation in Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38 (5), 1477–1504. https://doi.org/10.1039/b802426j. (58) Sepehrmansourie, H.; Alamgholiloo, H.; Noroozi Pesyan, N.; Zolfigol, M. A.A MOF-on-MOF Strategy to Construct Double Z-Scheme Heterojunction for High-Performance Photocatalytic Degradation. Appl. Catal. B Environ. 2023, 321 (June 2022), 122082. https://doi.org/10.1016/j.apcatb.2022.122082. (59) Chen, Q.; Ying, Y.; Wang, L.; Guo, Z.; Zhou, Y.; Wang, D.; Li, C.A Heterometallic MOF Based on Monofunctional Linker by “One-Pot” Solvothermal Method for Highly Selective Gas Adsorption. Zeitschrift fur Anorg. und Allg. Chemie 2020, 646 (9), 437–443. https://doi.org/10.1002/zaac.201900325. (60) McKinstry, C.; Cathcart, R. J.; Cussen, E. J.; Fletcher, A. J.; Patwardhan, S.V.; Sefcik, J.Scalable Continuous Solvothermal Synthesis of Metal Organic Framework (MOF-5) Crystals. Chem. Eng. J. 2016, 285, 718–725. https://doi.org/10.1016/j.cej.2015.10.023. (61) Solís, R. R.; Peñas-Garzón, M.; Belver, C.; Rodriguez, J. J.; Bedia, J.Highly Stable UiO-66-NH2 by the Microwave-Assisted Synthesis for Solar Photocatalytic Water Treatment. J. Environ. Chem. Eng. 2022, 10 (2). https://doi.org/10.1016/j.jece.2021.107122. (62) Blanita, G.; Borodi, G.; Lazar, M. D.; Biris, A. R.; Barbu-Tudoran, L.; Coldea, I.; Lupu, D.Microwave Assisted Non-Solvothermal Synthesis of Metal-Organic Frameworks. RSC Adv. 2016, 6 (31), 25967–25974. https://doi.org/10.1039/c5ra26097c. (63) Li, X.; Dong, H.; Fan, Q.; Chen, K.; Sun, D.; Hu, T.; Ni, Z.One-Pot, Rapid Microwave-Assisted Synthesis of Bimetallic Metal–Organic Framework for Efficient Enzyme-Free Glucose Detection. Microchem. J. 2022, 179 (April), 107468. https://doi.org/10.1016/j.microc.2022.107468. (64) Wenger, S. R.; Kearns, E. R.; Miller, K. L.; D’Alessandro, D. M.Green, One-Step Mechanochemical Synthesis and Techno-Economic Analysis of UiO-66-NH2. ACS Appl. Energy Mater. 2022. https://doi.org/10.1021/acsaem.2c02460. (65) Chen, Y.; Wu, H.; Yuan, Y.; Lv, D.; Qiao, Z.; An, D.; Wu, X.; Liang, H.; Li, Z.; Xia, Q.Highly Rapid Mechanochemical Synthesis of a Pillar-Layer Metal-Organic Framework for Efficient CH4/N2 Separation. Chem. Eng. J. 2020, 385 (October 2019), 123836. https://doi.org/10.1016/j.cej.2019.123836. (66) Szczęśniak, B.; Borysiuk, S.; Choma, J.; Jaroniec, M.Mechanochemical Synthesis of Highly Porous Materials. Mater. Horizons 2020, 7 (6), 1457–1473. https://doi.org/10.1039/D0MH00081G. (67) Han, S.; Wei, Y.; Valente, C.; Lagzi, I.; Gassensmith, J. J.; Coskun, A.; Stoddart, J. F.; Grzybowski, B. A.Chromatography in a Single Metal-Organic Framework (MOF) Crystal. J. Am. Chem. Soc. 2010, 132 (46), 16358–16361. https://doi.org/10.1021/ja1074322. (68) Han, S.; Hermans, T. M.; Fuller, P. E.; Wei, Y.; Grzybowski, B. A.Transport into Metal-Organic Frameworks from Solution Is Not Purely Diffusive. Angew. Chemie - Int. Ed. 2012, 51 (11), 2662–2666. https://doi.org/10.1002/anie.201108492. (69) Li, L.; Sun, F.; Jia, J.; Borjigin, T.; Zhu, G.Growth of Large Single MOF Crystals and Effective Separation of Organic Dyes. CrystEngComm 2013, 15 (20), 4094–4098. https://doi.org/10.1039/c3ce40137e. (70) Kwon, O.; Kim, J. Y.; Park, S.; Lee, J. H.; Ha, J.; Park, H.; Moon, H. R.; Kim, J.Computer-Aided Discovery of Connected Metal-Organic Frameworks. Nat. Commun. 2019, 10 (1), 1–8. https://doi.org/10.1038/s41467-019-11629-4. (71) Shekhah, O.; Liu, J.; Fischer, R. A.; Wöll, C.MOF Thin Films: Existing and Future Applications. Chem. Soc. Rev. 2011, 40 (2), 1081–1106. https://doi.org/10.1039/c0cs00147c. (72) Norrman, K.; Ghanbari-Siahkali, A.; Larsen, N. B.6 Studies of Spin-Coated Polymer Films. Annu. Reports Sect. “C” (Physical Chem. 2005, 101, 174. https://doi.org/10.1039/b408857n. (73) Huang, Y.; Tao, C. A.; Chen, R.; Sheng, L.; Wang, J.Comparison of Fabrication Methods of Metal-Organic Framework Optical Thin Films. Nanomaterials 2018, 8 (9), 1–20. https://doi.org/10.3390/nano8090676. (74) Liu, B.; Fischer, R. A.Liquid-Phase Epitaxy of Metal Organic Framework Thin Films. Sci. China Chem. 2011, 54 (12), 1851–1866. https://doi.org/10.1007/s11426-011-4406-8. (75) Shekhah, O.; Wang, H.; Zacher, D.; Fischer, R. A.; Wöll, C.Growth Mechanism of Metal-Organic Frameworks: Insights into the Nucleation by Employing a Step-by-Step Route. Angew. Chemie Int. Ed. 2009, 48 (27), 5038–5041. https://doi.org/10.1002/anie.200900378. (76) Zheng, R.; Fu, Z.; Deng, W.; Wen, Y.; Wu, A.; Ye, X.The Growth Mechanism of a Conductive MOF Thin Film in Spray- Based Layer-by-Layer Liquid Phase Epitaxy. 2022, 100049. https://doi.org/10.1002/anie.202212797. (77) Ohnsorg, M. L.; Beaudoin, C. K.; Anderson, M. E.Fundamentals of MOF Thin Film Growth via Liquid-Phase Epitaxy: Investigating the Initiation of Deposition and the Influence of Temperature. Langmuir 2015, 31 (22), 6114–6121. https://doi.org/10.1021/acs.langmuir.5b01333. (78) Nijem, N.; Fürsich, K.; Kelly, S. T.; Swain, C.; Leone, S. R.; Gilles, M. K.HKUST-1 Thin Film Layer-by-Layer Liquid Phase Epitaxial Growth: Film Properties and Stability Dependence on Layer Number. Cryst. Growth Des. 2015, 15 (6), 2948–2957. https://doi.org/10.1021/acs.cgd.5b00384. (79) Shekhah, O.; Wang, H.; Kowarik, S.; Schreiber, F.; Paulus, M.; Tolan, M.; Sternemann, C.; Evers, F.; Zacher, D.; Fischer, R. A.; Wöll, C.Step-by-Step Route for the Synthesis of Metal−Organic Frameworks. J. Am. Chem. Soc. 2007, 129 (49), 15118–15119. https://doi.org/10.1021/ja076210u. (80) Shekhah, O.; Eddaoudi, M.The Liquid Phase Epitaxy Method for the Construction of Oriented ZIF-8 Thin Films with Controlled Growth on Functionalized Surfaces. Chem. Commun. 2013, 49 (86), 10079–10081. https://doi.org/10.1039/c3cc45343j. (81) Cookney, J.; Ogieglo, W.; Hrabanek, P.; Vankelecom, I.; Fila, V.; Benes, N. E.Dynamic Response of Ultrathin Highly Dense ZIF-8 Nanofilms. Chem. Commun. 2014, 50 (79), 11698–11700. https://doi.org/10.1039/c4cc04754k. (82) Shekhah, O.; Swaidan, R.; Belmabkhout, Y.; DuPlessis, M.; Jacobs, T.; Barbour, L. J.; Pinnau, I.; Eddaoudi, M.The Liquid Phase Epitaxy Approach for the Successful Construction of Ultra-Thin and Defect-Free ZIF-8 Membranes: Pure and Mixed Gas Transport Study. Chem. Commun. 2014, 50 (17), 2089–2092. https://doi.org/10.1039/c3cc47495j. (83) Valadez Sánchez, E. P.; Gliemann, H.; Haas-Santo, K.; Wöll, C.; Dittmeyer, R.ZIF-8 SURMOF Membranes Synthesized by Au-Assisted Liquid Phase Epitaxy for Application in Gas Separation. Chemie-Ingenieur-Technik 2016, 88 (11), 1798–1805. https://doi.org/10.1002/cite.201600061. (84) Valadez Sánchez, E. P.; Gliemann, H.; Haas-Santo, K.; Ding, W.; Hansjosten, E.; Wohlgemuth, J.; Wöll, C.; Dittmeyer, R.α-Al2O3-Supported ZIF-8 SURMOF Membranes: Diffusion Mechanism of Ethene/Ethane Mixtures and Gas Separation Performance. J. Memb. Sci. 2020, 594 (July 2019), 117421. https://doi.org/10.1016/j.memsci.2019.117421. (85) Chernikova, V.; Shekhah, O.; Eddaoudi, M.Advanced Fabrication Method for the Preparation of MOF Thin Films: Liquid-Phase Epitaxy Approach Meets Spin Coating Method. ACS Appl. Mater. Interfaces 2016, 8 (31), 20459–20464. https://doi.org/10.1021/acsami.6b04701. (86) Semrau, A. L.; Wannapaiboon, S.; Pujari, S. P.; Vervoorts, P.; Albada, B.; Zuilhof, H.; Fischer, R. A.Highly Porous Nanocrystalline UiO-66 Thin Films via Coordination Modulation Controlled Step-by-Step Liquid-Phase Growth. Cryst. Growth Des. 2019, 19 (3), 1738–1747. https://doi.org/10.1021/acs.cgd.8b01719. (87) Li, M.; Dincǎ, M.Reductive Electrosynthesis of Crystalline Metal-Organic Frameworks. J. Am. Chem. Soc. 2011, 133 (33), 12926–12929. https://doi.org/10.1021/ja2041546. (88) He, G.; Dakhchoune, M.; Zhao, J.; Huang, S.; Agrawal, K. V.Electrophoretic Nuclei Assembly for Crystallization of High-Performance Membranes on Unmodified Supports. Adv. Funct. Mater. 2018, 28 (20), 1–8. https://doi.org/10.1002/adfm.201707427. (89) Zhou, S.; Wei, Y.; Li, L.; Duan, Y.; Hou, Q.; Zhang, L.; Ding, L. X.; Xue, J.; Wang, H.; Caro, J.Paralyzed Membrane: Current-Driven Synthesis of a Metal-Organic Framework with Sharpened Propene/Propane Separation. Sci. Adv. 2018, 4 (10), 1–9. https://doi.org/10.1126/sciadv.aau1393. (90) Xie, S.; Monnens, W.; Wan, K.; Zhang, W.; Guo, W.; Xu, M. W.; Vankelecom, I. F. J.; Zhang, X.; Fransaer, J.Cathodic Electrodeposition of MOF Films Using Hydrogen Peroxide. Angew. Chemie - Int. Ed. 2021, 60 (47), 24950–24957. https://doi.org/10.1002/anie.202108485. (91) Warfsmann, J.; Tokay, B.; Champness, N. R.Synthesis of MIL-53 Thin Films by Vapour-Assisted Conversion. CrystEngComm 2020, 22 (6), 1009–1017. https://doi.org/10.1039/c9ce01644a. (92) Mahringer, A.; Jakowetz, A. C.; Rotter, J. M.; Bohn, B. J.; Stolarczyk, J. K.; Feldmann, J.; Bein, T.; Medina, D. D.Oriented Thin Films of Electroactive Triphenylene Catecholate-Based Two-Dimensional MetalOrganic Frameworks. ACS Nano 2019, 13 (6), 6711–6719. https://doi.org/10.1021/acsnano.9b01137. (93) Shi, Q.; Chen, Z.; Song, Z.; Li, J.; Dong, J.Synthesis of ZIF-8 and ZIF-67 by Steam-Assisted Conversion and an Investigation of Their Tribological Behaviors. Angew. Chemie - Int. Ed. 2011, 50 (3), 672–675. https://doi.org/10.1002/anie.201004937. (94) Zhang, H.; Shi, Q.; Kang, X.; Dong, J.Vapor-Assisted Conversion Synthesis of Prototypical Zeolitic Imidazolate Framework-8. J. Coord. Chem. 2013, 66 (12), 2079–2090. https://doi.org/10.1080/00958972.2013.797966. (95) Virmani, E.; Rotter, J. M.; Mähringer, A.; VonZons, T.; Godt, A.; Bein, T.; Wuttke, S.; Medina, D. D.On-Surface Synthesis of Highly Oriented Thin Metal-Organic Framework Films through Vapor-Assisted Conversion. J. Am. Chem. Soc. 2018, 140 (14), 4812–4819. https://doi.org/10.1021/jacs.7b08174. (96) Scheurle, P. I.; Mähringer, A.; Biewald, A.; Hartschuh, A.; Bein, T.; Medina, D. D.MOF-74(M) Films Obtained through Vapor-Assisted Conversion - Impact on Crystal Orientation and Optical Properties. Chem. Mater. 2021, 33 (15), 5896–5904. https://doi.org/10.1021/acs.chemmater.1c00743. (97) Kim, K. J.; Culp, J. T.; Ohodnicki, P. R.; Thallapally, P. K.; Tao, J.Synthesis of High-Quality Mg-MOF-74 Thin Films via Vapor-Assisted Crystallization. ACS Appl. Mater. Interfaces 2021, 13 (29), 35223–35231. https://doi.org/10.1021/acsami.1c12000. (98) Li, C.; Wang, J.; Wang, Y.; Gao, H.; Wei, G.; Huang, Y.; Yu, H.; Gan, Y.; Wang, Y.; Mei, L.; Chen, H.; Hu, H.; Zhang, Z.; Jin, Y.Recent Progress in Drug Delivery. Acta Pharm. Sin. B 2019, 9 (6), 1145–1162. https://doi.org/10.1016/j.apsb.2019.08.003. (99) He, S.; Wu, L.; Li, X.; Sun, H.; Xiong, T.; Liu, J.; Huang, C.; Xu, H.; Sun, H.; Chen, W.; Gref, R.; Zhang, J.Metal-Organic Frameworks for Advanced Drug Delivery. Acta Pharm. Sin. B 2021, 11 (8), 2362–2395. https://doi.org/10.1016/j.apsb.2021.03.019. (100) Large, D. E.; Abdelmessih, R. G.; Fink, E. A.; Auguste, D. T.Liposome Composition in Drug Delivery Design, Synthesis, Characterization, and Clinical Application. Adv. Drug Deliv. Rev. 2021, 176, 113851. https://doi.org/10.1016/j.addr.2021.113851. (101) Kotta, S.; Aldawsari, H. M.; Badr-Eldin, S. M.; Nair, A. B.; YT, K.Progress in Polymeric Micelles for Drug Delivery Applications. Pharmaceutics 2022, 14 (8), 1–32. https://doi.org/10.3390/pharmaceutics14081636. (102) Wang, J.; Li, B.; Qiu, L.; Qiao, X.; Yang, H.Dendrimer-Based Drug Delivery Systems: History, Challenges, and Latest Developments. J. Biol. Eng. 2022, 16 (1), 1–12. https://doi.org/10.1186/s13036-022-00298-5. (103) Tan, E.; Wan, T.; Yu, C.; Fan, Q.; Liu, W.; Chang, H.; Lv, J.; Wang, H.; Li, D.; Ping, Y.; Cheng, Y.ROS-Responsive Polypeptides for Intracellular Protein Delivery and CRISPR/Cas9 Gene Editing. Nano Today 2022, 46, 101617. https://doi.org/10.1016/j.nantod.2022.101617. (104) Jakubowski, M.; Kucinska, M.; Ratajczak, M.; Pokora, M.; Murias, M.; Voelkel, A.; Sandomierski, M.Zinc Forms of Faujasite Zeolites as a Drug Delivery System for 6-Mercaptopurine. Microporous Mesoporous Mater. 2022, 343 (March), 112194. https://doi.org/10.1016/j.micromeso.2022.112194. (105) Wang, Y.; Yan, J.; Wen, N.; Xiong, H.; Cai, S.; He, Q.; Hu, Y.; Peng, D.; Liu, Z.; Liu, Y.Metal-Organic Frameworks for Stimuli-Responsive Drug Delivery. Biomaterials 2020, 230 (June 2019), 119619. https://doi.org/10.1016/j.biomaterials.2019.119619. (106) Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G.Metal-Organic Frameworks as Efficient Materials for Drug Delivery. Angew. Chemie - Int. Ed. 2006, 45 (36), 5974–5978. https://doi.org/10.1002/anie.200601878. (107) Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J. S.; Hwang, Y. K.; Marsaud, V.; Bories, P. N.; Cynober, L.; Gil, S.; Férey, G.; Couvreur, P.; Gref, R.Porous Metal-Organic-Framework Nanoscale Carriers as a Potential Platform for Drug Deliveryand Imaging. Nat. Mater. 2010, 9 (2), 172–178. https://doi.org/10.1038/nmat2608. (108) Zheng, H.; Zhang, Y.; Liu, L.; Wan, W.; Guo, P.; Nyström, A. M.; Zou, X.One-Pot Synthesis of Metal-Organic Frameworks with Encapsulated Target Molecules and Their Applications for Controlled Drug Delivery. J. Am. Chem. Soc. 2016, 138 (3), 962–968. https://doi.org/10.1021/jacs.5b11720. (109) Gautam, S.; Singhal, J.; Lee, H. K.; Chae, K. H.Drug Delivery of Paracetamol by Metal-Organic Frameworks (HKUST-1): Improvised Synthesis and Investigations. Mater. Today Chem. 2022, 23, 100647. https://doi.org/10.1016/j.mtchem.2021.100647. (110) Karimzadeh, Z.; Javanbakht, S.; Namazi, H.Carboxymethylcellulose/MOF-5/Graphene Oxide Bio-Nanocomposite as Antibacterial Drug Nanocarrier Agent. BioImpacts 2018, 9 (1), 5–13. https://doi.org/10.15171/bi.2019.02. (111) Li, Z.; Zhao, S.; Wang, H.; Peng, Y.; Tan, Z.; Tang, B.Functional Groups Influence and Mechanism Research of UiO-66-Type Metal-Organic Frameworks for Ketoprofen Delivery-SI. Colloids Surfaces B Biointerfaces 2019, 178, 1–7. https://doi.org/10.1016/j.colsurfb.2019.02.027. (112) Ke, F.; Yuan, Y. P.; Qiu, L. G.; Shen, Y. H.; Xie, A. J.; Zhu, J. F.; Tian, X. Y.; Zhang, L.De.Facile Fabrication of Magnetic Metal-Organic Framework Nanocomposites for Potential Targeted Drug Delivery. J. Mater. Chem. 2011, 21 (11), 3843–3848. https://doi.org/10.1039/c0jm01770a. (113) Akbar, M. U.; Badar, M.; Zaheer, M.Programmable Drug Release from a Dual-Stimuli Responsive Magnetic Metal-Organic Framework. ACS Omega 2022, 7 (36), 32588–32598. https://doi.org/10.1021/acsomega.2c04144. (114) Sharp, C. H.; Bukowski, B. C.; Li, H.; Johnson, E. M.; Ilic, S.; Morris, A. J.; Gersappe, D.; Snurr, R. Q.; Morris, J. R.Nanoconfinement and Mass Transport in Metal-Organic Frameworks. Chem. Soc. Rev. 2021, 50 (20), 11530–11558. https://doi.org/10.1039/d1cs00558h. (115) Stallmach, F.; Gröger, S.; Künzel, V.; Kärger, J.; Yaghi, O. M.; Hesse, M.; Müller, U.NMR Studies on the Diffusion of Hydrocarbons on the Metal-Organic Framework Material MOF-5. Angew. Chemie - Int. Ed. 2006, 45 (13), 2123–2126. https://doi.org/10.1002/anie.200502553. (116) Song, J.; Liu, L.; Hong, Y.High Interfacial Resistances of CH4 and CO2 Transport through Metal-Organic Framework 5 (MOF-5). Sep. Purif. Technol. 2022, 301 (June), 121895. https://doi.org/10.1016/j.seppur.2022.121895. (117) Zybaylo, O.; Shekhah, O.; Wang, H.; Tafipolsky, M.; Schmid, R.; Johannsmann, D.; Wöll, C.A Novel Method to Measure Diffusion Coefficients in Porous Metal-Organic Frameworks. Phys. Chem. Chem. Phys. 2010, 12 (28), 8092–8097. https://doi.org/10.1039/b927601g. (118) Tuninetti, J. S.; Rafti, M.; Andrieu-Brunsen, A.; Azzaroni, O.Molecular Transport Properties of ZIF-8 Thin Films in Aqueous Environments: The Critical Role of Intergrain Mesoporosity as Diffusional Pathway. Microporous Mesoporous Mater. 2016, 220, 253–257. https://doi.org/10.1016/j.micromeso.2015.08.035. (119) Stassin, T.; Verbeke, R.; Cruz, A. J.; Rodríguez-Hermida, S.; Stassen, I.; Marreiros, J.; Krishtab, M.; Dickmann, M.; Egger, W.; Vankelecom, I. F. J.; Furukawa, S.; DeVos, D.; Grosso, D.; Thommes, M.; Ameloot, R.Porosimetry for Thin Films of Metal–Organic Frameworks: A Comparison of Positron Annihilation Lifetime Spectroscopy and Adsorption-Based Methods. Adv. Mater. 2021, 2006993, 1–14. https://doi.org/10.1002/adma.202006993. (120) Wagner, A.; Pullen, S.; Ott, S.; Primetzhofer, D.The Potential of Ion Beams for Characterization of Metal-Organic Frameworks. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 2016, 371, 327–331. https://doi.org/10.1016/j.nimb.2015.10.059. (121) Yan, J.; Carl, A. D.; Maag, A. R.; MacDonald, J. C.; Müller, P.; Grimm, R. L.; Burdette, S. C.Detection of Adsorbates on Emissive MOF Surfaces with X-Ray Photoelectron Spectroscopy. Dalt. Trans. 2019, 48 (14), 4520–4529. https://doi.org/10.1039/C8DT04404J. (122) Chang, H. Y.; Lin, W. C.; Chu, P. C.; Wang, Y. K.; Sogo, M.; Iida, S. I.; Peng, C. J.; Miyayama, T.X-Ray Photoelectron Spectroscopy Equipped with Gas Cluster Ion Beams for Evaluation of the Sputtering Behavior of Various Nanomaterials. ACS Appl. Nano Mater. 2022, 5 (3), 4260–4268. https://doi.org/10.1021/acsanm.2c00202. (123) Chehreh Chelgani, S.; Hart, B.TOF-SIMS Studies of Surface Chemistry of Minerals Subjected to Flotation Separation - A Review. Miner. Eng. 2014, 57, 1–11. https://doi.org/10.1016/j.mineng.2013.12.001. (124) Lee, J. C.; Won, J.; Chung, Y.; Lee, H.; Lee, E.; Kang, D.; Kim, C.; Choi, J.; Kim, J.Investigations of Semiconductor Devices Using SIMS; Diffusion, Contamination, Process Control. Appl. Surf. Sci. 2008, 255 (4), 1395–1399. https://doi.org/10.1016/j.apsusc.2008.06.129. (125) Aoyagi, S.Review of TOF-SIMS Bioanalysis Using Mutual Information. Surf. Interface Anal. 2009, 41 (2), 136–142. https://doi.org/10.1002/sia.2989. (126) Glish, G. L.; Vachet, R. W.The Basics of Mass Spectrometry in the Twenty-First Century. Nat. Rev. Drug Discov. 2003, 2 (2), 140–150. https://doi.org/10.1038/nrd1011. (127) Buckner, C. A.; Lafrenie, R. M.; Dénommée, J. A.; Caswell, J. M.; Want, D. A.; Gan, G. G.; Leong, Y. C.; Bee, P. C.; Chin, E.; Teh, A. K. H.; Picco, S.; Villegas, L.; Tonelli, F.; Merlo, M.; Rigau, J.; Diaz, D.; Masuelli, M.; Korrapati, S.; Kurra, P.; Puttugunta, S.; Picco, S.; Villegas, L.; Tonelli, F.; Merlo, M.; Rigau, J.; Diaz, D.; Masuelli, M.; Tascilar, M.; deJong, F. A.; Verweij, J.; Mathijssen, R. H. J.Mass Spectrometry; Aliofkhazraei, M., Ed.; InTech, 2017; Vol. 11. https://doi.org/10.5772/65165. (128) Griffiths, J.A Brief History of Mass Spectrometry. Anal. Chem. 2008, 80 (15), 5678–5683. https://doi.org/10.1021/ac8013065. (129) Dole, M.; Mack, L. L.; Hines, R. L.; Mobley, R. C.; Ferguson, L. D.; Alice, M. B.Molecular Beams of Macroions. J. Chem. Phys. 1968, 49 (5), 2240–2249. https://doi.org/10.1063/1.1670391. (130) An, Z.; Zhang, Z.; Zhang, X.; Yang, H.; Lu, H.; Liu, M.; Shao, Y.; Zhao, X.; Zhang, H.Oligosaccharide Mapping Analysis by HILIC-ESI-HCD-MS/MS for Structural Elucidation of Fucoidan from Sea Cucumber Holothuria Floridana. Carbohydr. Polym. 2022, 275 (August 2021), 118694. https://doi.org/10.1016/j.carbpol.2021.118694. (131) Wan, J.; He, P.; Chen, Y.; Zhu, Q.Comprehensive Target Analysis for 19 Pyrethroids in Tea and Orange Samples Based on LC-ESI-QqQ-MS/MS and LC-ESI-Q-ToF/MS. Lwt 2021, 151 (July), 112072. https://doi.org/10.1016/j.lwt.2021.112072. (132) Zhong, B.; Robinson, N. A.; Warner, R. D.; Barrow, C. J.; Dunshea, F. R.; Suleria, H. A. R.LC-ESI-QTOF-MS/MS Characterization of Seaweed Phenolics and Their Antioxidant Potential. Mar. Drugs 2020, 18 (6), 1–21. https://doi.org/10.3390/md18060331. (133) Karas, M.; Bachmann, D.; Hillenkamp, F.Influence of the Wavelength in High-Irradiance Ultraviolet Laser Desorption Mass Spectrometry of Organic Molecules. Anal. Chem. 1985, 57 (14), 2935–2939. https://doi.org/10.1021/ac00291a042. (134) McMillen, J. C.; Gutierrez, D. B.; Judd, A. M.; Spraggins, J. M.; Caprioli, R. M.Enhancement of Tryptic Peptide Signals from Tissue Sections Using MALDI IMS Postionization (MALDI-2). J. Am. Soc. Mass Spectrom. 2021, 32 (10), 2583–2591. https://doi.org/10.1021/jasms.1c00213. (135) McMillen, J. C.; Fincher, J. A.; Klein, D. R.; Spraggins, J. M.; Caprioli, R. M.Effect of MALDI Matrices on Lipid Analyses of Biological Tissues Using MALDI-2 Postionization Mass Spectrometry. J. Mass Spectrom. 2020, 55 (12). https://doi.org/10.1002/jms.4663. (136) Hertel Pereira, A. C.; Auer, A. C.; Biedel, L.; deAlmeida, C. M.; Romão, W.; Endringer, D. C.Analysis of Gliricidia Sepium Leaves by MALDI Mass Spectrometry Imaging. J. Am. Soc. Mass Spectrom. 2022, 33 (3), 573–583. https://doi.org/10.1021/jasms.1c00367. (137) Atomic and Ion Collisions in Solids and at Surfaces; Smith, R., Ed.; Cambridge University Press, 1997. https://doi.org/10.1017/CBO9780511524325. (138) Benninghoven, A.The Development of SIMS and International SIMS Conferences: A Personal Retrospective View. Surf. Interface Anal. 2011, 43 (1–2), 2–11. https://doi.org/10.1002/sia.3688. (139) van derHeide, P.Secondary Ion Mass Spectrometry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; Vol. 15. https://doi.org/10.1002/9781118916780. (140) DeSouza, R. A.; Martin, M.Secondary Ion Mass Spectrometry (SIMS) - a Powerful Tool for Studying Mass Transport over Various Length Scales. Phys. Status Solidi Curr. Top. Solid State Phys. 2007, 4 (6), 1785–1801. https://doi.org/10.1002/pssc.200675227. (141) Woodcock, K. S.The Emission of Negative Ions under the Bombardment of Positive Ions. Phys. Rev. 1931, 38 (9), 1696–1703. https://doi.org/10.1103/PhysRev.38.1696. (142) Thompson, J. S.A New Method of Producing Negative Ions. Phys. Rev. 1931, 38 (7), 1389–1389. https://doi.org/10.1103/PhysRev.38.1389. (143) Herzog, R. F. K.; Viehböck, F. P.Ion Source for Mass Spectrography. Phys. Rev. 1949, 76 (6), 855–856. https://doi.org/10.1103/PhysRev.76.855. (144) Benninghoven, A.Die Analyse Monomolekularer Festkörperoberflächenschichten Mit Hilfe Der Sekundärionenemission - The Analysis of Monomolecular Layers of Solids by Secondary Ion Emission. Zeitschrift für Phys. A Hadron. Nucl. 1970, 230 (5), 403–417. (145) Chait, B. T.; Standing, K. G.A Time-of-Flight Mass Spectrometer for Measurement of Secondary Ion Mass Spectra. Int. J. Mass Spectrom. Ion Phys. 1981, 40 (2), 185–193. https://doi.org/10.1016/0020-7381(81)80041-1. (146) Appelhans, A. D.; Delmore, J. E.Comparison of Polyatomic and Atomic Primary Beams for Secondary Ion Mass Spectrometry of Organics. Anal. Chem. 1989, 61 (10), 1087–1093. https://doi.org/10.1021/ac00185a009. (147) Davies, N.; Weibel, D. E.; Blenkinsopp, P.; Lockyer, N.; Hill, R.; Vickerman, J. C.Development and Experimental Application of a Gold Liquid Metal Ion Source. Appl. Surf. Sci. 2003, 203–204, 223–227. https://doi.org/10.1016/S0169-4332(02)00631-1. (148) Sun, S.; Szakal, C.; Roll, T.; Mazarov, P.; Wucher, A.; Winograd, N.Use of C60 Cluster Projectiles for Sputter Depth Profiling of Polycrystalline Metals. Surf. Interface Anal. 2004, 36 (10), 1367–1372. https://doi.org/10.1002/sia.1923. (149) Toyoda, N.; Matsuo, J.; Aoki, T.; Yamada, I.; Fenner, D. B.Secondary Ion Mass Spectrometry with Gas Cluster Ion Beams. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 2002, 190 (1–4), 860–864. https://doi.org/10.1016/S0168-583X(02)00463-9. (150) Bertrand, P.; Weng, L.Time-of-Flight Secondary Ion Mass Spectrometry. 1996, 182, 167–182. (151) Vickerman, J. C.Impact of Mass Spectrometry in Surface Analysis. Analyst 1994, 119 (4), 513–523. https://doi.org/10.1039/AN9941900513. (152) Ogaki, R.; Green, F. M.; Li, S.; Vert, M.; Alexander, M. R.; Gilmore, I. S.; Davies, M. C.A Comparison of the Static SIMS and G-SIMS Spectra of Biodegradable Homo-Polyesters. Surf. Interface Anal. 2008, 40 (8), 1202–1208. https://doi.org/10.1002/sia.2866. (153) Urbini, M.; Petito, V.; deNotaristefani, F.; Scaldaferri, F.; Gasbarrini, A.; Tortora, L.ToF-SIMS and Principal Component Analysis of Lipids and Amino Acids from Inflamed and Dysplastic Human Colonic Mucosa. Anal. Bioanal. Chem. 2017, 409 (26), 6097–6111. https://doi.org/10.1007/s00216-017-0546-9. (154) Kennedy, A. K.; Wotzlaw, J. F.; Crowley, J. L.; Schmitz, M.; Schaltegger, U.; Wade, B.; Martin, L.; Talavera, C.; Ware, B.; Bui, T. H.Apatite Reference Materials for SIMS Microanalysis of Isotopes and Trace Elements. Geostand. Geoanalytical Res. 2022, No. 4, 1–30. https://doi.org/10.1111/ggr.12477. (155) Gardner, W.; Winkler, D. A.; Maliki, R.; Cutts, S. M.; Ellis, S.; Anderson, R. L.; Muir, B. W.; Pigram, P. J.Fusing ToF-SIMS Images for Spatial-Spectral Resolution Enhancement Using a Convolutional Neural Network. Adv. Mater. Interfaces 2022, 9 (34). https://doi.org/10.1002/admi.202201464. (156) Passarelli, M. K.; Pirkl, A.; Moellers, R.; Grinfeld, D.; Kollmer, F.; Havelund, R.; Newman, C. F.; Marshall, P. S.; Arlinghaus, H.; Alexander, M. R.; West, A.; Horning, S.; Niehuis, E.; Makarov, A.; Dollery, C. T.; Gilmore, I. S.The 3D OrbiSIMS - Label-Free Metabolic Imaging with Subcellular Lateral Resolution and High Mass-Resolving Power. Nat. Methods 2017, 14 (12), 1175–1183. https://doi.org/10.1038/nmeth.4504. (157) Schroder, K.; Alvarado, J.; Yersak, T. A.; Li, J.; Dudney, N.; Webb, L. J.; Meng, Y. S.; Stevenson, K. J.The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes. Chem. Mater. 2015, 27 (16), 5531–5542. https://doi.org/10.1021/acs.chemmater.5b01627. (158) Dass, C.Fundamentals of Contemporary Mass Spectrometry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; Vol. 45. https://doi.org/10.1002/0470118490. (159) Yakovenko, A. A.; Reibenspies, J. H.; Bhuvanesh, N.; Zhou, H.-C.Generation and Applications of Structure Envelopes for Porous Metal–Organic Frameworks. J. Appl. Crystallogr. 2013, 46 (2), 346–353. https://doi.org/10.1107/S0021889812050935. (160) Karagiaridi, O.; Lalonde, M. B.; Bury, W.; Sarjeant, A. A.; Farha, O. K.; Hupp, J. T.Opening ZIF-8: A Catalytically Active Zeolitic Imidazolate Framework of Sodalite Topology with Unsubstituted Linkers. J. Am. Chem. Soc. 2012, 134 (45), 18790–18796. https://doi.org/10.1021/ja308786r. (161) Zhang, C.; Han, C.; Sholl, D. S.; Schmidt, J. R.Computational Characterization of Defects in Metal-Organic Frameworks: Spontaneous and Water-Induced Point Defects in ZIF-8. J. Phys. Chem. Lett. 2016, 7 (3), 459–464. https://doi.org/10.1021/acs.jpclett.5b02683. (162) Han, C.; Zhang, C.; Tymińska, N.; Schmidt, J. R.; Sholl, D. S.Insights into the Stability of Zeolitic Imidazolate Frameworks in Humid Acidic Environments from First-Principles Calculations. J. Phys. Chem. C 2018, 122 (8), 4339–4348. https://doi.org/10.1021/acs.jpcc.7b12058. (163) Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B. A.; Thiessen, P. A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E. E.PubChem in 2021: New Data Content and Improved Web Interfaces. Nucleic Acids Res. 2021, 49 (D1), D1388–D1395. https://doi.org/10.1093/nar/gkaa971. (164) Pines, D.; Ditkovich, J.; Mukra, T.; Miller, Y.; Kiefer, P. M.; Daschakraborty, S.; Hynes, J. T.; Pines, E.How Acidic Is Carbonic Acid? J. Phys. Chem. B 2016, 120 (9), 2440–2451. https://doi.org/10.1021/acs.jpcb.5b12428. (165) Harvey, S. P.; Zhang, F.; Palmstrom, A.; Luther, J. M.; Zhu, K.; Berry, J. J.Mitigating Measurement Artifacts in TOF-SIMS Analysis of Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2019, 11 (34), 30911–30918. https://doi.org/10.1021/acsami.9b09445. (166) Cheng, J.; Wucher, A.; Winograd, N.Molecular Depth Profiling with Cluster Ion Beams. J. Phys. Chem. B 2006, 110 (16), 8329–8336. https://doi.org/10.1021/jp0573341. (167) Chen, Y. Y.; Yu, B. Y.; Wang, W.Ben; Hsu, M. F.; Lin, W. C.; Lin, Y. C.; Jou, J. H.; Shyue, J. J.X-Ray Photoelectron Spectrometry Depth Profiling of Organic Thin Films Using C60 Sputtering. Anal. Chem. 2008, 80 (2), 501–505. https://doi.org/10.1021/ac701899a. (168) Postawa, Z.Sputtering Simulations of Organic Overlayers on Metal Substrates by Monoatomic and Clusters Projectiles. Appl. Surf. Sci. 2004, 231–232, 22–28. https://doi.org/10.1016/j.apsusc.2004.03.019. (169) Miyazaki, S.; Ishitani, M.; Takahashi, A.; Shimoyama, T.; Itoh, K.; Attwood, D.Carrageenan Gels for Oral Sustained Delivery of Acetaminophen to Dysphagic Patients. Biol. Pharm. Bull. 2011, 34 (1), 164–166. https://doi.org/10.1248/bpb.34.164. (170) Zhang, J.; Xu, P.; Vo, A. Q.; Repka, M. A.Oral Drug Delivery Systems Using Core-Shell Structure Additive Manufacturing Technologies: A Proof-of-Concept Study. J. Pharm. Pharmacol. 2021, 73 (2), 152–160. https://doi.org/10.1093/jpp/rgaa037. (171) Laska, E. M.Caffeine as an Analgesic Adjuvant. JAMA J. Am. Med. Assoc. 1984, 251 (13), 1711. https://doi.org/10.1001/jama.1984.03340370043028. (172) Lipton, R. B.; Stewart, W. F.; Ryan, R. E.; Saper, J.; Silberstein, S.; Sheftell, F.Efficacy and Safety of Acetaminophen, Aspirin, and Caffeine in Alleviating Migraine Headache Pain. Arch. Neurol. 1998, 55 (2), 210. https://doi.org/10.1001/archneur.55.2.210. (173) Renner, B.; Clarke, G.; Grattan, T.; Beisel, A.; Mueller, C.; Werner, U.; Kobal, G.; Brune, K.Caffeine Accelerates Absorption and Enhances the Analgesic Effect of Acetaminophen. J. Clin. Pharmacol. 2007, 47 (6), 715–726. https://doi.org/10.1177/0091270007299762. (174) Zhang, P.; Xu, P.; Chung, S.; Bandari, S.; Repka, M. A.Fabrication of Bilayer Tablets Using Hot Melt Extrusion-Based Dual-Nozzle Fused Deposition Modeling 3D Printing. Int. J. Pharm. 2022, 624 (June), 121972. https://doi.org/10.1016/j.ijpharm.2022.121972. (175) Sze Lai, L.; Fong Yeong, Y.; Keong Lau, K.; Shariff Az, M.Zeolite Imidazole Frameworks Membranes for CO2/CH4 Separation from Natural Gas: A Review. J. Appl. Sci. 2014, 14 (11), 1161–1167. https://doi.org/10.3923/jas.2014.1161.1167. (176) Zhang, C.; Lively, R. P.; Zhang, K.; Johnson, J. R.; Karvan, O.; Koros, W. J.Unexpected Molecular Sieving Properties of Zeolitic Imidazolate Framework-8. J. Phys. Chem. Lett. 2012, 3 (16), 2130–2134. https://doi.org/10.1021/jz300855a. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90132 | - |
| dc.description.abstract | 金屬有機框架(MOFs)因其高比表面積、可調孔徑和官能基團等獨特性質,其作為各種應用的材料已被廣泛的討論。然而,MOFs開發中的一個挑戰是瞭解客體分子在其中的擴散。不幸的是,至今只有極少數的研究能夠直接瞭解客體分子在MOFs中的分佈情況,這對MOFs的開發和應用造成了重大障礙。然而,二次離子質譜(SIMS)由於其卓越的空間解析度,分別為小於100奈米的橫向解析度、及小至數奈米的深度解析度,以及其達到百萬分之一(ppm)的靈敏度,都顯示其成為研究MOFs中客體分子分佈的分析技術的潛力。
然而,儘管SIMS可以提供關於樣品組成和分佈的資訊,但是過往的研究指出,在縱深分析過程中的高能離子轟擊會對MOF的化學結構造成損害,尤其是會使有機訊號強度大幅下降。因此,為了瞭解客體分子在MOF中的擴散,不僅需要選擇適當的MOF和客體分子,還需要優化濺射條件以建構MOF的縱深分析。 在實驗之初,首先使用不同方法合成了多種不同形貌的MOF,並在其中挑選適當的材料來進行後續客體分子分布之分析。其中,透過Cathodic deposition製備的Zeolitic imidazolate framework (ZIF-8) 薄膜展現出均勻且緊密的結構,且容易進行縱深分析,因此被挑選為其中最理想的探究對象。另一方面,由於其他MOF在建構縱深分析方面存在困難,或其在縱深分析中未顯示出客體分子的擴散行為,因此不適合作為本實驗的分析平台。 在SIMS分析中,所有樣品都使用脈衝C60+作為分析離子源,而濺射離子源則選用三種離子束,分別為Ar+、C60+和氬氣簇離子團(Ar-GCIB),並分析其建構的縱深分析,以從中挑選出最佳的濺射離子源。在這之中,Ar-GCIB展現其作為最佳濺射離子源的優異性能:它提供了高有機訊號強度和高濺射率。這歸因於Ar-GCIB的能量密度相對較低,對樣品的破壞較小而保留了有機訊號強度;而簇離子團對聚合材料的非線性增強促進了其高剝蝕速率。 確定了合適的材料和最佳的分析條件後,常用鎮痛藥物乙醯氨酚和其輔劑咖啡因被用作於顯示MOF中客體分子的擴散行為,這是因為藥物傳遞是關於MOF擴散中最受關注的應用之一。透過研究藥物擴散進入ZIF-8薄膜的縱深分析可以得知,客體分子在ZIF-8中的擴散不僅取決於客體分子的大小,還取決於用於溶解客體分子的溶劑:乙醯氨酚較小的尺寸(~4.3 Å)使其能夠進入ZIF-8,而咖啡因(~6.0 Å)則不能;此外,溶解在乙醇的乙醯氨酚擴散進入ZIF-8的速度比溶解在二甲基甲醯胺中溶解的乙醯氨酚更高。 最後,利用相同的方法,我們也獲得了雙金屬ZIF的縱深分析,使我們能夠偵測雙金屬MOF中每種金屬的濃度分佈。此實驗顯示了SIMS分析對於MOF材料的潛力,這對於了解這些材料的結構和性質至關重要。總體而言,本研究凸顯了SIMS分析在研究MOF中客體分子擴散以及其他潛在應用的潛力。 | zh_TW |
| dc.description.abstract | Metal-Organic frameworks (MOFs) have become a popular material for various applications due to their unique properties, such as high specific surface area, adjustable pore size, and functional groups. However, one of the challenges in the development of MOFs is to understand the diffusion of guest molecules in MOFs. Unfortunately, there have been limited researches that are capable of directly obtaining the distribution of guest molecules in MOFs. This presents a significant obstacle to the development and application of MOFs. Nonetheless, secondary ion mass spectrometry (SIMS) has shown its potential to be a highly effective analytical technique for investigating the distribution of guest molecules in MOFs due to its exceptional spatial resolution, with lateral resolution of less than 100 nm and depth resolution of several nanometers, as well as its remarkable detection sensitivity of parts per million (ppm).
However, although SIMS can provide detailed and comprehensive information regarding the composition and distribution of samples, the bombardment of high-energy ions has been reported to introduce damages to MOFs during depth profiling, especially for organic signals. Therefore, in order to understand diffusion of guest molecules in MOFs, it requires not only careful selection of appropriate MOF and guest molecules, but also optimization of sputtering parameters for constructing depth profiles of MOFs. First of all, several MOFs were synthesized using various methods to identify the appropriate material for analyzing the distribution of guest molecules within its structure. Among them, the zeolitic imidazolate framework (ZIF-8) thin film prepared via cathodic deposition was shown to be the most ideal one due to its uniform and well-intergrown structure, as well as its accessibility to depth profiling. On the other hand, other MOFs presented challenges in constructing depth profiles or failed to show diffusion behavior in their depth profiles. For SIMS analysis, a pulsed C60+ beam was used as the acquisition beam for all samples, while three ion beams, namely Ar+, C60+, and argon gas cluster ion beam (Ar-GCIB), were employed as the sputtering sources. Remarkably, the Ar-GCIB exhibited superior performance as the optimal sputtering source, as it provided both a high intensity of organic signal and a high sputtering rate. This is attributed to the fact that Ar-GCIB has relatively low energy density, resulting in less damage to the sample, while the nonlinear enhancement of sputter yield from cluster beam for polymeric materials contributes to its high sputtering rate. Having established both the appropriate material and optimal analysis conditions, depth profiles of ZIF-8 loaded with guest molecules were obtained using the common analgesic drug acetaminophen and its adjuvant caffeine as the model drugs since drug delivery is one of the crucial fields concerning diffusion in MOFs. The findings revealed that the diffusion of guest molecules in ZIF-8 not only depends on the size of the guest molecules, but also on the solvent used to dissolve them. Specifically, the smaller size of acetaminophen (~4.3 Å) enabled its entry into ZIF-8, while caffeine (~6.0 Å) could not. Additionally, acetaminophen dissolved in ethanol exhibited a higher diffusivity compared to acetaminophen dissolved in dimethylformamide (DMF). Finally, using the same protocol, depth profiles of bimetallic ZIFs were also obtained to demonstrate the potential of SIMS analysis for MOFs. These depth profiles enabled the determination of the concentration profile of each metal in the bimetallic ZIFs, which is crucial for understanding the structure and properties of these materials. Overall, this study highlights the capabilities of SIMS analysis for investigating the diffusion of guest molecules in MOFs as well as other possible potentials. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:32:48Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T17:32:48Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
Chapter 2 Literature review 5 2.1 Metal-organic framework (MOF) 5 2.1.1 Development of MOF 6 2.1.2 Synthesis of MOF 9 2.1.3 Drugs delivery systems (DDSs) based on MOFs 19 2.1.4 Mass transfer in MOFs 23 2.1.5 Depth profile of MOF 27 2.2 Secondary ion mass spectrometry (SIMS) 33 2.2.1 Mass Spectrometry (MS) 33 2.2.2 Working principle of secondary-ion mass spectrometry (SIMS) 35 2.2.3 Development of SIMS 37 2.2.4 Dynamic SIMS and static SIMS 39 2.2.5 Uses of SIMS 40 Chapter 3 Experimental and instruments 44 3.1 Materials 44 3.2 Instruments 45 3.2.1 Optical microscope (OM) 45 3.2.2 Scanning electron microscope (SEM) 45 3.2.3 X-ray diffractometer (XRD) 45 3.2.4 Time of flight secondary ion mass spectrometry (ToF-SIMS) 46 3.3 Experimental procedure 50 3.3.1 Substrate preparation 50 3.3.2 MOF preparation 50 Chapter 4 Results and discussion 57 4.1 Materials characterization 57 4.1.1 Materials characterization of HKUST-1 57 4.1.2 Materials characterization of ZIF-8 thin film 59 4.2 Degradation of ZIF-8_elec in different solvent 63 4.3 ToF-SIMS analysis of HKUST-1 65 4.3.1 Determination of the characteristic peaks of HKUST-1 66 4.3.2 Effect of different sputtering sources on depth profiling of HKUST-1 70 4.4 ToF-SIMS analysis of ZIF-8 78 4.4.1 Determination of the characteristic peaks of ZIF-8 78 4.4.2 Effect of different sputtering sources on depth profiling of a ZIF-8 thin film 81 4.4.3 Depth profile of ZIF-8 loaded with model drugs 90 4.4.4 Summary 105 Chapter 5 Conclusion 106 Chapter 6 Reference 109 Appendix. Depth profile of bimetallic ZIF 128 | - |
| dc.language.iso | en | - |
| dc.subject | 金屬有機框架 | zh_TW |
| dc.subject | 飛行時間式二次離子質譜儀 | zh_TW |
| dc.subject | Zeolitic imidazolate framework (ZIF-8) | zh_TW |
| dc.subject | 縱深分析 | zh_TW |
| dc.subject | 擴散 | zh_TW |
| dc.subject | Zeolitic imidazolate framework (ZIF) | en |
| dc.subject | time of flight secondary ion mass spectrometry (ToF-SIMS) | en |
| dc.subject | depth profile | en |
| dc.subject | metal-organic framework (MOF) | en |
| dc.subject | diffusion | en |
| dc.title | 以二次離子質譜縱深分析研究藥物分子於有機金屬框架內的擴散行為 | zh_TW |
| dc.title | Diffusion of Drug Molecules in Metal-Organic Framework: Direct Probing by Secondary Ion Mass Spectroscopy Depth Profiling | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林煒淳;賴育英 | zh_TW |
| dc.contributor.oralexamcommittee | Wei-Chun Lin;Yu-Ying Lai | en |
| dc.subject.keyword | 金屬有機框架,Zeolitic imidazolate framework (ZIF-8),飛行時間式二次離子質譜儀,縱深分析,擴散, | zh_TW |
| dc.subject.keyword | metal-organic framework (MOF),Zeolitic imidazolate framework (ZIF),time of flight secondary ion mass spectrometry (ToF-SIMS),depth profile,diffusion, | en |
| dc.relation.page | 131 | - |
| dc.identifier.doi | 10.6342/NTU202303887 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 6.7 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
