Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90093
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林浩雄zh_TW
dc.contributor.advisorHao-Hsiung Linen
dc.contributor.author陳昱鈞zh_TW
dc.contributor.authorYu-Chun Chenen
dc.date.accessioned2023-09-22T17:23:05Z-
dc.date.available2023-11-10-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-09-
dc.identifier.citationCampbell, J.C. Recent Advances in Telecommunications Avalanche Photodiodes. Journal of Lightwave Technology 2007, 25, 109-121.
Haralson, J.N.; Parks, J.W.; Brennan, K.F.; Clark, W.; Tarof, L.E. Numerical simulation of avalanche breakdown within InP-InGaAs SAGCM standoff avalanche photodiodes. Journal of Lightwave Technology 1997, 15, 2137-2140.
M. A. Itzler, C. S. Wang, S. McCoy, N. Codd and N. Komaba, "Planar bulk InP avalanche photodiode design for 2.5 and 10 Gb/s applications," 24th European Conference on Optical Communication. ECOC '98 (IEEE Cat. No.98TH8398), Madrid, Spain, 1998, pp. 59-60 vol.1, doi: 10.1109/ECOC.1998.732435.
Baliga, B.J. Fundamentals of Power Semiconductor Devices, 1st ed.; Springer-Verlag: Berlin, Germany, 2008; pp. 149–151
Taguchi, K.; Torikai, T.; Sugimoto, Y.; Makita, K.; Ishihara, H.; Fujita, S.; Minemura, K. Planar InP/InGaAs avalanche photodiodes
Liu, Y.; Forrest, S.R.; Hladky, J.; Lange, M.J.; Olsen, G.H.; Ackley, D.E. A planar InP/InGaAs avalanche photodiode with floating guard ring and double diffused junction. J. Light. Technol. 1992, 10, 182–193.
Wei, J.; Dries, J.C.; Wang, H.S.; Olsen, G.H.; Forrest, S.R. Optimization of double diffused floating guarding ring InGaAs/InP avalanche photodiodes. In Proceedings of the LEOS 2001 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Cat. No.01CH37242), San Diego, CA, USA, 12–13 November 2001; Volume 2, pp. 697–698.
Janeković, I.; Knežević, T.; Suligoj, T.; Grubišić, D. Optimization of floating guard ring parameters in separate-absorption-and-multiplication silicon avalanche photodiode structure. In Proceedings of the 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 25–29 May 2015; pp. 37–41.
Zhang, J.; Li, X.; Du, C.; Jiang, Y.; Ma, Z.; Chen, H.; Jia, H.; Wang, W.; Deng, Z. Experimental Demonstration of the Impact of the Parameters of Floating Guard Ring on Planar InP/InGaAs-Based Avalanche Photodiodes’ Performance and Its Optimization. IEEE Photonics J. 2022, 14, 2218406.
Ackley, D.E.; Hladky, J.; Lange, M.J.; Mason, S.; Erickson, G.; Olsen, G.H.; Ban, V.S.; Liu, Y.; Forrest, S.R. In0.53Ga0.47As/InP floating guard ring avalanche photodiodes fabricated by double diffusion. IEEE Photonics Technol. Lett. 1990, 2, 571–573.
Taib, S.N.; Othman, M.A.; Napiah, Z.A.F.M.; Hussain, M.N.; Yasin, N.Y.M.; Arshad, T.S.M. InGaAs/InP avalanche photodiode performance effect using variation guard ring structures. In Proceedings of the 2013 3rd International Conference on Instrumentation, Communications, Information Technology and Biomedical Engineering (ICICI-BME), Bandung, Indonesia, 7–8 November 2013; pp. 120–123.
D.W.Yan,Z.M.Zhu,J.M.Cheng,X.F.Gu,andH. Lu, “Forward current transport mechanism and Schottky barrier characteristics of a Ni/Au contact on n-GaN,” Chin. Phys. Lett., vol. 29, no. 8, pp. 087204-1–087204-4, Feb. 2012, doi: 10.1088/0256- 307x/29/8/087204.
Yasuda, K.; Shirai, T.; Kishi, Y.; Yamazaki, S.; Kaneda, T. Heterojunction effect on spectral and frequency responses in InP/InGaAsP/InGaAs APD. Jpn. J. Appl. Phys. 1983, 22, 291.
Chen YC, Yan RH, Huang HC, Nieh LH, Lin HH. Guard Ring Design to Prevent Edge Breakdown in Double-Diffused Planar InGaAs/InP Avalanche Photodiodes. Materials (Basel). 2023 Feb 16;16(4):1667. doi: 10.3390/ma16041667. PMID: 36837297; PMCID: PMC9961716.
顏瑞宏。「磷化銦/砷化銦鎵SAGCM雪崩光電二極體護環效應」。碩士論文,國立臺灣大學電子工程學研究所,2021。<https://hdl.handle.net/11296/7d3sya>。
黃旭嘉。「InGaAs/InP 雪崩光電二極體之側護環與懸護環電性分析」。碩士論文,國立臺灣大學電子工程學研究所,2021。<https://hdl.handle.net/11296/3b6j5k>。
X. G. Zheng et al., "Long-wavelength In/sub 0.53/Ga/sub 0.47/As-In/sub 0.52/Al/sub 0.48/As large-area avalanche photodiodes and arrays," in IEEE Journal of Quantum Electronics, vol. 40, no. 8, pp. 1068-1073, Aug. 2004, doi: 10.1109/JQE.2004.831637.
S. R. Cho et al., "Suppression of avalanche multiplication at the periphery of diffused junction by floating guard rings in a planar InGaAs-InP avalanche photodiode," in IEEE Photonics Technology Letters, vol. 12, no. 5, pp. 534-536, May 2000, doi: 10.1109/68.841277.
Kyung-Sook Hyun, Youngmi Paek, Yong-Hwan Kwon, Sungmin Hwang, Jongin Shim, Seong Joon Ahn; Pre-breakdown suppression in planar InP∕InGaAs avalanche photodiode using deep floating guard ring. Appl. Phys. Lett. 6 December 2004; 85 (23): 5547–5549.
T. Knežević and T. Suligoj, "Analysis of electrical and optical characteristics of InP/InGaAs avalanche photodiodes in linear regime by a new simulation environment," 2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 2016, pp. 28-33, doi: 10.1109/MIPRO.2016.7522105.
L. L. Chang and H. C. Casey Jr, “Diffusion and solubility of zinc in indium phosphide”, Solide-State Electronics, vol. 7, no. 6, p. 481-485, 1964.
Okuto, Y.; Crowell, C.R. Energy-conservation considerations in the characterization of impact ionization in semiconductors. Phys. Rev. B 1972, 6, 3076–3081.
Hurkx, G.A.; Klaassen, D.B.M.; Knuvers, M.P.G. A new recombination model for device simulation including tunneling. IEEE Trans. Electron Dev. 1992, 39, 331–338.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90093-
dc.description.abstract本論文透過量測SAGCM雪崩式光電二極體的光暗電流,分析其崩潰電壓與增益行為,研究不同的元件設計參數是否能改善因擴散邊緣強電場導致的提前崩潰,以及改善的能力,並透過這兩項參數將元件分為四類:發散型A、發散型B、過渡型、線性型,其中發散型的表現比對照組更差,實務設計上應避免,線性型則擁有較高崩潰電壓與線性分佈的增益,不僅可以削弱邊緣強電場在高偏壓時的主導性,還擁有更高的可預測性。基於某些設計的FGR確實可以提升元件崩潰電壓,我們利用TCAD模擬了更多結構來釐清提前崩潰被進一步改善的可能性,其中更提出了擁有第二AGR的雙重AGR結構,該結構利用一個擴散深度更淺的第二AGR來分散第一AGR邊緣的電場,特定的第二AGR深度可以使得崩潰電壓提升2.1V,並且崩潰時的中央區電場也更加提升。zh_TW
dc.description.abstractThis paper investigates the improvement of premature breakdown caused by strong electric fields near the diffusion edge and its associated gain behavior by measuring the photocurrent and darkcurrent of actual components. Different design of FGR’s parameters are analyzed to determine whether they can enhance the performance and mitigation of premature breakdown. Based on two key parameters, breakdown voltage and gain behavior, the components are classified into four categories: Divergent Type A, Divergent Type B, Transitional Type, and Linear Type. Divergent Types exhibit inferior performance compared to the control group and should be avoided in practical designs, while Linear Types show higher breakdown voltage and linear gain distribution, which not only mitigates the dominance of edge electric fields at high bias voltages but also provides improved predictability.
Through certain FGR designs, it is indeed possible to increase the component's breakdown voltage. To explore the potential for further mitigation in premature breakdown, additional structures are simulated using TCAD (Technology Computer-Aided Design). Among them, a dual AGR structure with a secondary AGR is proposed. This structure employs a shallower second AGR to disperse the electric field near the first AGR edge. By adjusting the depth of the second AGR, the breakdown voltage can be increased by 2.1V, while also further enhancing the electric field in the central region during breakdown.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:23:05Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:23:05Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 I
中文摘要 II
Abstract III
目錄 V
附表索引 VIII
附圖索引 IX
Chapter 1 緒論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究方法及目的 2
1.4 論文架構 3
Chapter 2 雪崩式光偵測二極體 4
2.1 光偵測原理 4
2.2 雪崩崩潰 5
2.2.1 提前崩潰 7
2.3 暗電流機制 9
2.3.1 擴散電流 9
2.3.2 產生復合電流 9
2.3.3 陷阱輔助穿隧電流 11
2.3.4 帶間穿隧電流 12
Chapter 3 樣品介紹與電性分析 13
3.1 樣品介紹 13
3.1.1 磊晶結構 13
3.1.2 元件擴散結構 14
3.2 電性分析 17
3.2.1 逆偏電流量測 17
3.2.2 崩潰電壓 20
3.2.3 增益 27
3.2.4 結果分析 29
Chapter 4 元件模擬 36
4.1 模擬軟體與物理模型 36
4.1.1 鋅擴散模型 36
4.1.2 碰撞游離模型 37
4.1.3 SRH復合模型 38
4.2 擴散結構設計 39
4.3 電性模擬 43
4.3.1 對照組 44
4.3.1.1 中央主動區 44
4.3.1.2 中央主動區加側護環 45
4.3.2 無側護環下改變懸護環與側護環間距 46
4.3.2.1 懸護環與主動區同深 46
4.3.2.2 深度減半懸護環 52
4.3.3 有側護環下改變懸護環與側護環間距 58
4.3.3.1 懸護環與側護環同深 58
4.3.3.2 懸護環比側護環深 64
4.3.3.3 懸護環比側護環淺 70
4.3.4 雙重側護環 77
Chapter 5 結論 85
參考文獻 86
-
dc.language.isozh_TW-
dc.titleSAGCM雪崩式光偵測二極體增益分析與提前崩潰改善之模擬zh_TW
dc.titleGain Analysis of SAGCM Avalanche Photodetectors and Simulation of Premature Breakdown Eliminationen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee羅俊傑;黃朝興zh_TW
dc.contributor.oralexamcommitteeJiunn-Jye Luo;Chao-Xing Huangen
dc.subject.keyword雪崩式光偵測二極體,提前崩潰,側護環,懸護環,雙重側護環,半導體工藝模擬,增益,光偵測二極體,雪崩崩潰,zh_TW
dc.subject.keywordAvalanche photodetector,premature breakdown,attached guard ring,floating guard ring,double AGR,Santaurus TCAD,gain,SAGCM,photodetector,avalanche breakdown,en
dc.relation.page89-
dc.identifier.doi10.6342/NTU202303987-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-11-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2028-08-09-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
12.55 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved