請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90099完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王振男 | zh_TW |
| dc.contributor.advisor | Jenn-Nan Wang | en |
| dc.contributor.author | 張紘維 | zh_TW |
| dc.contributor.author | Hung-Wei Chang | en |
| dc.date.accessioned | 2023-09-22T17:24:38Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-11 | - |
| dc.identifier.citation | [1] D. Applebaum. Levy Process and Stochastic Calculus. Cambridge University Press, 2009.
[2] K. Athreya and S. Lahiri. Measure Theory and Probability Theory. Springer, 2016. [3] N. Bingham and R. Kiesel. Risk-Neutral Valuation:Pricing and Hedging of Financial Derivatives. Springer, 2003. [4] F. Delbaen and W. Schachermayer. A general version of the fundamental theorem of asset pricing (1994). Mathematische Annalen, 300:463–520, 09 1994. [5] A. E. Kyprianou. Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer, 2006. [6] D. Madan, P. Carr, M. Stanley, and E. Chang. The variance gamma process and option pricing. Review of Finance, 2, 11 1999. [7] D. Madan and F. Milne. Option pricing with v. g. martingale components1. Mathematical Finance, 1:39 – 55, 10 1991. [8] P. Protter. Stochastic Integration and Differential Equations. Springer, 2003. [9] J. M. Steele. Stochastic Calculus and Financial Applications. Springer, 2012 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90099 | - |
| dc.description.abstract | 本論文旨在探索萊維過程及其在真實世界中的應用,重點著重於金融領域。論文的第一部分深入探討了萊維過程的基本數學理論,包括萊維-伊托分解。第二部分涵蓋了對於半鞅的隨機積分定義,以及伊托公式。第三部分介紹了基本選擇權定價定理,使數學模型貼近實際應用,探討了隨機積分在金融領域中的應用。最後,第四部分呈現了前幾節所討論理論的實作,具體研究了幾何布朗運動和幾何變異伽瑪過程下歐式購買期權的定價公式。為了估算公式中的參數,分析了台灣加權股價指數期權的價格資料。 | zh_TW |
| dc.description.abstract | The aim of this thesis is to explore Levy processes and their applications in the real world, with a focus on the field of finance. The first part of the thesis delves into the fundamental mathematical theory behind Levy processes, including the Levy-Ito decomposition. The second part contains the definition of stochastic integral with respect to semi-martingales, and the Ito Formula. The third part introduces the fundamental pricing theorem to bridge the gap between mathematical models and real-world applications and the application of stochastic integrals in finance. Finally, the fourth part presents an implementation of the theory discussed in the earlier sections, specifically investigating the pricing formula of European call option for Geometric Brownian motion and Geometric Variance Gamma Process. To estimate the parameters in the formula, the prices of options on TAIEX were analyzed. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:24:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T17:24:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract v Contents vii List of Tables ix Denotation xi Chapter 1 Introduction 1 Chapter 2 Levy Process 3 2.1 Levy Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Levy-Ito Decomposition . . . . . . . . . . . . . . . . . . . . . . . . 19 Chapter 3 Semi-maritingale Integral 37 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 Semi-Martingale Integral . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3 Ito’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Chapter 4 Fundamental Financial Theorem 65 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2 Fundamental Theorem of Financial Asset Pricing . . . . . . . . . . . 68 4.3 Change of Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.4 Black-Scholes Formula . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.5 Variance Gamma process . . . . . . . . . . . . . . . . . . . . . . . . 81 Chapter 5 Empirical Test 85 5.1 Empirical Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.2 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 References 89 | - |
| dc.language.iso | en | - |
| dc.subject | 歐式選擇權定價 | zh_TW |
| dc.subject | 台指選定價模型 | zh_TW |
| dc.subject | 萊維過程 | zh_TW |
| dc.subject | European call option | en |
| dc.subject | Levy process | en |
| dc.subject | TXO | en |
| dc.subject | TXO option pricing | en |
| dc.title | 萊維過程方差伽瑪選擇權定價模型以台指選為例 | zh_TW |
| dc.title | Levy process and Variance Gamma option pricing model An empirical test on TXO | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 千野由喜;林景隆;林奕亘 | zh_TW |
| dc.contributor.oralexamcommittee | Yuki Chino;Ching-Lung Lin;Yi-Hsuan Lin | en |
| dc.subject.keyword | 萊維過程,歐式選擇權定價,台指選定價模型, | zh_TW |
| dc.subject.keyword | Levy process,European call option,TXO,TXO option pricing, | en |
| dc.relation.page | 89 | - |
| dc.identifier.doi | 10.6342/NTU202303742 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-11 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 數學系 | - |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 482.2 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
