Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90126
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor駱尚廉zh_TW
dc.contributor.advisorShang-Lien Loen
dc.contributor.author萊斯利zh_TW
dc.contributor.authorLesly Margarita Ramos Floresen
dc.date.accessioned2023-09-22T17:31:17Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-11-
dc.identifier.citationAhmed, M. J. (2017). Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: Review. Environmental Toxicology and Pharmacology, 50, 1–10.
Al-Buriahi, A. K., Al-Shaibani, M. M., Al-Gheethi, A., Al-Gheethi, A., Sharma, A., & Ismail, N. (2022). Ciprofloxacin removal from non-clinical environment: A critical review of current methods and future trend prospects. Journal of Water Process Engineering, 47, 102725.
Anuar, N. F., Shah, D. R. S. I., Ramli, F. F., Zaini, M. S. M., Mohammadi, N. A., Daud, A. R. M., & Syed-Hassan, S. S. A. (2023). The removal of antibiotics in water by chemically modified carbonaceous adsorbents from biomass: A systematic review. Journal of Cleaner Production, 401, 136725.
Arsyad, N. a. S., Razab, M. K. a. A., Noor, A. S. M., Amini, M. H. M., Yusoff, N. M. R. N., Halim, A. S., Yusuf, N. a. a. N., Masri, M. N., Sulaiman, M., & Abdullah, N. H. (2021). Effect of Chemical Treatment on Production of Activated Carbon from Cocos nucifera L. (Coconut) Shell by Microwave Irradiation Method. Journal of Tropical Resources and Sustainable Science, 4(2), 112–116.
Bardestani, R., Patience, G. S., & Kaliaguine, S. (2019). Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT. Canadian Journal of Chemical Engineering, 97(11), 2781–2791.
Beakou, B. H., Hassani, K. E., Houssaini, M. I., Belbahloul, M., Oukani, E., & Anouar, A. (2017). Novel activated carbon from Manihot esculenta Crantz for removal of Methylene Blue. Sustainable Environment Research, 27(5), 215–222.
Bizi, M., & Bachra, F. E. (2020). Evaluation of the ciprofloxacin adsorption capacity of common industrial minerals and application to tap water treatment. Powder Technology, 362, 323–333.
Cano-Sarmiento, C., Téllez-Medina, D., Viveros-Contreras, R., Cornejo-Mazón, M., Figueroa-Hernández, C., García-Armenta, E., Alamilla-Beltrán, L., Garcia, H. S., & Gutiérrez-López, G. F. (2018). Zeta Potential of Food Matrices. Food Engineering Reviews, 10(3), 113–138.
Carabineiro, S. a. C., Thavorn-Amornsri, T., Pereira, M. F. R., Serp, P., & De Figueiredo, J. R. (2012). Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin. Catalysis Today, 186(1), 29–34.
Ciprofloxacin-Chemical Information Search. (n.d.). Retrieved October 19, 2022, from https://www.chemicalbook.com/ProductList_En.aspx?kwd=ciprofloxacin
CompTox Chemicals Dashboard. (n.d.). Retrieved October 19, 2022, from https://comptox.epa.gov/dashboard/chemical/properties/DTXSID8022824
Deng, S., Nie, Y., Du, Z., Huang, Q., Meng, P., Wang, B., Huang, J., & Yu, G. (2015). Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon. Journal of Hazardous Materials, 282, 150–157.
De Oliveira Carvalho, C., Rodrigues, D. N., Lima, E. C., Umpierres, C. S., Chaguezac, D. F. C., & Machado, F. L. (2019). Kinetic, equilibrium, and thermodynamic studies on the adsorption of ciprofloxacin by activated carbon produced from Jerivá (Syagrus romanzoffiana). Environmental Science and Pollution Research, 26(5), 4690–4702.
Drug Information Portal - U.S. National Library of Medicine - Quick Access to Quality Drug Information. (n.d.). Retrieved October 19, 2022, from https://druginfo.nlm.nih.gov/drugportal/name/ciprofloxacin
Enyoh, C. E., & Wang, Q. (2022). Adsorption of ciprofloxacin from aqueous solution by plastic-based adsorbents: a review. International Journal of Environmental Analytical Chemistry, 1–21.
Everett, D. W. (1972). Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Pure and Applied Chemistry, 31(4), 577–638.
Gabelman, A. (2017, July 12). Adsorption Basics: Part 1. AIChE.
Genç, N., Doğan, E. C., & Yurtsever, M. (2013). Bentonite for ciprofloxacin removal from aqueous solution. Water Science and Technology, 68(4), 848–855.
Glassford, S. E., Byrne, B., & Kazarian, S. G. (2013). Recent applications of ATR FTIR spectroscopy and imaging to proteins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 1834(12), 2849–2858.
Hanna, N., Sun, P., Sun, Q., Li, X., Yang, X., Ji, X., Zou, H., Ottoson, J., Nilsson, L., Berglund, B. E., Dyar, O. J., Tamhankar, A. J., & Lundborg, C. S. (2018). Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: Its potential for resistance development and ecological and human risk. Environment International, 114, 131–142.
Heidari, G., Afruzi, F. H., & Zare, E. N. (2023). Molecularly Imprinted Magnetic Nanocomposite Based on Carboxymethyl Dextrin for Removal of Ciprofloxacin Antibiotic from Contaminated Water. Nanomaterials, 13(3), 489.
Igwegbe, C. A., Oba, S. N., Aniagor, C. O., Adeniyi, A. G., & Ighalo, J. O. (2021). Adsorption of ciprofloxacin from water: A comprehensive review. Journal of Industrial and Engineering Chemistry, 93, 57–77.
Imam, S. S., Adnan, R., & Kaus, N. H. M. (2018). Photocatalytic degradation of ciprofloxacin in aqueous media: a short review. Toxicological & Environmental Chemistry, 100(5–7), 518–539.
Jasni, M. Z., Abdullah, N. H., Abdullah, S., Razab, M. K. a. A., Noor, A. M., Mohamed, M., Yusuf, N. a. a. N., Amin, M., Rasat, M. S. M., & Amin, M. (2018). Preparation and Characterization of Activated Carbon from Cocos nucifera L. (coconut) Shell and Sugarcane Bagasse. International Journal of Current Research in Science, Engineering & Technology, 1(Spl-1), 416.
Jia, Y., Khanal, S. K., Shu, H., Zhang, H., Chen, G., & Lu, H. (2018). Ciprofloxacin degradation in anaerobic sulfate-reducing bacteria (SRB) sludge system: Mechanism and pathways. Water Research, 136, 64–74.
Julien, F. H., Baudu, M., & Mazet, M. (1998). Relationship between chemical and physical surface properties of activated carbon. Water Research, 32(11), 3414–3424.
Karim, A. V., & Shriwastav, A. (2020). Degradation of ciprofloxacin using photo, sono, and sonophotocatalytic oxidation with visible light and low-frequency ultrasound: Degradation kinetics and pathways. Chemical Engineering Journal, 392, 124853.
Karthikeyan, K. G., & Meyer, M. (2006). Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Science of the Total Environment, 361(1–3), 196–207.
Kelly, K. J., & Brooks, B. W. (2018). Global Aquatic Hazard Assessment of Ciprofloxacin: Exceedances of Antibiotic Resistance Development and Ecotoxicological Thresholds. In Progress in Molecular Biology and Translational Science (pp. 59–77). Academic Press.
Kong, J., Zheng, Y., Xiao, L., Dai, B., Meng, Y., Ma, Z., Wang, J., & Huang, X. (2020). Synthesis and comparison studies of activated carbons based folium cycas for ciprofloxacin adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 606, 125519.
Kumar, A., Patra, C., Kumar, S., & Selvaraju, N. (2021). Effect of magnetization on the adsorptive removal of an emerging contaminant ciprofloxacin by magnetic acid activated carbon. Environmental Research, 206, 112604.
Kümmerer, K. (2004). Resistance in the environment. Journal of Antimicrobial Chemotherapy, 54(2), 311–320.
Larsson, D. G. J., De Pedro, C., & Paxeus, N. (2007). Effluent from drug manufactures contains extremely high levels of pharmaceuticals. Journal of Hazardous Materials, 148(3), 751–755.
Lebel, M. H. (1988). Ciprofloxacin: Chemistry, Mechanism of Action, Resistance, Antimicrobial Spectrum, Pharmacokinetics, Clinical Trials, and Adverse Reactions. Pharmacotherapy, 8(1), 3–30.
Lee, K., Tiong, T. J., Hong, Z., Chong, S., Tiong, T. J., Pan, G., & Huang, C. (2021). Coconut Shell-Derived Activated Carbon for High-Performance Solid-State Supercapacitors. Energies, 14(15), 4546.
Li, L., Liu, S., & Liu, J. (2011). Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal. Journal of Hazardous Materials, 192(2), 683–690.
Lim, W. C., Srinivasakannan, C., & Balasubramanian, N. (2010). Activation of palm shells by phosphoric acid impregnation for high yielding activated carbon. Journal of Analytical and Applied Pyrolysis, 88(2), 181–186.
Lu, T., Zhu, Y., Ke, M., Peijnenburg, W. J., Zhang, R., Tingzhang, W., Chen, J., & Qian, H. (2019). Evaluation of the taxonomic and functional variation of freshwater plankton communities induced by trace amounts of the antibiotic ciprofloxacin. Environment International, 126, 268–278.
Magesh, N., Renita, A. A., Siva, R., Harirajan, N., & A, S. (2022). Adsorption behavior of fluoroquinolone(ciprofloxacin) using zinc oxide impregnated activated carbon prepared from jack fruit peel: Kinetics and isotherm studies. Chemosphere, 290, 133227.
Mohammed, A., & Abdullah, A. (2018, November). Scanning electron microscopy (SEM): A review. In Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania (Vol. 2018, pp. 7-9).
Mostafaloo, R., Asadi-Ghalhari, M., Izanloo, H., & Zayadi, A. (2020). Photocatalytic degradation of ciprofloxacin antibiotic from aqueous solution by BiFeO3 nanocomposites using response surface methodology. Global Journal of Environmental Science and Management, 6(2), 191–202.
Nassar, M. Y., Ahmed, I. S., & Raya, M. A. (2019). A facile and tunable approach for synthesis of pure silica nanostructures from rice husk for the removal of ciprofloxacin drug from polluted aqueous solutions. Journal of Molecular Liquids, 282, 251–263.
Naderi, M. (2015). Surface Area. In Elsevier eBooks (pp. 585–608). https://doi.org/10.1016/b978-0-12-384746-1.00014-8
Newbury, D. E., & Ritchie, N. W. M. (2013). Is Scanning Electron Microscopy/Energy Dispersive X-ray Spectrometry (SEM/EDS) Quantitative? Scanning, 35(3), 141–168.
Nunes, B., Gomes, C. A., Rodrigues, S., & Antunes, S. C. (2018). Assessment of ecotoxicological effects of ciprofloxacin in Daphnia magna: life-history traits, biochemical and genotoxic effects. Water Science and Technology, 2017(3), 835–844.
Olivera, M. E., Manzo, R. H., Junginger, H. E., Midha, K. K., Shah, V., Stavchansky, S. A., Dressman, J. B., & Barends, D. M. (2011). Biowaiver Monographs for Immediate Release Solid Oral Dosage Forms: Ciprofloxacin Hydrochloride. Journal of Pharmaceutical Sciences, 100(1), 22–33.
Passos, M. L., & Saraiva, M. L. M. (2019). Detection in UV-visible spectrophotometry: Detectors, detection systems, and detection strategies. Measurement, 135, 896–904.
Patneedi, C. B., & Prasadu, K. D. (2015). IMPACT OF PHARMACEUTICAL WASTES ON HUMAN LIFE AND ENVIRONMENT. RASAYAN J. Chem, 8(1), 67–70.
Peng, X., Hu, F., Lam, F., Wang, Y., Liu, Z., & Dai, H. (2015). Adsorption behavior and mechanisms of ciprofloxacin from aqueous solution by ordered mesoporous carbon and bamboo-based carbon. Journal of Colloid and Interface Science, 460, 349–360.
Peng, X., Hu, F., Dai, H., Xiong, Q., & Xu, C. (2016, August). Study of the adsorption mechanisms of ciprofloxacin antibiotics onto graphitic ordered mesoporous carbons. Journal of the Taiwan Institute of Chemical Engineers, 65, 472–481.
Peñafiel, M. E., Matesanz, J. M., Vanegas, E., Bermejo, D., Mosteo, R., & Ormad, M. P. (2021, January). Comparative adsorption of ciprofloxacin on sugarcane bagasse from Ecuador and on commercial powdered activated carbon. Science of the Total Environment, 750, 141498.
Qiao, M., Ying, G., Singer, A. C., & Zhu, Y. (2018). Review of antibiotic resistance in China and its environment. Environment International, 110, 160–172.
Radovic, L. R., Moreno-Castilla, C., & Rivera-Utrilla, J. (2000). Carbon Materials As Adsorbents In Aqueous Solutions. In CRC Press eBooks (pp. 247–426). Informa.
Romanos, J., Beckner, M., Stalla, D., Tekeei, A., Suppes, G. J., Jalisatgi, S. S., Lee, M. J., Hawthorne, F., Robertson, J., Firlej, L., Kuchta, B., Wexler, C., Yu, P. S., & Pfeifer, P. (2013). Infrared study of boron–carbon chemical bonds in boron-doped activated carbon. Carbon, 54, 208–214.
Rong, X., Qiu, F., Jiang, Z., Rong, J., Pan, J., Zhang, T., & Yang, D. (2016). Preparation of ternary combined ZnO-Ag2O/porous g-C3N4 composite photocatalyst and enhanced visible-light photocatalytic activity for degradation of ciprofloxacin. Chemical Engineering Research & Design, 111, 253–261.
Ross, D. L., & Riley, C. M. (1992, June). Physicochemical properties of the fluoroquinolone antimicrobials. II. Acid ionization constants and their relationship to structure. International Journal of Pharmaceutics, 83(1–3), 267–272.
Sharma, P. C., Jain, A., Jain, S., Pahwa, R., & Yar, M. S. (2010). Ciprofloxacin: review on developments in synthetic, analytical, and medicinal aspects. Journal of Enzyme Inhibition and Medicinal Chemistry, 25(4), 577–589.
Shrestha, S. (2016). Chemical, Structural and Elemental Characterization of Biosorbents Using FE-SEM, SEM-EDX, XRD/XRPD and ATR-FTIR Techniques. Journal of Chemical Engineering & Process Technology, 7(3).
Shrestha, S., Son, G., Lee, S. H., & Lee, T. (2013). Isotherm and thermodynamic studies of Zn (II) adsorption on lignite and coconut shell-based activated carbon fiber. Chemosphere, 92(8), 1053–1061.
Sophia, A. C., & Lima, E. C. (2018). Removal of emerging contaminants from the environment by adsorption. Ecotoxicology and Environmental Safety, 150, 1–17.
Sophia, A. C., Lima, E. C., Allaudeen, N., & Rajan, S. (2016). Application of graphene based materials for adsorption of pharmaceutical traces from water and wastewater- a review. Desalination and Water Treatment, 1–14.
Sun, Y., Li, H., Li, G., Gao, B., Gao, B., & Li, X. (2016). Characterization and ciprofloxacin adsorption properties of activated carbons prepared from biomass wastes by H3PO4 activation. Bioresource Technology, 217, 239–244.
Tang, Y., Chen, Q., Li, W., Xie, X., Zhang, W., Zhang, X., Chai, H., & Huang, Y. (2020). Engineering magnetic N-doped porous carbon with super-high ciprofloxacin adsorption capacity and wide pH adaptability. Journal of Hazardous Materials, 388, 122059.
Theamwong, N., Intarabumrung, W., Sangon, S., Aintharabunya, S., Ngernyen, Y., Hunt, A. J., & Supanchaiyamat, N. (2021). Activated carbons from waste Cassia bakeriana seed pods as high-performance adsorbents for toxic anionic dye and ciprofloxacin antibiotic remediation. Bioresource Technology, 341, 125832.
Torres-Pérez, J., Gérente, C., & Andres, Y. (2012). Sustainable Activated Carbons from Agricultural Residues Dedicated to Antibiotic Removal by Adsorption. Chinese Journal of Chemical Engineering, 20(3), 524–529.
Tran, Q. T., Huong, T. N., Ha, X. S., Nguyen, H., Nguyen, A. V., Ngo, T. H., & Chau, H. (2022). Study of the Ciprofloxacin Adsorption of Activated Carbon Prepared from Mangosteen Peel. Applied Sciences, 12(17), 8770.
Villacañas, F. D., Pereira, M. F. R., & Figueiredo, J. L. (2006). Adsorption of simple aromatic compounds on activated carbons. Journal of Colloid and Interface Science, 293(1), 128–136.
Wang, Y., Ngo, H. H., & Guo, W. (2015). Preparation of a specific bamboo based activated carbon and its application for ciprofloxacin removal. Science of the Total Environment, 533, 32–39.
Wilson, B. A., Smith, V. H., deNoyelles, F., & Larive, C. K. (2003). Effects of Three Pharmaceutical and Personal Care Products on Natural Freshwater Algal Assemblages. Environmental Science & Technology, 37(9), 1713–1719.
Zhang, B., Han, X., Gu, P., Fang, S., & Bai, J. (2017). Response surface methodology approach for optimization of ciprofloxacin adsorption using activated carbon derived from the residue of desilicated rice husk. Journal of Molecular Liquids, 238, 316–325.
Zhu, X., Kim, K., Chen, F., Li, S., & Yang, X. (2015). Ciprofloxacin adsorption on graphene and granular activated carbon: kinetics, isotherms, and effects of solution chemistry. Environmental Technology, 36(24), 3094–3102.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90126-
dc.description.abstract環丙沙星是一種廣泛使用的廣譜抗生素,由於其普遍存在以及在各種環境中增加細菌耐藥性的可能性,已成為廢水處理中令人擔憂的污染物。利用可持續方法去除水溶液中的環丙沙星已成為減輕環丙沙星在水體中擴散的必要條件。然而,從農業廢物(例如椰子殼)中提取的活性炭用於去除環丙沙星的應用仍有待探索。本研究論文重點對椰殼活性炭進行綜合表徵,研究其動力學和等溫線機制,探討吸附劑用量、pH 值和初始濃度對環丙沙星去除的影響。此外,還檢查了醫院廢水基質下的吸附行為。 Brunauer-Emmett-Teller 分析表明,椰殼活性炭具有 1,115.85 m2/g 的高表面積和 0.458 cm3/g 的顯著微孔體積,主要包含超過 99% 的微孔。批量吸附實驗表明,初始濃度為20 mg/L、pH 6 時環丙沙星去除效果最佳,4 小時內即可完全去除。使用 Langmuir 等溫線分析確定最大吸附容量,估計為 187.97 mg/g。結果表明,椰殼活性炭對環丙沙星的吸附採用準二級動力學和Langmuir等溫線模型。由於吸附劑和吸附物之間的相互作用主要由化學吸附控制,因此單層的形成變得更容易,這表明活性炭上可接近的表面位點的相關性。此外,吸附過程受到活性炭表面官能團和環丙沙星之間的化學鍵以及靜電相互作用的影響。對醫院廢水的吸附顯示最大去除效率為75.10%,表明廢水中存在的各種有機污染物對活性吸附位點的競爭非常激烈。總體而言,椰殼活性炭有望作為一種經濟有效且可持續的環丙沙星去除吸附材料。zh_TW
dc.description.abstractCiprofloxacin, a widely used broad-spectrum antibiotic, has emerged as a concerning contaminant in wastewater treatment due to its prevalence and the potential for increased bacterial resistance in various environments. The utilization of sustainable methods for ciprofloxacin removal in aqueous solutions has become imperative to mitigate its dispersion in water bodies. However, the application of activated carbon derived from agricultural waste, such as coconut shells, for ciprofloxacin removal remains unexplored. This research thesis focuses on the comprehensive characterization of coconut shell activated carbon, investigating the kinetic and isotherm mechanisms, exploring the influence of adsorbent dosage, pH, and initial concentration on ciprofloxacin removal. Additionally, the adsorption behavior under a hospital effluent matrix is examined. Brunauer-Emmett-Teller analysis revealed that the coconut shell activated carbon possessed a high surface area of 1,115.85 m2/g and a significant microporous volume of 0.458 cm3/g, predominantly comprising more than 99% micropores. Batch adsorption experiments demonstrated that optimal ciprofloxacin removal efficiency was achieved at pH 6, with an initial concentration of 20 mg/L, leading to complete removal within 4 hours. Langmuir isotherm analysis was used to establish the maximum adsorption capacity, which was estimated to be 187.97 mg/g. The outcomes demonstrated that pseudo-second-order kinetics and the Langmuir isotherm model were used in the adsorption of ciprofloxacin onto coconut shell activated carbon. The creation of a monolayer was made easier by the fact that the interaction between the adsorbent and adsorbate was predominantly controlled by chemisorption, showing the relevance of the accessible surface sites on the activated carbon. Furthermore, the adsorption process was influenced by both chemical bonding between the functional groups of the activated carbon surface and ciprofloxacin, as well as electrostatic interactions. The adsorption of wastewater from a hospital effluent revealed a maximum removal efficiency of 75.10%, indicating significant competition for active adsorption sites among the various organic pollutants present in the wastewater. Overall, coconut shell activated carbon demonstrates promise as a cost-effective and sustainable adsorbent material for ciprofloxacin removal.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:31:17Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:31:17Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsChapter 1. Introduction 1
1.1 Research background 1
1.2 Statement of the problems 2
1.3 Purpose of the study 2
1.4 Research objectives 3
Chapter 2. Literature review 5
2.1 Ciprofloxacin properties – adsorbate 5
2.2 Ciprofloxacin in wastewater 8
2.3 Ciprofloxacin removal in wastewater 9
2.3.1 Adsorption of ciprofloxacin 10
2.3.2 Influencing parameters of adsorption 12
2.3.3 Activated carbon 13
2.3.3.1 Coconut shell activated carbon 14
2.3.4 Adsorption models 15
2.3.4.1 Adsorption kinetics 15
2.3.4.2 Isothermal adsorption 15
Chapter 3. Research methodology 17
3.1 Experimental design 17
3.2 Materials 18
3.2.1 Chemicals and reagents 18
3.3 Blank experiment 19
3.4 Characterization of activated carbon -adsorbent 19
3.4.1 Adsorption kinetics and isotherm adsorption 20
3.5 Batch adsorption experiment 21
3.5.1 Activated carbon dosage 22
3.5.2 pH value 22
3.5.3 Initial concentration 23
3.6 Realistic wastewater adsorption 23
3.7 Analysis of results 24
3.7.1 Quality control 24
3.8 Analytical methods 26
3.8.1 Characterization of activated carbon -adsorbent 26
3.8.1.1 Brunauer-Emmett-Teller (BET) analyzer 26
3.8.1.2 Fourier Transform Infrared Spectroscopy (FTIR) 28
3.8.1.3 Scanning Electron Microscope Energy-dispersive X-ray spectroscopy (SEM-EDS) 29
3.8.1.4 Zeta potential 31
3.8.2 Measurement of ciprofloxacin- adsorbate 32
3.8.2.1 UV-Vis spectrophotometer 32
3.8.2.2 High-Performance Liquid Chromatography with Diode Array Detector(HPLC-DAD) 33
Chapter 4. Results and discussion 36
4.1 Blank experiment 36
4.2 Physicochemical characterization of activated carbon -adsorbent 37
4.2.1 Bruneauer-Emmett Teller (BET) analysis 37
4.2.2 Fourier Transform Infrared Spectroscopy (FTIR) 39
4.2.3 Scanning Electron Microscope Energy-dispersive X-ray spectroscopy (SEM-EDS) 42
4.2.4 Zeta potential 45
4.3 Adsorption models 46
4.3.1 Adsorption kinetics 46
4.3.2 Adsorption isotherm 48
4.4 Batch Adsorption Experiment 50
4.4.1 Effect of activated carbon dosage on adsorption 50
4.4.2 Effect of initial pH on adsorption 51
4.4.3 Effect of ciprofloxacin initial concentration on adsorption 53
4.5 Practical application 55
4.5.1 Removal effect on hospital effluent wastewater 55
Chapter 5. Conclusions and recommendations 59
5.1 Conclusions 59
5.2 Limitations of the study 60
5.3 Recommendations 60
References 62
-
dc.language.isoen-
dc.subject活性炭zh_TW
dc.subject吸附機理zh_TW
dc.subject環丙沙星zh_TW
dc.subject吸附效率zh_TW
dc.subject廢水zh_TW
dc.subjectciprofloxacinen
dc.subjectadsorption mechanismen
dc.subjectadsorption efficiencyen
dc.subjectactivated carbonen
dc.subjectwastewateren
dc.title椰殼活性炭吸附去除環丙沙星zh_TW
dc.titleAdsorptive Removal of Ciprofloxacin by Coconut Shell Activated Carbonen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉 于榕;郭繼汾zh_TW
dc.contributor.oralexamcommitteeJu-Jung Liu;Jih-Fen Kuoen
dc.subject.keyword活性炭,環丙沙星,吸附機理,吸附效率,廢水,zh_TW
dc.subject.keywordactivated carbon,ciprofloxacin,adsorption mechanism,adsorption efficiency,wastewater,en
dc.relation.page70-
dc.identifier.doi10.6342/NTU202304100-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
dc.date.embargo-lift2028-08-11-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
6.03 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved