請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90066完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡豐羽 | zh_TW |
| dc.contributor.advisor | Feng-Yu Tsai | en |
| dc.contributor.author | Elisa Gilliot | zh_TW |
| dc.contributor.author | Elisa Gilliot | en |
| dc.date.accessioned | 2023-09-22T17:16:17Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-12 | - |
| dc.identifier.citation | (1) Energy consumption by source. https://ourworldindata.org/grapher/energy-consumption-by-source-and-country (accessed 2023-04-22).
(2) Barbir, F.; Veziroǧlu, T. N.; Plass, H. J. Environmental Damage Due to Fossil Fuels Use. Int J Hydrogen Energy 1990, 15 (10), 739–749. https://doi.org/10.1016/0360-3199(90)90005-J. (3) Renewable Energy Market Size, Share Analysis | Growth Forecast - 2030. https://www.alliedmarketresearch.com/renewable-energy-market (accessed 2023-04-24). (4) Crabtree, G. W.; Lewis, N. S. Solar Energy Conversion Selectable Content List Related Content Grand Challenges in Basic Energy Sciences. 2007. https://doi.org/10.1063/1.2718755. (5) Energy outlook 2023 - Economist Intelligence Unit. https://www.eiu.com/n/campaigns/energy-in-2023/?utm_source=google&utm_medium=ppc&utm_campaign=industries-in-2023&gclid=CjwKCAjwpuajBhBpEiwA_ZtfhXZ9tbqHXrzjMr6agnk6I1vcATGeJTFxWFFoK4YOY0whg-h1hQemoBoCoEsQAvD_BwE (accessed 2023-06-03). (6) Solar Photovoltaic Cell Basics | Department of Energy. https://www.energy.gov/eere/solar/solar-photovoltaic-cell-basics (accessed 2023-07-07). (7) Weber, D. CH3NH3PbX3, Ein Pb(II)-System Mit Kubischer Perowskitstruktur. Zeitschrift fur Naturforschung - Section B Journal of Chemical Sciences 1978, 33 (12), 1443–1445. https://doi.org/10.1515/ZNB-1978-1214/MACHINEREADABLECITATION/RIS. (8) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. 2023. https://doi.org/10.1021/ja809598r. (9) Min, H.; Yoon Lee, D.; Kim, J.; Kim, G.; Su Lee, K.; Kim, J.; Jae Paik, M.; Ki Kim, Y.; Kim, K. S.; Gyu Kim, M.; Joo Shin, T.; Il Seok, S. Perovskite Solar Cells with Atomically Coherent Interlayers on SnO 2 Electrodes. 444 | Nature | 2021, 598. https://doi.org/10.1038/s41586-021-03964-8. (10) Li, Z.; Zhao, Y.; Wang, X.; Sun, Y.; Zhao, Z.; Li, Y.; Zhou, H.; Chen, Q. Cost Analysis of Perovskite Tandem Photovoltaics. Joule 2018, 2 (8), 1559–1572. https://doi.org/10.1016/J.JOULE.2018.05.001. (11) Li, X.; Bi, D.; Yi, C.; Décoppet, J. D.; Luo, J.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M. A Vacuum Flash-Assisted Solution Process for High-Efficiency Large-Area Perovskite Solar Cells. Science (1979) 2016, 353 (6294), 58–62. https://doi.org/10.1126/SCIENCE.AAF8060. (12) Ho Cho, S.; Byeon, J.; Jeong, K.; Hwang, J.; Lee, H.; Jang, J.; Lee, J.; Kim, T.; Kim, K.; Choi, M.; Seog Lee, Y.; Cho, S. H.; Byeon, J.; Lee, H.; Lee, J.; Kim, T.; Choi, M.; Lee, Y. S.; Jeong, K.; Jang, J.; Hwang, J.; Kim, K. Investigation of Defect-Tolerant Perovskite Solar Cells with Long-Term Stability via Controlling the Self-Doping Effect. Adv Energy Mater 2021, 11 (17), 2100555. https://doi.org/10.1002/AENM.202100555. (13) Lim, J.; Hörantner, M. T.; Sakai, N.; Ball, J. M.; Mahesh, S.; Noel, N. K.; Lin, Y. H.; Patel, J. B.; McMeekin, D. P.; Johnston, M. B.; Wenger, B.; Snaith, H. J. Elucidating the Long-Range Charge Carrier Mobility in Metal Halide Perovskite Thin Films. Energy Environ Sci 2019, 12 (1), 169–176. https://doi.org/10.1039/C8EE03395A. (14) Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. Electron-Hole Diffusion Lengths > 175 Μm in Solution-Grown CH3NH3PbI3 Single Crystals. Science (1979) 2015, 347 (6225), 967–970. https://doi.org/10.1126/SCIENCE.AAA5760. (15) Bi, D.; Tress, W.; Dar, M. I.; Gao, P.; Luo, J.; Renevier, C.; Schenk, K.; Abate, A.; Giordano, F.; Correa Baena, J. P.; Decoppet, J. D.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M.; Hagfeldt, A. Efficient Luminescent Solar Cells Based on Tailored Mixed-Cation Perovskites. Sci Adv 2016, 2 (1). https://doi.org/10.1126/SCIADV.1501170/SUPPL_FILE/1501170_SM.PDF. (16) Best Research-Cell Efficiency Chart | Photovoltaic Research | NREL. https://www.nrel.gov/pv/cell-efficiency.html (accessed 2023-05-03). (17) Gilot, J.; Wienk, M. M.; Janssen, R. A. J. Optimizing Polymer Tandem Solar Cells. Advanced Materials 2010, 22 (8), E67–E71. https://doi.org/10.1002/ADMA.200902398. (18) Chen, Z.; Turedi, B.; Alsalloum, A. Y.; Yang, C.; Zheng, X.; Gereige, I.; Alsaggaf, A.; Mohammed, O. F.; Bakr, O. M. Single-Crystal MAPbI3 Perovskite Solar Cells Exceeding 21% Power Conversion Efficiency. ACS Energy Lett 2019, 4 (6), 1258–1259. https://doi.org/10.1021/ACSENERGYLETT.9B00847/ASSET/IMAGES/LARGE/NZ-2019-00847Q_0001.JPEG. (19) Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D’Haen, J.; D’Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E.; De Angelis, F.; Boyen, H. G. Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite. Adv Energy Mater 2015, 5 (15), 1500477. https://doi.org/10.1002/AENM.201500477. (20) Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and near-Infrared Photoluminescent Properties. Inorg Chem 2013, 52 (15), 9019–9038. https://doi.org/10.1021/IC401215X/ASSET/IMAGES/LARGE/IC-2013-01215X_0019.JPEG. (21) Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. Il. Compositional Engineering of Perovskite Materials for High-Performance Solar Cells. Nature 2015 517:7535 2015, 517 (7535), 476–480. https://doi.org/10.1038/nature14133. (22) Qiu, C.; Wu, Y.; Song, J.; Wang, W.; Li, Z. Efficient Planar Perovskite Solar Cells with ZnO Electron Transport Layer. Coatings 2022, Vol. 12, Page 1981 2022, 12 (12), 1981. https://doi.org/10.3390/COATINGS12121981. (23) Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; Grätzel, M.; Park, N. G. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports 2012 2:1 2012, 2 (1), 1–7. https://doi.org/10.1038/srep00591. (24) Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A. A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B.; Petrozza, A.; Herz, L. M.; Snaith, H. J. Lead-Free Organic–Inorganic Tin Halide Perovskites for Photovoltaic Applications. Energy Environ Sci 2014, 7 (9), 3061–3068. https://doi.org/10.1039/C4EE01076K. (25) Ulična, S.; Dou, B.; Kim, D. H.; Zhu, K.; Walls, J. M.; Bowers, J. W.; Van Hest, M. F. A. M. Scalable Deposition of High-Efficiency Perovskite Solar Cells by Spray-Coating. ACS Appl Energy Mater 2018, 1 (5), 1853–1857. https://doi.org/10.1021/ACSAEM.8B00328/ASSET/IMAGES/LARGE/AE-2018-00328Y_0004.JPEG. (26) Cao, K.; Zuo, Z.; Cui, J.; Shen, Y.; Moehl, T.; Zakeeruddin, S. M.; Grätzel, M.; Wang, M. Efficient Screen Printed Perovskite Solar Cells Based on Mesoscopic TiO2/Al2O3/NiO/Carbon Architecture. Nano Energy 2015, 17, 171–179. https://doi.org/10.1016/J.NANOEN.2015.08.009. (27) Eggers, H.; Schackmar, F.; Abzieher, T.; Sun, Q.; Lemmer, U.; Vaynzof, Y.; Richards, B. S.; Hernandez-Sosa, G.; Paetzold, U. W. Inkjet-Printed Micrometer-Thick Perovskite Solar Cells with Large Columnar Grains. Adv Energy Mater 2020, 10 (6), 1903184. https://doi.org/10.1002/AENM.201903184. (28) Whitaker, J. B.; Kim, D. H.; Larson, B. W.; Zhang, F.; Berry, J. J.; Van Hest, M. F. A. M.; Zhu, K. Scalable Slot-Die Coating of High Performance Perovskite Solar Cells. Sustain Energy Fuels 2018, 2 (11), 2442–2449. https://doi.org/10.1039/C8SE00368H. (29) Li, D.; Zhang, D.; Lim, K.-S.; Hu, Y.; Rong, Y.; Mei, A.; Park, N.-G.; Han, H.; Li, D.; Zhang, D.; Hu, Y.; Rong, Y.; Mei, A.; Han, H.; Lim, K.; Park, N. A Review on Scaling Up Perovskite Solar Cells. Adv Funct Mater 2021, 31 (12), 2008621. https://doi.org/10.1002/ADFM.202008621. (30) K. Rao, M.; Sangeetha, D. N.; Selvakumar, M.; Sudhakar, Y. N.; Mahesha, M. G. Review on Persistent Challenges of Perovskite Solar Cells’ Stability. Solar Energy 2021, 218, 469–491. https://doi.org/10.1016/J.SOLENER.2021.03.005. (31) Roesch, R.; Faber, T.; Von Hauff, E.; Brown, T. M.; Lira-Cantu, M.; Hoppe, H. Procedures and Practices for Evaluating Thin-Film Solar Cell Stability. Adv Energy Mater 2015, 5 (20). https://doi.org/10.1002/AENM.201501407. (32) Yang, J.; Siempelkamp, B. D.; Liu, D.; Kelly, T. L. Investigation of CH3NH3PbI3degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques. ACS Nano 2015, 9 (2), 1955–1963. https://doi.org/10.1021/NN506864K/SUPPL_FILE/NN506864K_SI_002.AVI. (33) Niu, G.; Guo, X.; Wang, L. Review of Recent Progress in Chemical Stability of Perovskite Solar Cells. J Mater Chem A Mater 2015, 3 (17), 8970–8980. https://doi.org/10.1039/C4TA04994B. (34) Bi, D.; Yi, C.; Luo, J.; Décoppet, J. D.; Zhang, F.; Zakeeruddin, S. M.; Li, X.; Hagfeldt, A.; Grätzel, M. Polymer-Templated Nucleation and Crystal Growth of Perovskite Films for Solar Cells with Efficiency Greater than 21%. Nature Energy 2016 1:10 2016, 1 (10), 1–5. https://doi.org/10.1038/nenergy.2016.142. (35) Lu, J.; Chen, S. C.; Zheng, Q. Defect Passivation of CsPbIBr2 Perovskites for High-Performance Solar Cells with Large Open-Circuit Voltage of 1.28 v. ACS Appl Energy Mater 2018, 1 (11), 5872–5878. https://doi.org/10.1021/ACSAEM.8B01430/ASSET/IMAGES/LARGE/AE-2018-01430M_0004.JPEG. (36) Peng, J.; Wu, Y.; Ye, W.; Jacobs, D. A.; Shen, H.; Fu, X.; Wan, Y.; Duong, T.; Wu, N.; Barugkin, C.; Nguyen, H. T.; Zhong, D.; Li, J.; Lu, T.; Liu, Y.; Lockrey, M. N.; Weber, K. J.; Catchpole, K. R.; White, T. P. Interface Passivation Using Ultrathin Polymer–Fullerene Films for High-Efficiency Perovskite Solar Cells with Negligible Hysteresis. Energy Environ Sci 2017, 10 (8), 1792–1800. https://doi.org/10.1039/C7EE01096F. (37) Ranjan, R.; Ranjan, S.; Monalisa, M.; Nalwa, K. S.; Singh, A.; Garg, A.; Gupta, R. K. Enhanced Thermal and Moisture Stability via Dual Additives Approach in Methylammonium Lead Iodide Based Planar Perovskite Solar Cells. Solar Energy 2021, 225, 200–210. https://doi.org/10.1016/J.SOLENER.2021.06.076. (38) Zhang, F.; Zhu, K. Additive Engineering for Efficient and Stable Perovskite Solar Cells. Adv Energy Mater 2020, 10 (13), 1902579. https://doi.org/10.1002/AENM.201902579. (39) Ibeh, C. C. Thermoplastic Materials : Properties, Manufacturing Methods, and Applications. Thermoplastic Materials 2011. https://doi.org/10.1201/B13623. (40) Peng, J.; Wu, Y.; Ye, W.; Jacobs, D. A.; Shen, H.; Fu, X.; Wan, Y.; Duong, T.; Wu, N.; Barugkin, C.; Nguyen, H. T.; Zhong, D.; Li, J.; Lu, T.; Liu, Y.; Lockrey, M. N.; Weber, K. J.; Catchpole, K. R.; White, T. P. Interface Passivation Using Ultrathin Polymer–Fullerene Films for High-Efficiency Perovskite Solar Cells with Negligible Hysteresis. Energy Environ Sci 2017, 10 (8), 1792–1800. https://doi.org/10.1039/C7EE01096F. (41) Saraf, R.; Maheshwari, V. PbI2 Initiated Cross-Linking and Integration of a Polymer Matrix with Perovskite Films: 1000 h Operational Devices under Ambient Humidity and Atmosphere and with Direct Solar Illumination. ACS Appl Energy Mater 2019, 2 (3), 2214–2222. https://doi.org/10.1021/ACSAEM.8B02232/ASSET/IMAGES/LARGE/AE-2018-02232K_0004.JPEG. (42) Zhao, Y.; Wei, J.; Li, H.; Yan, Y.; Zhou, W.; Yu, D.; Zhao, Q. A Polymer Scaffold for Self-Healing Perovskite Solar Cells. Nature Communications 2016 7:1 2016, 7 (1), 1–9. https://doi.org/10.1038/ncomms10228. (43) Lu, J.; Chen, S. C.; Zheng, Q. Defect Passivation of CsPbIBr2 Perovskites for High-Performance Solar Cells with Large Open-Circuit Voltage of 1.28 v. ACS Appl Energy Mater 2018, 1 (11), 5872–5878. https://doi.org/10.1021/ACSAEM.8B01430/ASSET/IMAGES/LARGE/AE-2018-01430M_0004.JPEG. (44) Giuri, A.; Masi, S.; Listorti, A.; Gigli, G.; Colella, S.; Esposito Corcione, C.; Rizzo, A. Polymeric Rheology Modifier Allows Single-Step Coating of Perovskite Ink for Highly Efficient and Stable Solar Cells. Nano Energy 2018, 54, 400–408. https://doi.org/10.1016/J.NANOEN.2018.10.039. (45) Yang, J.; Xiong, S.; Qu, T.; Zhang, Y.; He, X.; Guo, X.; Zhao, Q.; Braun, S.; Chen, J.; Xu, J.; Li, Y.; Liu, X.; Duan, C.; Tang, J.; Fahlman, M.; Bao, Q. Extremely Low-Cost and Green Cellulose Passivating Perovskites for Stable and High-Performance Solar Cells. ACS Appl Mater Interfaces 2019, 11 (14), 13491–13498. https://doi.org/10.1021/ACSAMI.9B01740/ASSET/IMAGES/LARGE/AM-2019-01740U_0005.JPEG. (46) Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature 1985 318:6042 1985, 318 (6042), 162–163. https://doi.org/10.1038/318162a0. (47) Deng, L. L.; Xie, S. Y.; Gao, F. Fullerene-Based Materials for Photovoltaic Applications: Toward Efficient, Hysteresis-Free, and Stable Perovskite Solar Cells. Adv Electron Mater 2018, 4 (10), 1700435. https://doi.org/10.1002/AELM.201700435. (48) Liu, C.; Li, W.; Li, H.; Zhang, C.; Fan, J.; Mai, Y. C60 Additive-Assisted Crystallization in CH3NH3Pb0.75Sn0.25I3 Perovskite Solar Cells with High Stability and Efficiency. Nanoscale 2017, 9 (37), 13967–13975. https://doi.org/10.1039/C7NR03507A. (49) Vidal, S.; Izquierdo, M.; Filippone, S.; Fernández, I.; Akin, S.; Seo, J. Y.; Zakeeruddin, S. M.; Grätzel, M.; Martín, N. Site-Selective Synthesis of β-[70]PCBM-like Fullerenes: Efficient Application in Perovskite Solar Cells. Chemistry – A European Journal 2019, 25 (13), 3224–3228. https://doi.org/10.1002/CHEM.201806053. (50) Xu, J.; Buin, A.; Ip, A. H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M.; Jeon, S.; Ning, Z.; McDowell, J. J.; Kanjanaboos, P.; Sun, J. P.; Lan, X.; Quan, L. N.; Kim, D. H.; Hill, I. G.; Maksymovych, P.; Sargent, E. H. Perovskite–Fullerene Hybrid Materials Suppress Hysteresis in Planar Diodes. Nature Communications 2015 6:1 2015, 6 (1), 1–8. https://doi.org/10.1038/ncomms8081. (51) Matsuo, Y. Design Concept for High-LUMO-Level Fullerene Electron-Acceptors for Organic Solar Cells. https://doi.org/10.1246/cl.2012.754 2012, 41 (8), 754–759. https://doi.org/10.1246/CL.2012.754. (52) Zhang, F.; Shi, W.; Luo, J.; Pellet, N.; Yi, C.; Li, X.; Zhao, X.; Dennis, T. J. S.; Li, X.; Wang, S.; Xiao, Y.; Zakeeruddin, S. M.; Bi, D.; Grätzel, M. Isomer-Pure Bis-PCBM-Assisted Crystal Engineering of Perovskite Solar Cells Showing Excellent Efficiency and Stability. Advanced Materials 2017, 29 (17), 1606806. https://doi.org/10.1002/ADMA.201606806. (53) Lai, Y. Y.; Cheng, Y. J.; Hsu, C. S. Applications of Functional Fullerene Materials in Polymer Solar Cells. Energy Environ Sci 2014, 7 (6), 1866–1883. https://doi.org/10.1039/C3EE43080D. (54) Collavini, S.; Saliba, M.; Tress, W. R.; Holzhey, P. J.; Völker, S. F.; Domanski, K.; Turren-Cruz, S. H.; Ummadisingu, A.; Zakeeruddin, S. M.; Hagfeldt, A.; Grätzel, M.; Delgado, J. L. Poly(Ethylene Glycol)–[60]Fullerene-Based Materials for Perovskite Solar Cells with Improved Moisture Resistance and Reduced Hysteresis. ChemSusChem 2018, 11 (6), 1032–1039. https://doi.org/10.1002/CSSC.201702265. (55) Tai, Q.; Li, J.; Liu, Z.; Sun, Z.; Zhao, X.; Yan, F. Enhanced Photovoltaic Performance of Polymer Solar Cells by Adding Fullerene End-Capped Polyethylene Glycol. J Mater Chem 2011, 21 (19), 6848–6853. https://doi.org/10.1039/C0JM04559D. (56) Qin, Q.; Zhang, Z.; Cai, Y.; Zhou, Y.; Liu, H.; Lu, X.; Gao, X.; Shui, L.; Wu, S.; Liu, J. Improving the Performance of Low-Temperature Planar Perovskite Solar Cells by Adding Functional Fullerene End-Capped Polyethylene Glycol Derivatives. J Power Sources 2018, 396, 49–56. https://doi.org/10.1016/J.JPOWSOUR.2018.05.091. (57) Eklund, P. C.; Rao, A. M.; Zhou, P.; Wang, Y.; Holden, J. M. Photochemical Transformation of C60 and C70 Films. Thin Solid Films 1995, 257 (2), 185–203. https://doi.org/10.1016/0040-6090(94)05704-4. (58) Kolhe, P.; Kannan, R. M. Improvement in Ductility of Chitosan through Blending and Copolymerization with PEG: FTIR Investigation of Molecular Interactions. 2003. https://doi.org/10.1021/BM025689. (59) Xu, J.; Buin, A.; Ip, A. H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M.; Jeon, S.; Ning, Z.; McDowell, J. J.; Kanjanaboos, P.; Sun, J. P.; Lan, X.; Quan, L. N.; Kim, D. H.; Hill, I. G.; Maksymovych, P.; Sargent, E. H. Perovskite–Fullerene Hybrid Materials Suppress Hysteresis in Planar Diodes. Nature Communications 2015 6:1 2015, 6 (1), 1–8. https://doi.org/10.1038/ncomms8081. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90066 | - |
| dc.description.abstract | 鈣鈦礦有機-無機金屬鹵化物太陽能電池因為有經濟實惠且高性能的優勢,因此可以做為替代傳統矽電池方案。儘管近年來鈣鈦礦太陽能電池的技術取得了重大進步,但穩定性和大規模生產仍然是人們持續關注的問題。 在這項研究中,我們透過鍵合丙二醇(PPG)與苯基-C71-丁酸甲酯(PC71BM)合成一種新型功能性富勒烯聚合物,命名為PCBPPG。 透過 PPG 和 PC71BM 之間的簡單酯交換過程獲得的PCBPPG可用作倒置的雙陽離子鈣鈦礦太陽能電池元件 (PSC) 的添加劑。 我們的研究顯示,添加PCBPPG可以提高了 PSC 元件的光伏能源轉換效率 (PCE)。 優化PCE可因歸於 PCBPPG 的雙重功能:通過聚合物成分(PPG)誘導的異質成核來改善鈣鈦礦形態,同時由於富勒烯成分(PC71BM)而保持良好的光電性能。 重要的是,添加 PCBPPG 的 PSC 元件在環境空氣中表現出更高的穩定性。我們的研究結果有助於開發高性能聚合物添加劑應用於PSCs的發展。 | zh_TW |
| dc.description.abstract | Perovskite organic-inorganic metal halide-based solar cells are a cost-effective and high-performing alternative to conventional silicon cells however, stability and large-scale production remain as ongoing concerns despite significant technological advancements. In this study, we examined the synthesis and utilization of a novel polymer functionalized fullerene material by bonding propylene glycol (PPG) with phenyl-C71-butyric acid methyl ester (PC71BM), named PCBPPG. Obtained through an easy transesterification process between PPG and PC71BM, this material serves as an additive in inverted dual-cation perovskite solar cell devices (PSC). Our research revealed that the incorporation of PCBPPG led to improved power conversion efficiency (PCE) of PSC devices. This enhancement can be attributed to the dual functions of PCBPPG: improving perovskite morphology achieved through heterogenous nucleation induced by the polymer component (PPG), while maintaining favorable optoelectronic properties owing to the fullerene component (PC71BM). Importantly, PCBPPG-incorporated PSC devices showed improved stability in ambient air. Our results help pave the way for the development of high-performance polymer-based additives for PSCs. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:16:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T17:16:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
Abstract ii 摘要 iii Acknowledgments iv Contents v List of Figures vii List of Tables x Chapter 1 Introduction 1 1.1 Renewable & Solar Energy 1 1.2 Solar Energy 3 1.2.1 Perovskite Solar Cells 3 1.2.2 Dual Cation Perovskite 5 1.2.3 Perovskite Solar Cells Device Architecture 6 1.3 Challenges of Perovskite Solar Cells 7 1.4 Additives for Perovskite Solar Cells 9 1.4.1 Additives for Perovskite Formation 9 1.4.2 Polymer Additives 10 1.4.3 Fullerene Additives 13 1.4.3 Functionalized Fullerene Additives 15 1. 5 Motivation and Objectives 18 Chapter 2 Experimental Section 20 2.1 Materials 20 2.2 Instruments 21 2.3 Additive Synthesis 22 2.4 Perovskite Solar Cells Fabrication 23 2.4.1 Substrate Preparation 23 2.4.2 Solution Preparation 24 2.4.3 Solar Cell Device Fabrication 24 2.5 Characterization 25 Chapter 3 Results and Discussion 27 3.1 PCBPPG-1000 and PCBPPG-2000 synthesis 27 3.2 Polymer and polymer-functionalized fullerene as additives for perovskite 29 3.2.1 Effects of different additives on perovskite solar cell performance 29 3.2.2 Effects of additives on perovskite crystal formation 36 3.2.3 Effects of additives on optoelectronic properties 38 3.3 Stability 42 Chapter 4 Conclusion 45 Chapter 5 Recommendation 47 Appendix 49 References 51 | - |
| dc.language.iso | en | - |
| dc.subject | 鈣鈦礦太陽能電池 | zh_TW |
| dc.subject | 功能化富勒烯 | zh_TW |
| dc.subject | 添加劑 | zh_TW |
| dc.subject | perovskite solar cells | en |
| dc.subject | functionalized fullerenes | en |
| dc.subject | additive engineering | en |
| dc.title | 聚合物功能化富勒烯添加劑對於鈣鈦礦太陽能電池的應用 | zh_TW |
| dc.title | Polymer-functionalized fullerene additives for perovskite solar cells | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 闕居振;黃裕清 | zh_TW |
| dc.contributor.oralexamcommittee | Chu-Chen Chueh;Yu-Ching Huang | en |
| dc.subject.keyword | 鈣鈦礦太陽能電池,添加劑,功能化富勒烯, | zh_TW |
| dc.subject.keyword | perovskite solar cells,additive engineering,functionalized fullerenes, | en |
| dc.relation.page | 61 | - |
| dc.identifier.doi | 10.6342/NTU202303984 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 材料科學與工程學系 | - |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 6.32 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
