請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90116完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 唐牧群 | zh_TW |
| dc.contributor.advisor | Muh-Chyun Tang | en |
| dc.contributor.author | 高竹瑩 | zh_TW |
| dc.contributor.author | Chu-Ying Kao | en |
| dc.date.accessioned | 2023-09-22T17:28:52Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-13 | - |
| dc.identifier.citation | Abbasi, A., Chung, K. S. K., & Hossain, L. (2012). Egocentric analysis of co-authorship network structure, position and performance. Information Processing & Management, 48(4), 671-679. https://doi.org/10.1016/j.ipm.2011.09.001
Association of College and Research Libraries (2003, June 24). Principles and Strategies for the Reform of Scholarly Communication 1. Retrieved July 20, 2023, from https://www.ala.org/acrl/publications/whitepapers/principlesstrategies Barabási, A. L. (2014). Linked: How everything is connected to everything else and what it means for business, science, and everyday life. Basic Books. Battiston, F., Iacovacci, J., Nicosia, V., Bianconi, G., & Latora, V. (2016). Emergence of multiplex communities in collaboration networks. PloS One, 11(1), e0147451. https://doi.org/10.1371/journal.pone.0147451 Berardo, R. (2011). Networking networkers: An initial exploration of the patterns of collaboration among the members of a new community in political science. PS: Political Science & Politics, 44(1), 69-75. https://doi.org/10.1017/S1049096510001885 Bioethics (n.d.). Open Peer Commentary calls - Bioethics Today. Retrieved July 20, 2023, from https://bioethicstoday.org/about/opc-calls/ Borgman, C. L. (1989). Bibliometrics and scholarly communication: Editor’s introduction. Communication Research, 16(5), 583–599. https://doi.org/10.1177/009365089016005002 Borgman, C. L., & Furner, J. (2002). Scholarly communication and bibliometrics. Annual Review of Information Science and Technology, 36(1), 2-72. https://doi.org/10.1002/aris.1440360102 Bornmann, L. (2011). Scientific peer review. Annual Review of Information Science and Technology, 45(1), 197-245. https://doi.org/10.1002/aris.2011.1440450112 Bozdogan, H., & Akbilgic, O. (2013). Social network analysis of scientific collaborations across different subject fields. Information Services & Use, 33(3-4), 219-233. https://doi.org/10.3233/ISU-130715 Cambridge University Press (n.d.). Commentary Proposal Instructions. Retrieved July 20, 2023, from https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/information/commentary-proposal-instructions Cardillo, A., Gómez-Gardeñes, J., Zanin, M., Romance, M., Papo, D., del Pozo, F., & Boccaletti, S. (2013). Emergence of network features from multiplexity. Scientific reports, 3, 1-6. https://doi.org/10.1038/srep01344 Cozzo, E., De Arruda, G. F., Rodrigues, F. A., & Moreno, Y. (2018). Multiplex networks: basic formalism and structural properties. Springer. https://doi.org/10.1007/978-3-319-92255-3 Cranmer, S. J., Desmarais, B. A., & Morgan, J. W. (2020). Inferential Network Analysis. Cambridge University Press. https://doi.org/10.1017/9781316662915 Cranmer, S. J., Leifeld, P., McClurg, S. D., & Rolfe, M. (2017). Navigating the range of statistical tools for inferential network analysis. American Journal of Political Science, 61(1), 237-251. https://doi.org/10.1111/ajps.12263 Ding, Y. (2011). Scientific collaboration and endorsement: Network analysis of coauthorship and citation networks. Journal of Informetrics, 5(1), 187-203. https://doi.org/10.1016/j.joi.2010.10.008 F1000 Research (n.d.). Open peer review. Retrieved July 20, 2023, from https://think.f1000research.com/open-peer-review/ Hachani, S. (2015). Open peer review: Fast forward for a new science. Advances in Librarianship, 39, 115-141. https://doi.org/10.1108/S0065-283020150000039012 Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M., Krivitsky, P. N., Morris, M. (2023). ergm: Fit, Simulate and Diagnose Exponential-Family Models for Networks. The Statnet Project (https://statnet.org). R package version 4.5.0, https://CRAN.R-project.org/package=ergm Harnad, S. (1990). Scholarly skywriting and the prepublication continuum of scientific inquiry. Psychological Science, 1(6), 342-344. https://doi.org/10.1111/j.1467-9280.1990.tb00234.x Harris, J. K. (2013). An introduction to exponential random graph modeling.173. Sage Publications. Harwood, N. (2009). An interview-based study of the functions of citations in academic writing across two disciplines. Journal of Pragmatics, 41(3), 497-518. https://doi.org/10.1016/j.pragma.2008.06.001 Hunter, D. R., Handcock, M. S., Butts, C. T., Goodreau, S. M., & Morris, M. (2008). ergm: A package to fit, simulate and diagnose exponential-family models for networks. Journal of Statistical Software, 24(3), 1–29. https://doi.org/doi:10.18637/jss.v024.i03 Kanawati, R. (2015). Multiplex Network Mining: A Brief Survey. IEEE Intelligent Informatics Bulletin, 16(1), 24-27. Kessler, M. M. (1963). Bibliographic coupling between scientific papers. American Documentation., 14(1), 10–25. https://doi.org/10.1002/asi.5090140103 Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014). Multilayer networks. Journal of Complex Networks, 2(3), 203-271. https://doi.org/10.1093/comnet/cnu016 Koku, E., Nazer, N., & Wellman, B. (2001). Netting scholars: Online and offline. American Behavioral Scientist, 44(10), 1752-1774. https://doi.org/10.1177/00027640121958023 Krivitsky, P. N., & Morris, M. (2017). Inference for social network models from egocentrically sampled data, with application to understanding persistent racial disparities in HIV prevalence in the US. TheAnnals of Applied Statistics, 11(1), 427-455. https://doi.org/10.1214/16-AOAS1010 Krivitsky, P. N., Hunter, D. R., Morris, M., Klumb, C. (2023). ergm 4: New Features for Analyzing Exponential-Family Random Graph Models. Journal of Statistical Software, 105(6), 1–44. https://doi.org/10.18637/jss.v105.i06 Kuhn, T. S. (1962). The structure of scientific revolutions. University of Chicago press. Kuhn, T. S. (2012). The structure of scientific revolutions 50th anniversary edition. University of Chicago Press. (Original work published 1962). https://doi.org/10.7208/chicago/9780226458144.001.0001 Luke, D. A. (2015). A user's guide to network analysis in R. Springer. https://doi.org/10.1007/978-3-319-23883-8 Ma, R. (2012). Author bibliographic coupling analysis: A test based on a Chinese academic database. Journal of Informetrics, 6(4), 532-542. https://doi.org/10.1016/j.joi.2012.04.006 Magnani, M., Micenkova, B., & Rossi, L. (2013). Combinatorial analysis of multiple networks. arXiv preprint arXiv:1303.4986. https://doi.org/10.48550/arXiv.1303.4986 Moody, J. (2004). The structure of a social science collaboration network: Disciplinary cohesion from 1963 to 1999. American Sociological Review, 69(2), 213-238. https://doi.org/10.1177/000312240406900204 Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., & Onnela, J. P. (2010). Community structure in time-dependent, multiscale, and multiplex networks. Science, 328(5980), 876-878. https://doi.org/10.1126/science.1184819 Newman, M. E. (2001). Scientific collaboration networks. I. Network construction and fundamental results. Physical Review E, 64(1), 016131. https://doi.org/10.1103/PhysRevE.64.016131 O’Doherty, K. C. (2020). Open peer commentaries in Theory & Psychology. Theory & Psychology, 30(3), 307-308. https://doi.org/10.1177/0959354320930826 Price, D. (1963). Little science, big science. Columbia University Press. https://doi.org/10.7312/pric91844 Pyhältö, K., Nummenmaa, A. R., Soini, T., Stubb, J., & Lonka, K. (2012). Research on scholarly communities and the development of scholarly identity in Finnish doctoral education. In S. Ahola, & D. M. Hoffman (Eds.), Higher Education research in Finland: Emerging structures and contemporary issues (pp. 337-354). University of Jyväskylä. Qiu, J. P., Dong, K., & Yu, H. Q. (2014). Comparative study on structure and correlation among author co-occurrence networks in bibliometrics. Scientometrics, 101, 1345-1360. https://doi.org/10.1007/s11192-014-1315-6 Tang, M. C., Cheng, Y. J., & Chen, K. H. (2017). A longitudinal study of intellectual cohesion in digital humanities using bibliometric analyses. Scientometrics, 113, 985-1008. https://doi.org/10.1007/s11192-017-2496-6 Tattersall, A. (2015). For what it’s worth–the open peer review landscape. Online Information Review, 39(5), 649-663. https://doi.org/10.1108/oir-06-2015-0182 Uddin, S., Hossain, L., & Rasmussen, K. (2013). Network effects on scientific collaborations. PloS one, 8(2), e57546. https://doi.org/10.1371/journal.pone.0057546 van der Pol, J. (2019). Introduction to Network Modeling Using Exponential Random Graph Models (ERGM): Theory and an Application Using R-Project. Computational Economics, 54, 845-875. https://doi.org/10.1007/s10614-018-9853-2 Walker, R., & Rocha da Silva, P. (2015). Emerging trends in peer review—a survey. Frontiers in Neuroscience, 9, 169. https://doi.org/10.3389/fnins.2015.00169 Wallace, M. L., Larivière, V., & Gingras, Y. (2012). A small world of citations? The influence of collaboration networks on citation practices. PloS One, 7(3), e33339. https://doi.org/10.1371/journal.pone.0033339 White, H. D., & Griffith, B. C. (1981). Author cocitation: A literature measure of intellectual structure. Journal of the American Society for Information Science, 32(3), 163-171. https://doi.org/10.1002/asi.4630320302 White, H. D., Wellman, B., & Nazer, N. (2004). Does citation reflect social structure?: Longitudinal evidence from the “Globenet” interdisciplinary research group. Journal of the American Society for information Science and Technology, 55(2), 111-126. https://doi.org/10.1002/asi.10369 Yan, E., & Ding, Y. (2009). Applying centrality measures to impact analysis: A coauthorship network analysis. Journal of the American Society for Information Science and Technology, 60(10), 2107-2118. https://doi.org/10.1002/asi.21128 Zhao, D., & Strotmann, A. (2008). Author bibliographic coupling: Another approach to citation‐based author knowledge network analysis. Proceedings of the American Society for Information Science and Technology, 45(1), 1-10. https://doi.org/10.1002/meet.2008.1450450292 Zuccala, A. (2006). Modeling the invisible college. Journal of the American Society for Information Science and Technology, 57(2), 152-168. https://doi.org/10.1002/asi.20256 譚躍、彭泰權、江彥生(2022)。候選人臉書粉絲專頁追蹤網絡的面貌,形成與結果:以2016年區域立委選舉為例的社群網絡分析。資訊社會研究,43, 115-152。https://doi.org/10.29843/JCCIS.202207_(43).0005 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90116 | - |
| dc.description.abstract | 本研究探討公開同儕評論網絡與書目計量網絡之間的相關性,研究對象是於2011年至2020年之間於Behaviroal and Brain Science期刊發表目標文章和公開同儕評論(Open peer commentary)文章的作者。研究目的包含:(1)探討公開同儕評論網絡的特性;(2)探討公開同儕評論網絡與其他學術關係的相關性。研究方法採用社會網絡分析法,使用社會網絡指標分析公開同儕評論網絡,並使用R程式的指數隨機圖模型對不同網絡之間的相關性進行分析。在資料蒐集方面,首先蒐集學者的公開同儕評論關係,進一步使用具有公開同儕評論關係的節點,至Scopus資料庫蒐集引用、合著、作者共被引、作者書目耦合關係。透過不同關係之間的相關性分析,討論兩學者之間在不同關係的產生是否有跡可循,並探討公開同儕評論關係對學術社群的知識交流意義。研究發現,公開同儕評論網絡節點之間沒有明顯關係互惠性,公開同儕評論在有引用關係的情況下,對連結的產生為負相關;公開同儕評論與合著網絡沒有相關;公開同儕評論、引用、合著網絡在有作者共被引、作者書目耦合這兩種智識關係的情況下,對連結的產生有相關。研究貢獻則能提供不同於書目計量的角度,對學術社群之間有關公開同儕評論方面的學術交流,提供不同的觀點。 | zh_TW |
| dc.description.abstract | One of the few publication venues where open peer commentary has been successfully implemented is Behavioral and Brain Sciences (BBS), a highly regarded, highly interdisciplinary journal published by Cambridge University Press. The open commentary in BBS was proposed to address the drawbacks of traditional peer review. It also presented a novel scholarly communication. One wonder whether open commentary is predicated on other means of formal scholarly communication, such as collaboration and citation. Another possible factor that might influence commentary are the intellectual affinity of two researchers, which can be defined either by author co-citation or author bibliographic coupling. To address these questions, a social network analytical approach was taken where five networks were created: the open commentary network, inter-citation network, co-author network, author co-citation network, and author bibliographic coupling networks. ERGMs were then performed to test their relationships.
The results show that there is no obvious relationship reciprocity between nodes in the open peer commentary network. Surprisingly, the open peer commentary network was found to be negatively correlated with the inter-citation network. Furthermore, no significant correlation was found between the commentary network with either co-author network. However, the author-co-citation network and author bibliographic coupling networks were found to be correlated with the open commentary network, co-author network and inter-citation networks. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:28:52Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T17:28:52Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii 目次 iii 圖目次 iv 表目次 v 第一章 緒論 1 第一節 問題陳述 1 第二節 研究目的與研究問題 6 第三節 研究範圍與限制 7 第四節 名詞解釋 7 第二章 文獻回顧 9 第一節 學術社群 9 第二節 多重網絡研究 14 第三章 研究設計與實施 20 第一節 研究對象 20 第二節 研究流程 24 第三節 資料蒐集與處理 25 第四節 資料分析 34 第四章 研究結果與討論 36 第一節 公開同儕評論網絡的社會網絡分析 36 第二節 不同網絡之間的相關性分析 40 第三節 綜合討論 47 第五章 研究結論與建議 49 第一節 研究結論 49 第二節 未來研究建議 50 參考文獻 51 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 社會網絡分析 | zh_TW |
| dc.subject | 學術社群 | zh_TW |
| dc.subject | 公開同儕評論 | zh_TW |
| dc.subject | scholarly community | en |
| dc.subject | social network analysis | en |
| dc.subject | open peer commentary | en |
| dc.title | 公開同儕評論網絡與書目計量網絡相關性之探討—以Behavioral and Brain Sciences期刊為例 | zh_TW |
| dc.title | Exploring the Relationship between Open Peer Commentary and Bibliographic Networks: A Case Study of Behavioral and Brain Sciences | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 羅思嘉;林頌堅;董蕙茹 | zh_TW |
| dc.contributor.oralexamcommittee | Szu-Chia Lo;Sung-Chien Lin;Huei-Ru Dong | en |
| dc.subject.keyword | 學術社群,社會網絡分析,公開同儕評論, | zh_TW |
| dc.subject.keyword | scholarly community,social network analysis,open peer commentary, | en |
| dc.relation.page | 57 | - |
| dc.identifier.doi | 10.6342/NTU202304153 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-14 | - |
| dc.contributor.author-college | 文學院 | - |
| dc.contributor.author-dept | 圖書資訊學系 | - |
| 顯示於系所單位: | 圖書資訊學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
