Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90099
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王振男zh_TW
dc.contributor.advisorJenn-Nan Wangen
dc.contributor.author張紘維zh_TW
dc.contributor.authorHung-Wei Changen
dc.date.accessioned2023-09-22T17:24:38Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-11-
dc.identifier.citation[1] D. Applebaum. Levy Process and Stochastic Calculus. Cambridge University Press, 2009.
[2] K. Athreya and S. Lahiri. Measure Theory and Probability Theory. Springer, 2016.
[3] N. Bingham and R. Kiesel. Risk-Neutral Valuation:Pricing and Hedging of Financial Derivatives. Springer, 2003.
[4] F. Delbaen and W. Schachermayer. A general version of the fundamental theorem of asset pricing (1994). Mathematische Annalen, 300:463–520, 09 1994.
[5] A. E. Kyprianou. Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer, 2006.
[6] D. Madan, P. Carr, M. Stanley, and E. Chang. The variance gamma process and option pricing. Review of Finance, 2, 11 1999.
[7] D. Madan and F. Milne. Option pricing with v. g. martingale components1. Mathematical Finance, 1:39 – 55, 10 1991.
[8] P. Protter. Stochastic Integration and Differential Equations. Springer, 2003.
[9] J. M. Steele. Stochastic Calculus and Financial Applications. Springer, 2012
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90099-
dc.description.abstract本論文旨在探索萊維過程及其在真實世界中的應用,重點著重於金融領域。論文的第一部分深入探討了萊維過程的基本數學理論,包括萊維-伊托分解。第二部分涵蓋了對於半鞅的隨機積分定義,以及伊托公式。第三部分介紹了基本選擇權定價定理,使數學模型貼近實際應用,探討了隨機積分在金融領域中的應用。最後,第四部分呈現了前幾節所討論理論的實作,具體研究了幾何布朗運動和幾何變異伽瑪過程下歐式購買期權的定價公式。為了估算公式中的參數,分析了台灣加權股價指數期權的價格資料。zh_TW
dc.description.abstractThe aim of this thesis is to explore Levy processes and their applications in the real world, with a focus on the field of finance. The first part of the thesis delves into the fundamental mathematical theory behind Levy processes, including the Levy-Ito decomposition. The second part contains the definition of stochastic integral with respect to semi-martingales, and the Ito Formula. The third part introduces the fundamental pricing theorem to bridge the gap between mathematical models and real-world applications and the application of stochastic integrals in finance. Finally, the fourth part presents an implementation of the theory discussed in the earlier sections, specifically investigating the pricing formula of European call option for Geometric Brownian motion and Geometric Variance Gamma Process. To estimate the parameters in the formula, the prices of options on TAIEX were analyzed.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:24:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:24:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 iii
Abstract v
Contents vii
List of Tables ix
Denotation xi
Chapter 1 Introduction 1
Chapter 2 Levy Process 3
2.1 Levy Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Levy-Ito Decomposition . . . . . . . . . . . . . . . . . . . . . . . . 19
Chapter 3 Semi-maritingale Integral 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Semi-Martingale Integral . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Ito’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Chapter 4 Fundamental Financial Theorem 65
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Fundamental Theorem of Financial Asset Pricing . . . . . . . . . . . 68
4.3 Change of Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4 Black-Scholes Formula . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.5 Variance Gamma process . . . . . . . . . . . . . . . . . . . . . . . . 81
Chapter 5 Empirical Test 85
5.1 Empirical Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
References 89
-
dc.language.isoen-
dc.subject歐式選擇權定價zh_TW
dc.subject台指選定價模型zh_TW
dc.subject萊維過程zh_TW
dc.subjectEuropean call optionen
dc.subjectLevy processen
dc.subjectTXOen
dc.subjectTXO option pricingen
dc.title萊維過程方差伽瑪選擇權定價模型以台指選為例zh_TW
dc.titleLevy process and Variance Gamma option pricing model An empirical test on TXOen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee千野由喜;林景隆;林奕亘zh_TW
dc.contributor.oralexamcommitteeYuki Chino;Ching-Lung Lin;Yi-Hsuan Linen
dc.subject.keyword萊維過程,歐式選擇權定價,台指選定價模型,zh_TW
dc.subject.keywordLevy process,European call option,TXO,TXO option pricing,en
dc.relation.page89-
dc.identifier.doi10.6342/NTU202303742-
dc.rights.note未授權-
dc.date.accepted2023-08-11-
dc.contributor.author-college理學院-
dc.contributor.author-dept數學系-
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
482.2 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved