Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90127
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳正平zh_TW
dc.contributor.advisorJen-Ping Chenen
dc.contributor.author洪語澤zh_TW
dc.contributor.authorYu-Tze Hongen
dc.date.accessioned2023-09-22T17:31:32Z-
dc.date.available2023-11-10-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-14-
dc.identifier.citationAjami, H., M. McCabe, J. Evans, and S. Stisen, 2014: Assessing the impact of model spin-up on surface water-groundwater interactions using an integrated hydrologic model. Water Resources Research, 50, 2636–2656, https://doi.org/10.1002/2013WR014258.
Anthes, R. A., 1984: Enhancement of Convective Precipitation by Mesoscale Variations in Vegetative Covering in Semiarid Regions. Journal of Applied Meteorology and Climatology, 23, 541–554, https://doi.org/10.1175/1520-0450(1984)023<0541:EOCPBM>2.0.CO;2.
Barker, D. M., 2005: Southern High-Latitude Ensemble Data Assimilation in the Antarctic Mesoscale Prediction System. Monthly Weather Review, 133, 3431–3449, https://doi.org/10.1175/MWR3042.1.
Basara, J. B., 2001: The value of point-scale measurements of soil moisture in planetary boundary layer simulations. Ph.D. dissertation, University of Oklahoma, 225 pp.
Bhattacharya, A., A. N. V. Satyanarayana, and M. M, 2018: Impact of Land Surface and Forcing Parameters on the Spin-up Behaviour of Noah Land Surface Model over the Indian Sub-Continent. Pure Appl. Geophys., 175, 389–401, https://doi.org/10.1007/s00024-017-1645-4.
Chang, H.-L., B. G. Brown, P.-S. Chu, Y.-C. Liou, and W.-H. Wang, 2017: Nowcast Guidance of Afternoon Convection Initiation for Taiwan. Weather and Forecasting, 32, 1801–1817, https://doi.org/10.1175/WAF-D-16-0224.1.
Chang, M., W. Liao, X. Wang, Q. Zhang, W. Chen, Z. Wu, and Z. Hu, 2020: An optimal ensemble of the Noah-MP land surface model for simulating surface heat fluxes over a typical subtropical forest in South China. Agricultural and Forest Meteorology, 281, 107815, https://doi.org/10.1016/j.agrformet.2019.107815.
Chang, P.-L., and Coauthors, 2021: An Operational Multi-Radar Multi-Sensor QPE System in Taiwan. Bulletin of the American Meteorological Society, 102, E555–E577, https://doi.org/10.1175/BAMS-D-20-0043.1.
Chen, C.-S., Y.-L. Chen, C.-L. Liu, P.-L. Lin, and W.-C. Chen, 2007: Statistics of Heavy Rainfall Occurrences in Taiwan. Weather and Forecasting, 22, 981–1002, https://doi.org/10.1175/WAF1033.1.
Chen, F., and J. Dudhia, 2001: Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Monthly Weather Review, 129, 569–585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.
——, Z. Janjić, and K. Mitchell, 1997: Impact of Atmospheric Surface-layer Parameterizations in the new Land-surface Scheme of the NCEP Mesoscale Eta Model. Boundary-Layer Meteorology, 85, 391–421, https://doi.org/10.1023/A:1000531001463.
Chen, J.-P., T.-C. Tsai, M.-D. Tzeng, C.-S. Liao, H.-C. Kuo, and J.-S. Hong, 2022: Microphysical Perturbation Experiments and Ensemble Forecasts on Summertime Heavy Rainfall over Northern Taiwan. Weather and Forecasting, 37, 1641–1659, https://doi.org/10.1175/WAF-D-22-0004.1.
Chen, T.-C., M.-C. Yen, J.-D. Tsay, C.-C. Liao, and E. S. Takle, 2014: Impact of Afternoon Thunderstorms on the Land–Sea Breeze in the Taipei Basin during Summer: An Experiment. Journal of Applied Meteorology and Climatology, 53, 1714–1738, https://doi.org/10.1175/JAMC-D-13-098.1.
——, J.-D. Tsay, and E. S. Takle, 2016: A Forecast Advisory for Afternoon Thunderstorm Occurrence in the Taipei Basin during Summer Developed from Diagnostic Analysis. Weather and Forecasting, 31, 531–552, https://doi.org/10.1175/WAF-D-15-0082.1.
Chen, Y., K. Yang, D. Zhou, J. Qin, and X. Guo, 2010: Improving the Noah Land Surface Model in Arid Regions with an Appropriate Parameterization of the Thermal Roughness Length. Journal of Hydrometeorology, 11, 995–1006, https://doi.org/10.1175/2010JHM1185.1.
Chen, Y.-L., and J. Li, 1995: Characteristics of Surface Airflow and Pressure Patterns over the Island of Taiwan during TAMEX. Monthly Weather Review, 123, 695–716, https://doi.org/10.1175/1520-0493(1995)123<0695:COSAAP>2.0.CO;2.
Cheng, K.-H., T.-Y. Yeh, M.-C. Weng, L.-N. Shee, H.-C. Chang, and Y.-C. Chang, 2021: Surface Solar Irradiance Estimation in Taiwan by Using Himawari-8 Satellite. 2021 Conference on Weather Analysis and Forecasting. (In Chinese, accessed at https://reurl.cc/940peX)
Cosgrove, B. A., and Coauthors, 2003: Land surface model spin-up behavior in the North American Land Data Assimilation System (NLDAS). Journal of Geophysical Research: Atmospheres, 108, https://doi.org/10.1029/2002JD003316.
Dirmeyer, P., X. Gao, M. Zhao, Z. Guo, T. Oki, and N. Hanasaki, 2006a: GSWP-2: Multimodel Analysis and Implications for Our Perception of the Land Surface. Bulletin of The American Meteorological Society - BULL AMER METEOROL SOC, 87, 1381–1398, https://doi.org/10.1175/BAMS-87-10-1381.
——, R. Koster, and Z. Guo, 2006b: Do Global Models Properly Represent the Feedback between Land and Atmosphere? Journal of Hydrometeorology - J HYDROMETEOROL, 7, 1177–1198, https://doi.org/10.1175/JHM532.1.
Duda, J. D., X. Wang, and M. Xue, 2017: Sensitivity of Convection-Allowing Forecasts to Land Surface Model Perturbations and Implications for Ensemble Design. Monthly Weather Review, 145, 2001–2025, https://doi.org/10.1175/MWR-D-16-0349.1.
Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. Journal of Geophysical Research: Atmospheres, 108, https://doi.org/10.1029/2002JD003296.
Entin, J. K., A. Robock, K. Y. Vinnikov, V. Zabelin, S. Liu, A. Namkhai, and Ts. Adyasuren, 1999: Evaluation of Global Soil Wetness Project Soil Moisture Simulations. Journal of the Meteorological Society of Japan, 77, 183–198, https://doi.org/10.2151/jmsj1965.77.1B_183.
Godfrey, C. M., and D. J. Stensrud, 2010: An Empirical Latent Heat Flux Parameterization for the Noah Land Surface Model. Journal of Applied Meteorology and Climatology, 49, 1696–1713, https://doi.org/10.1175/2010JAMC2180.1.
Guo, Z., P. A. Dirmeyer, Z.-Z. Hu, X. Gao, and M. Zhao, 2006: Evaluation of the Second Global Soil Wetness Project soil moisture simulations: 2. Sensitivity to external meteorological forcing. Journal of Geophysical Research: Atmospheres, 111, https://doi.org/10.1029/2006JD007845.
Hermoso, A., V. Homar Santaner, and R. Plant, 2021: Potential of stochastic methods for improving convection-permitting ensemble forecasts of extreme events over the Western Mediterranean. Atmospheric research, 257, 105571, https://doi.org/10.1016/j.atmosres.2021.105571.
Hirt, M., and G. C. Craig, 2021: A cold pool perturbation scheme to improve convective initiation in convection-permitting models. Quarterly Journal of the Royal Meteorological Society, 147, 2429–2447, https://doi.org/10.1002/qj.4032.
——, S. Rasp, U. Blahak, and G. C. Craig, 2019: Stochastic Parameterization of Processes Leading to Convective Initiation in Kilometer-Scale Models. Monthly Weather Review, 147, 3917–3934, https://doi.org/10.1175/MWR-D-19-0060.1.
——, G. C. Craig, S. A. K. Schäfer, J. Savre, and R. Heinze, 2020: Cold-pool-driven convective initiation: using causal graph analysis to determine what convection-permitting models are missing. Quarterly Journal of the Royal Meteorological Society, 146, 2205–2227, https://doi.org/10.1002/qj.3788.
Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Monthly Weather Review, 134, 2318–2341, https://doi.org/10.1175/MWR3199.1.
Hung, Y.-C., J.-S. Hong, C.-L. Tsay, M. Barlage, and F. Chen, 2014: Evaluation of the High Resolution Land Data Assimilation System. Atmospheric Sciences, 42, 29–48. (In Chinese)
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research: Atmospheres, 113, https://doi.org/10.1029/2008JD009944.
Jackson, C., Y. Xia, M. K. Sen, and P. L. Stoffa, 2003: Optimal parameter and uncertainty estimation of a land surface model: A case study using data from Cabauw, Netherlands. Journal of Geophysical Research: Atmospheres, 108, https://doi.org/10.1029/2002JD002991.
Johnson, R. H., and J. F. Bresch, 1991: Diagnosed Characteristics of Precipitation Systems over Taiwan during the May–June 1987 TAMEX. Monthly Weather Review, 119, 2540–2557, https://doi.org/10.1175/1520-0493(1991)119<2540:DCOPSO>2.0.CO;2.
Jou, B., 1994: Mountain-Originated Mesoscale Precipitation System in Northern Taiwan: A Case Study 21 June 1991. Terrestrial Atmospheric and Oceanic Sciences, 5, 169–197, https://doi.org/10.3319/TAO.1994.5.2.169(TAMEX).
Koster, R. D., Z. Guo, R. Yang, P. A. Dirmeyer, K. Mitchell, and M. J. Puma, 2009: On the Nature of Soil Moisture in Land Surface Models. Journal of Climate, 22, 4322–4335, https://doi.org/10.1175/2009JCLI2832.1.
Kumar, A., F. Chen, D. Niyogi, J. G. Alfieri, M. Ek, and K. Mitchell, 2011: Evaluation of a Photosynthesis-Based Canopy Resistance Formulation in the Noah Land-Surface Model. Boundary-Layer Meteorol, 138, 263–284, https://doi.org/10.1007/s10546-010-9559-z.
LeMone, M. A., M. Tewari, F. Chen, J. G. Alfieri, and D. Niyogi, 2008: Evaluation of the Noah Land Surface Model Using Data from a Fair-Weather IHOP_2002 Day with Heterogeneous Surface Fluxes. Monthly Weather Review, 136, 4915–4941, https://doi.org/10.1175/2008MWR2354.1.
Li, C.-H., and J.-S. Hong, 2014: The Study of Regional Ensemble Forecast: Evaluation for the performance of perturbed methods. Atmospheric Sciences, 42, 153–179. (In Chinese)
Li, J., F. Chen, X. Lu, W. Gong, G. Zhang, and Y. Gan, 2020: Quantifying Contributions of Uncertainties in Physical Parameterization Schemes and Model Parameters to Overall Errors in Noah-MP Dynamic Vegetation Modeling. Journal of Advances in Modeling Earth Systems, 12, e2019MS001914, https://doi.org/10.1029/2019MS001914.
Lin, P.-F., P.-L. Chang, B. J.-D. Jou, J. W. Wilson, and R. D. Roberts, 2011: Warm Season Afternoon Thunderstorm Characteristics under Weak Synoptic-Scale Forcing over Taiwan Island. Weather and Forecasting, 26, 44–60, https://doi.org/10.1175/2010WAF2222386.1.
Lin, T.-S., and F.-Y. Cheng, 2016: Impact of Soil Moisture Initialization and Soil Texture on Simulated Land–Atmosphere Interaction in Taiwan. Journal of Hydrometeorology, 17, 1337–1355, https://doi.org/10.1175/JHM-D-15-0024.1.
Marshall, C. H., K. C. Crawford, K. E. Mitchell, and D. J. Stensrud, 2003: The Impact of the Land Surface Physics in the Operational NCEP Eta Model on Simulating the Diurnal Cycle: Evaluation and Testing Using Oklahoma Mesonet Data. Weather and Forecasting, 18, 748–768, https://doi.org/10.1175/1520-0434(2003)018<0748:TIOTLS>2.0.CO;2.
Melhauser, C., and F. Zhang, 2012: Practical and Intrinsic Predictability of Severe and Convective Weather at the Mesoscales. Journal of the Atmospheric Sciences, 69, 3350–3371, https://doi.org/10.1175/JAS-D-11-0315.1.
Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. Journal of Geophysical Research: Atmospheres, 116, https://doi.org/10.1029/2010JD015139.
Peters, K., C. Hohenegger, and D. Klocke, 2019: Different Representation of Mesoscale Convective Systems in Convection-Permitting and Convection-Parameterizing NWP Models and Its Implications for Large-Scale Forecast Evolution. Atmosphere, 10, 503, https://doi.org/10.3390/atmos10090503.
Pielke Sr., R. A., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus Convective rainfall. Reviews of Geophysics, 39, 151–177, https://doi.org/10.1029/1999RG000072.
Pitman, A. J., 2003: The evolution of, and revolution in, land surface schemes designed for climate models. International Journal of Climatology, 23, 479–510, https://doi.org/10.1002/joc.893.
Rodell, M., P. R. Houser, A. A. Berg, and J. S. Famiglietti, 2005: Evaluation of 10 Methods for Initializing a Land Surface Model. J. Hydrometeorol., 6, 146–155, https://doi.org/10.1175/jhm414.1.
Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A Theory for Strong, Long-Lived Squall Lines. Journal of the Atmospheric Sciences, 45, 463–485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.
Seck, A., C. Welty, and R. Maxwell, 2015: Spin-up behavior and effects of initial conditions for an integrated hydrologic model: Spin-up behavior and effects of initial conditions. Water Resources Research, 51, 2188–2210, https://doi.org/10.1002/2014WR016371.
Sellers, P. J., and Coauthors, 1996: A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part I: Model Formulation. Journal of Climate, 9, 676–705, https://doi.org/10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2.
Shukla, J., and Y. Mintz, 1982: Influence of Land-Surface Evapotranspiration on the Earth's Climate. Science, 215, 1498–1501, https://doi.org/10.1126/science.215.4539.1498.
Shuttleworth, W., E. Burke, P. Houser, D. Toll, M. Rodell, and K. Arsenault, 2006: Toward a South America Land Data Assimilation System: Aspects of land surface model spin-up using the Simplified Simple Biosphere. Journal of Geophysical Research, 111, https://doi.org/10.1029/2005JD006297.
Sokol, Z., and P. Zacharov, 2012: Nowcasting of precipitation by an NWP model using assimilation of extrapolated radar reflectivity. Quarterly Journal of the Royal Meteorological Society, 138, 1072–1082, https://doi.org/10.1002/qj.970.
Sun, J., S. B. Trier, Q. Xiao, M. L. Weisman, H. Wang, Z. Ying, M. Xu, and Y. Zhang, 2012: Sensitivity of 0–12-h Warm-Season Precipitation Forecasts over the Central United States to Model Initialization. Weather and Forecasting, 27, 832–855, https://doi.org/10.1175/WAF-D-11-00075.1.
Tao, W.-K., D. Wu, S. Lang, J. Chern, C. Peters-Lidard, A. Fridlind, and T. Matsui, 2016: High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Further Improvements and Comparisons between Goddard microphysics schemes and observations. Journal of Geophysical Research: Atmospheres, 121, https://doi.org/10.1002/2015JD023986.
Tewari, M., and Coauthors, 2016: Implementation and verification of the united NOAH land surface model in the WRF model. 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, 11–15.
Thompson, G., J. Berner, M. Frediani, J. A. Otkin, and S. M. Griffin, 2021: A Stochastic Parameter Perturbation Method to Represent Uncertainty in a Microphysics Scheme. Monthly Weather Review, 149, 1481–1497, https://doi.org/10.1175/MWR-D-20-0077.1.
Tong, W., G. Li, J. Sun, X. Tang, and Y. Zhang, 2016: Design Strategies of an Hourly Update 3DVAR Data Assimilation System for Improved Convective Forecasting. Weather and Forecasting, 31, 1673–1695, https://doi.org/10.1175/WAF-D-16-0041.1.
Trier, S. B., F. Chen, and K. W. Manning, 2004a: A Study of Convection Initiation in a Mesoscale Model Using High-Resolution Land Surface Initial Conditions. Monthly Weather Review, 132, 2954–2976, https://doi.org/10.1175/MWR2839.1.
——, ——, and ——, 2004b: A Study of Convection Initiation in a Mesoscale Model Using High-Resolution Land Surface Initial Conditions. Monthly Weather Review, 132, 2954–2976, https://doi.org/10.1175/MWR2839.1.
Trier, S. B., F. Chen, K. W. Manning, M. A. LeMone, and C. A. Davis, 2008: Sensitivity of the PBL and Precipitation in 12-Day Simulations of Warm-Season Convection Using Different Land Surface Models and Soil Wetness Conditions. Monthly Weather Review, 136, 2321–2343, https://doi.org/10.1175/2007MWR2289.1.
——, M. A. LeMone, F. Chen, and K. W. Manning, 2011: Effects of Surface Heat and Moisture Exchange on ARW-WRF Warm-Season Precipitation Forecasts over the Central United States. Weather and Forecasting, 26, 3–25, https://doi.org/10.1175/2010WAF2222426.1.
Weckwerth, T. M., 2000: The Effect of Small-Scale Moisture Variability on Thunderstorm Initiation. Monthly Weather Review, 128, 4017–4030, https://doi.org/10.1175/1520-0493(2000)129<4017:TEOSSM>2.0.CO;2.
Yang, Z.-L., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. Journal of Geophysical Research: Atmospheres, 116, https://doi.org/10.1029/2010JD015140.
Zhang, F., C. Snyder, and R. Rotunno, 2002: Mesoscale Predictability of the "Surprise" Snowstorm of 24–25 January 2000. Monthly Weather Review, 130, 1617–1632, https://doi.org/10.1175/1520-0493(2002)130<1617:MPOTSS>2.0.CO;2.
Zhang, F., A. M. Odins, and J. W. Nielsen-Gammon, 2006: Mesoscale Predictability of an Extreme Warm-Season Precipitation Event. Weather and Forecasting, 21, 149–166, https://doi.org/10.1175/WAF909.1.
Zhang, X., L. Chen, Z. Ma, J. Duan, D. Dai, and H. Zhang, 2022: Effects of the surface coupling strength in the WRF/Noah-MP model on regional climate simulations over China. Climate Dynamics, 59, 331–355, https://doi.org/10.1007/s00382-021-06129-5.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90127-
dc.description.abstractNoah Multi Parameterization(Noah MP)是一個社群地面模式(Land surface model,LSM),針對重要地表物理過程,分別發展多種不同物理參數法,並介接多個天氣或氣候模式,作為研發及作業之用。本研究使用Noah MP設計以地表模式為主的系集擾動方法,並評估其對午後對流系集預報的影響。
本研究首先在離線(Offline)實驗架構下,探討Noah MP在台灣地區的起轉(spin-up)特徵以及不同地表物理過程對系集離散度的影響。研究結果顯示,Noah MP 約需至少三個月的起轉時間以達到平衡狀態(equilibrium state);在敏感性實驗中共測試了五種地表物理過程,結果顯示對系集離散度的貢獻程度依序為:表面熱交換係數、冠層輻射幾何形狀、冠層氣孔阻力、蒸發表面阻力和氣孔阻力的土壤水分因子。本研究取前四種物理過程的參數法,介接大氣預報模式,建構以地表模式為主的系集擾動方法。
其次,本研究針對五個午後對流個案,共進行兩個系集實驗,以評估LSM擾動對午後對流預報的影響。每個實驗包含24個系集成員,第一個實驗只對大氣初始條件進行擾動,另一個實驗則進行了額外加入LSM擾動。24小時預報的結果顯示,加入LSM擾動後雖然沒有顯著改善模式系集平均的預報能力,但可以有效增加降雨以及近地表大氣變量系集預報的離散度。本研究進一步分析造成系集成員離散度的根因,結果顯示系集離散度的主要源於表面熱交換係數參數法,而這也導致系集成員產生分群的現象。研究亦指出,適當調校地面模式的熱交換係數參數法,是進一步改善系集預報準確度和離散度的關鍵之一。
zh_TW
dc.description.abstractNoah Multi Parameterization (Noah MP) is a community land surface model (LSM) that incorporates multiple physics parameterization schemes for important land surface processes. This study utilizes Noah MP to design a LSM-based ensemble perturbation scheme and evaluates its impact on ensemble forecasting of afternoon thunderstorms over Taiwan.
In this study, we first investigate the spin-up characteristics of Noah MP in the offline experimental framework and examine the influence of different land surface physics processes on the ensemble spread. The results indicate that Noah MP requires a spin-up period of at least three months to reach an equilibrium state. The five tested land surface physics processes that contribute to the ensemble spread are ranked in descending order: surface layer heat exchange coefficient, canopy radiation geometry, canopy stomatal resistance, surface resistance to evaporation, and soil moisture factor for stomatal resistance. The parameterization schemes of the first four land surface processes are selected to construct the LSM-based ensemble perturbation scheme.
Next, we conduct two ensemble experiments for five afternoon convection cases to assess the impact of LSM perturbation on afternoon thunderstorms forecasting. Each experiment consists of 24 ensemble members, with the first experiment perturbing only the atmospheric initial conditions and the second experiment incorporating additional LSM perturbations. The 24-hour forecast results show that while the addition of LSM perturbation does not significantly improve the ensemble mean forecast skill, it effectively increases the ensemble spread for rainfall and near-surface atmospheric variables. Further analysis reveals that the main source of ensemble spread lies in the parameterization scheme of the surface layer heat exchange coefficient, leading to the clustering of ensemble members. The study emphasizes the importance of properly calibrating the surface model's exchange coefficient parameterization scheme as a key factor in enhancing the accuracy and spread of ensemble forecasting.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:31:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:31:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 i
ABSTRACT ii
CONTENT iv
LIST OF TABLES vi
LIST OF FIGURES vii
1. Introduction 1
1.1 Afternoon thunderstorm (AT) in Taiwan 1
1.2 Convective scale predictability 1
1.3 Uncertainty of land-air interaction 3
2. Experiment design and data 5
2.1 Offline Noah MP experiment 5
2.1.1 Noah MP details 5
2.1.2 Offline experiment setups 6
2.1.3 Spin-up-time experiment 8
2.1.4 LSM Sensitivity experiment 8
2.1.6 Option Spread definition 9
2.2 WRF ensemble experiment 10
2.2.1 Surface verification 11
3. Offline experiment result 19
3.1 Offline spin-up Experiment 19
3.2 LSM Sensitivity experiment 20
4. WRF ensemble experiment result 30
4.1 Cases analysis 30
4.2 Composite result 32
5. Discussion 46
5.1 Ensemble clustering 46
5.2 Czil parameter 47
5.3 Comparison with microphysics-based ensemble system 48
6. Conclusion 53
Reference 57
-
dc.language.isoen-
dc.title地面模式擾動對午後對流系集預報的影響zh_TW
dc.titleThe Impact of LSM perturbation on Afternoon Thunderstorm Ensemble Forecasten
dc.typeThesis-
dc.date.schoolyear112-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee莊振義;羅敏輝;林傳堯zh_TW
dc.contributor.oralexamcommitteeJehn-Yih Juang;Min-Hui Lo;Chuan-Yao Linen
dc.subject.keyword地面模式,系集預報,午後對流,地面過程,zh_TW
dc.subject.keywordLSM,Noah MP,ensemble forecastecast,afternoon thunderstorm,land surface process,en
dc.relation.page65-
dc.identifier.doi10.6342/NTU202304056-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-14-
dc.contributor.author-college理學院-
dc.contributor.author-dept大氣科學系-
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-112-1.pdf4.11 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved