請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90052
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 姜昌明 | zh_TW |
dc.contributor.advisor | Chang-Ming Jiang | en |
dc.contributor.author | 陳重宇 | zh_TW |
dc.contributor.author | Jong-Yu Chen | en |
dc.date.accessioned | 2023-09-22T17:12:54Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-22 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-13 | - |
dc.identifier.citation | (1) Jerkiewicz, G. Standard and Reversible Hydrogen Electrodes: Theory, Design, Operation, and Applications. ACS Catalysis 2020, 10 (15), 8409-8417. DOI: 10.1021/acscatal.0c02046.
(2) Smith, W. A.; Sharp, I. D.; Strandwitz, N. C.; Bisquert, J. Interfacial band-edge energetics for solar fuels production. Energy & Environmental Science 2015, 8 (10), 2851-2862, 10.1039/C5EE01822F. DOI: 10.1039/C5EE01822F. (3) Rühle, S. Tabulated values of the Shockley–Queisser limit for single junction solar cells. Solar Energy 2016, 130, 139-147. DOI: https://doi.org/10.1016/j.solener.2016.02.015. (4) Fabbri, E.; Habereder, A.; Waltar, K.; Kötz, R.; Schmidt, T. J. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catalysis Science & Technology 2014, 4 (11), 3800-3821, 10.1039/C4CY00669K. DOI: 10.1039/C4CY00669K. (5) Wheeler, D. A.; Wang, G.; Ling, Y.; Li, Y.; Zhang, J. Z. Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy & Environmental Science 2012, 5 (5), 6682-6702, 10.1039/C2EE00001F. DOI: 10.1039/C2EE00001F. (6) Prévot, M. S.; Guijarro, N.; Sivula, K. Enhancing the Performance of a Robust Sol–Gel-Processed p-Type Delafossite CuFeO2 Photocathode for Solar Water Reduction. ChemSusChem 2015, 8 (8), 1359-1367, https://doi.org/10.1002/cssc.201403146. DOI: https://doi.org/10.1002/cssc.201403146 (acccessed 2023/07/16). (7) Lee, D. K.; Lee, D.; Lumley, M. A.; Choi, K.-S. Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting. Chemical Society Reviews 2019, 48 (7), 2126-2157, 10.1039/C8CS00761F. DOI: 10.1039/C8CS00761F. (8) Jiang, C.; Moniz, S. J. A.; Wang, A.; Zhang, T.; Tang, J. Photoelectrochemical devices for solar water splitting – materials and challenges. Chemical Society Reviews 2017, 46 (15), 4645-4660, 10.1039/C6CS00306K. DOI: 10.1039/C6CS00306K. (9) Kudo, A.; Omori, K.; Kato, H. A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties. Journal of the American Chemical Society 1999, 121 (49), 11459-11467. DOI: 10.1021/ja992541y. (10) Zhang, J.; Huang, Y.; Lu, X.; Yang, J.; Tong, Y. Enhanced BiVO4 Photoanode Photoelectrochemical Performance via Borate Treatment and a NiFeOx Cocatalyst. ACS Sustainable Chemistry & Engineering 2021, 9 (24), 8306-8314. DOI: 10.1021/acssuschemeng.1c03055. (11) Abdi, F. F.; Savenije, T. J.; May, M. M.; Dam, B.; van de Krol, R. The Origin of Slow Carrier Transport in BiVO4 Thin Film Photoanodes: A Time-Resolved Microwave Conductivity Study. The Journal of Physical Chemistry Letters 2013, 4 (16), 2752-2757. DOI: 10.1021/jz4013257. (12) Butler, K. T.; Dringoli, B. J.; Zhou, L.; Rao, P. M.; Walsh, A.; Titova, L. V. Ultrafast carrier dynamics in BiVO4 thin film photoanode material: interplay between free carriers, trapped carriers and low-frequency lattice vibrations. Journal of Materials Chemistry A 2016, 4 (47), 18516-18523, 10.1039/C6TA07177E. DOI: 10.1039/C6TA07177E. (13) Grigioni, I.; Stamplecoskie, K. G.; Jara, D. H.; Dozzi, M. V.; Oriana, A.; Cerullo, G.; Kamat, P. V.; Selli, E. Wavelength-Dependent Ultrafast Charge Carrier Separation in the WO3/BiVO4 Coupled System. ACS Energy Letters 2017, 2 (6), 1362-1367. DOI: 10.1021/acsenergylett.7b00216. (14) Zhang, S.; Ahmet, I.; Kim, S.-H.; Kasian, O.; Mingers, A. M.; Schnell, P.; Kölbach, M.; Lim, J.; Fischer, A.; Mayrhofer, K. J. J.; et al. Different Photostability of BiVO4 in Near-pH-Neutral Electrolytes. ACS Applied Energy Materials 2020, 3 (10), 9523-9527. DOI: 10.1021/acsaem.0c01904. (15) Ikeda, S.; Kawaguchi, T.; Higuchi, Y.; Kawasaki, N.; Harada, T.; Remeika, M.; Islam, M. M.; Sakurai, T. Effects of Zirconium Doping Into a Monoclinic Scheelite BiVO4 Crystal on Its Structural, Photocatalytic, and Photoelectrochemical Properties. Frontiers in Chemistry 2018, 6, Original Research. (16) Luo, W.; Li, Z.; Yu, T.; Zou, Z. Effects of Surface Electrochemical Pretreatment on the Photoelectrochemical Performance of Mo-Doped BiVO4. The Journal of Physical Chemistry C 2012, 116 (8), 5076-5081. DOI: 10.1021/jp210207q. (17) Xiao, B.-C.; Lin, L.-Y.; Hong, J.-Y.; Lin, H.-S.; Song, Y.-T. Synthesis of a monoclinic BiVO4 nanorod array as the photocatalyst for efficient photoelectrochemical water oxidation. RSC Advances 2017, 7 (13), 7547-7554, 10.1039/C6RA28262H. DOI: 10.1039/C6RA28262H. (18) Wu, H.; Irani, R.; Zhang, K.; Jing, L.; Dai, H.; Chung, H. Y.; Abdi, F. F.; Ng, Y. H. Unveiling Carrier Dynamics in Periodic Porous BiVO4 Photocatalyst for Enhanced Solar Water Splitting. ACS Energy Letters 2021, 6 (10), 3400-3407. DOI: 10.1021/acsenergylett.1c01454. (19) Wu, H.; Qu, S.; Xie, Z.; Ng, Y. H. Surface Modulation Inducing Bismuth-Rich Surface Composition in BiVO4 for Efficient Photoelectrochemical Water Splitting. ACS Applied Energy Materials 2022, 5 (7), 8419-8427. DOI: 10.1021/acsaem.2c00963. (20) Lu, Y.; Yang, Y.; Fan, X.; Li, Y.; Zhou, D.; Cai, B.; Wang, L.; Fan, K.; Zhang, K. Boosting Charge Transport in BiVO4 Photoanode for Solar Water Oxidation. Advanced Materials 2022, 34 (8), 2108178, https://doi.org/10.1002/adma.202108178. DOI: https://doi.org/10.1002/adma.202108178 (acccessed 2023/07/16). (21) Kittel, C.; McEuen, P. Introduction to solid state physics; John Wiley & Sons, 2018. (22) Acosta, M.; Novak, N.; Rojas, V.; Patel, S.; Vaish, R.; Koruza, J.; Rossetti, G. A., Jr.; Rödel, J. BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. Applied Physics Reviews 2017, 4 (4), 041305. DOI: 10.1063/1.4990046 (acccessed 7/16/2023). (23) Saha, A. K.; Gupta, S. K. Negative capacitance effects in ferroelectric heterostructures: A theoretical perspective. Journal of Applied Physics 2021, 129 (8), 080901. DOI: 10.1063/5.0038971 (acccessed 7/16/2023). (24) Song, J.; Kim, T. L.; Lee, J.; Cho, S. Y.; Cha, J.; Jeong, S. Y.; An, H.; Kim, W. S.; Jung, Y.-S.; Park, J.; et al. Domain-engineered BiFeO3 thin-film photoanodes for highly enhanced ferroelectric solar water splitting. Nano Research 2018, 11 (2), 642-655. DOI: 10.1007/s12274-017-1669-1. (25) Kakekhani, A.; Ismail-Beigi, S. Ferroelectric-Based Catalysis: Switchable Surface Chemistry. ACS Catalysis 2015, 5 (8), 4537-4545. DOI: 10.1021/acscatal.5b00507. (26) Yu, H.; Huang, H.; Reshak, A. H.; Auluck, S.; Liu, L.; Ma, T.; Zhang, Y. Coupling ferroelectric polarization and anisotropic charge migration for enhanced CO2 photoreduction. Applied Catalysis B: Environmental 2021, 284, 119709. DOI: https://doi.org/10.1016/j.apcatb.2020.119709. (27) Li, S.; Bai, L.; Ji, N.; Yu, S.; Lin, S.; Tian, N.; Huang, H. Ferroelectric polarization and thin-layered structure synergistically promoting CO2 photoreduction of Bi2MoO6. Journal of Materials Chemistry A 2020, 8 (18), 9268-9277, 10.1039/D0TA02102D. DOI: 10.1039/D0TA02102D. (28) Yu, H.; Chen, F.; Li, X.; Huang, H.; Zhang, Q.; Su, S.; Wang, K.; Mao, E.; Mei, B.; Mul, G.; et al. Synergy of ferroelectric polarization and oxygen vacancy to promote CO2 photoreduction. Nature Communications 2021, 12 (1), 4594. DOI: 10.1038/s41467-021-24882-3. (29) Kumar, V.; O'Donnell, S. C.; Sang, D. L.; Maggard, P. A.; Wang, G. Harnessing Plasmon-Induced Hot Carriers at the Interfaces With Ferroelectrics. Frontiers in Chemistry 2019, 7, 299, 10.3389/fchem.2019.00299. (30) Xie, J.; Guo, C.; Yang, P.; Wang, X.; Liu, D.; Li, C. M. Bi-functional ferroelectric BiFeO3 passivated BiVO4 photoanode for efficient and stable solar water oxidation. Nano Energy 2017, 31, 28-36. DOI: https://doi.org/10.1016/j.nanoen.2016.10.048. (31) Dong, W.; Guo, Y.; Guo, B.; Li, H.; Liu, H.; Joel, T. W. Enhanced Photovoltaic Effect in BiVO4 Semiconductor by Incorporation with an Ultrathin BiFeO3 Ferroelectric Layer. ACS Applied Materials & Interfaces 2013, 5 (15), 6925-6929. DOI: 10.1021/am4004182. (32) Yang, Z.; Zhao, L.; Zhang, S.; Zhao, X. Ferroelectric-enhanced BiVO4-BiFeO3 photoelectrocatalysis for efficient, stable and large-current-density oxygen evolution. Applied Materials Today 2022, 26, 101374. DOI: https://doi.org/10.1016/j.apmt.2022.101374. (33) Mikolajick, T.; Slesazeck, S.; Mulaosmanovic, H.; Park, M. H.; Fichtner, S.; Lomenzo, P. D.; Hoffmann, M.; Schroeder, U. Next generation ferroelectric materials for semiconductor process integration and their applications. Journal of Applied Physics 2021, 129 (10), 100901. DOI: 10.1063/5.0037617 (acccessed 2021/12/01). (34) en:User:Metacomet. Linear time-invariant system. Wikipedia, https://en.wikipedia.org/wiki/Linear_time-invariant_system (accessed. (35) Chang, B.-Y.; Park, S.-M. Electrochemical Impedance Spectroscopy. Annual Review of Analytical Chemistry 2010, 3 (1), 207-229. DOI: 10.1146/annurev.anchem.012809.102211 (acccessed 2021/11/16). (36) Lacey, M. Simulation - the Debye circuit. Matt Lacey-Battery science and electrochemistry, http://lacey.se/science/eis/simulation-debye-circuit/ (accessed. (37) Ravishankar, S.; Riquelme, A.; Sarkar, S. K.; Garcia-Batlle, M.; Garcia-Belmonte, G.; Bisquert, J. Intensity-Modulated Photocurrent Spectroscopy and Its Application to Perovskite Solar Cells. The Journal of Physical Chemistry C 2019, 123 (41), 24995-25014. DOI: 10.1021/acs.jpcc.9b07434. (38) Ravishankar, S.; Aranda, C.; Sanchez, S.; Bisquert, J.; Saliba, M.; Garcia-Belmonte, G. Perovskite Solar Cell Modeling Using Light- and Voltage-Modulated Techniques. The Journal of Physical Chemistry C 2019, 123 (11), 6444-6449. DOI: 10.1021/acs.jpcc.9b01187. (39) Gamry_instrument. Dye Solar Cells – Part 3: IMPS and IMVS Measurements. Gamry_instrument, https://www.gamry.com/application-notes/physechem/dye-solar-cells-imps-imvs/ (accessed. (40) Cardenas-Morcoso, D.; Bou, A.; Ravishankar, S.; García-Tecedor, M.; Gimenez, S.; Bisquert, J. Intensity-Modulated Photocurrent Spectroscopy for Solar Energy Conversion Devices: What Does a Negative Value Mean? ACS Energy Letters 2020, 5 (1), 187-191. DOI: 10.1021/acsenergylett.9b02555. (41) Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Bisquert, J.; Hamann, T. W. Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes. Energy & Environmental Science 2012, 5 (6), 7626-7636, 10.1039/C2EE21414H. DOI: 10.1039/C2EE21414H. (42) Bisquert, J.; Janssen, M. From Frequency Domain to Time Transient Methods for Halide Perovskite Solar Cells: The Connections of IMPS, IMVS, TPC, and TPV. The Journal of Physical Chemistry Letters 2021, 12 (33), 7964-7971. DOI: 10.1021/acs.jpclett.1c02065. (43) Bertoluzzi, L.; Bisquert, J. Investigating the Consistency of Models for Water Splitting Systems by Light and Voltage Modulated Techniques. The Journal of Physical Chemistry Letters 2017, 8 (1), 172-180. DOI: 10.1021/acs.jpclett.6b02714. (44) Bou, A.; A̅boliņš, H.; Ashoka, A.; Cruanyes, H.; Guerrero, A.; Deschler, F.; Bisquert, J. Extracting in Situ Charge Carrier Diffusion Parameters in Perovskite Solar Cells with Light Modulated Techniques. ACS Energy Letters 2021, 6 (6), 2248-2255. DOI: 10.1021/acsenergylett.1c00871. (45) Chu, C.-H.; Mao, M.-H.; Yang, C.-W.; Lin, H.-H. A New Analytic Formula for Minority Carrier Decay Length Extraction from Scanning Photocurrent Profiles in Ohmic-Contact Nanowire Devices. Scientific Reports 2019, 9 (1), 9426. DOI: 10.1038/s41598-019-46020-2. (46) Wei, Y.-C.; Chu, C.-H.; Mao, M.-H. Minority carrier decay length extraction from scanning photocurrent profiles in two-dimensional carrier transport structures. Scientific Reports 2021, 11 (1), 21863. DOI: 10.1038/s41598-021-01446-5. (47) Wang, J.; Song, Y.; Hu, J.; Li, Y.; Wang, Z.; Yang, P.; Wang, G.; Ma, Q.; Che, Q.; Dai, Y.; et al. Photocatalytic hydrogen evolution on P-type tetragonal zircon BiVO4. Applied Catalysis B: Environmental 2019, 251, 94-101. DOI: https://doi.org/10.1016/j.apcatb.2019.03.049. (48) Schwartz, R. W.; Schneller, T.; Waser, R. Chemical solution deposition of electronic oxide films. Comptes Rendus Chimie 2004, 7 (5), 433-461. DOI: https://doi.org/10.1016/j.crci.2004.01.007. (49) Lee, U. G.; Kim, W.-B.; Han, D. H.; Chung, H. S. A Modified Equation for Thickness of the Film Fabricated by Spin Coating. In Symmetry, 2019; Vol. 11. (50) Makuła, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. The Journal of Physical Chemistry Letters 2018, 9 (23), 6814-6817. DOI: 10.1021/acs.jpclett.8b02892. (51) Neamen, D. A. emiconductor Physics and Devices Basic Principles; Tata McGraw Hill Publishing, 1992. (52) Banyamin, Z. Y.; Kelly, P. J.; West, G.; Boardman, J. Electrical and optical properties of fluorine doped tin oxide thin films prepared by magnetron sputtering. Coatings 2014, 4 (4), 732-746. (53) Li, Y.; Xue, L.; Fan, L.; Yan, Y. The effect of citric acid to metal nitrates molar ratio on sol–gel combustion synthesis of nanocrystalline LaMnO3 powders. Journal of Alloys and Compounds 2009, 478 (1), 493-497. DOI: https://doi.org/10.1016/j.jallcom.2008.11.068. (54) Wang, J.; Luo, L.; Han, C.; Yun, R.; Tang, X.; Zhu, Y.; Nie, Z.; Zhao, W.; Feng, Z. The Microstructure, Electric, Optical and Photovoltaic Properties of BiFeO3 Thin Films Prepared by Low Temperature Sol–Gel Method. In Materials, 2019; Vol. 12. (55) Orudzhev, F.; Ramazanov, S.; Sobola, D.; Alikhanov, N.; Holcman, V.; Škvarenina, L.; Kaspar, P.; Gadjilov, G. Piezoelectric Current Generator Based on Bismuth Ferrite Nanoparticles. In Sensors, 2020; Vol. 20. (56) Palai, R.; Schmid, H.; Scott, J. F.; Katiyar, R. S. Raman spectroscopy of single-domain multiferroic ${\text{BiFeO}}_{3}$. Physical Review B 2010, 81 (6), 064110. DOI: 10.1103/PhysRevB.81.064110. (57) Sharma, S.; Kumar, M. Band gap tuning and optical properties of BiFeO3 nanoparticles. Materials Today: Proceedings 2020, 28, 168-171. DOI: https://doi.org/10.1016/j.matpr.2020.01.496. (58) Kunzelmann, V. F.; Jiang, C.-M.; Ihrke, I.; Sirotti, E.; Rieth, T.; Henning, A.; Eichhorn, J.; Sharp, I. D. Solution-based synthesis of wafer-scale epitaxial BiVO4 thin films exhibiting high structural and optoelectronic quality. Journal of Materials Chemistry A 2022, 10 (22), 12026-12034, 10.1039/D1TA10732A. DOI: 10.1039/D1TA10732A. (59) Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials 2013, 1 (1), 011002. DOI: 10.1063/1.4812323 (acccessed 7/18/2023). (60) Nair, V.; Perkins, C. L.; Lin, Q.; Law, M. Textured nanoporous Mo:BiVO4 photoanodes with high charge transport and charge transfer quantum efficiencies for oxygen evolution. Energy & Environmental Science 2016, 9 (4), 1412-1429, 10.1039/C6EE00129G. DOI: 10.1039/C6EE00129G. (61) Pellicer-Porres, J.; Vázquez-Socorro, D.; López-Moreno, S.; Muñoz, A.; Rodríguez-Hernández, P.; Martínez-García, D.; Achary, S. N.; Rettie, A. J. E.; Mullins, C. B. Phase transition systematics in ${\mathrm{BiVO}}_{4}$ by means of high-pressure--high-temperature Raman experiments. Physical Review B 2018, 98 (21), 214109. DOI: 10.1103/PhysRevB.98.214109. (62) Merupo, V.-I.; Velumani, S.; Ordon, K.; Errien, N.; Szade, J.; Kassiba, A.-H. Structural and optical characterization of ball-milled copper-doped bismuth vanadium oxide (BiVO4). CrystEngComm 2015, 17 (17), 3366-3375, 10.1039/C5CE00173K. DOI: 10.1039/C5CE00173K. (63) Walsh, A.; Yan, Y.; Huda, M. N.; Al-Jassim, M. M.; Wei, S.-H. Band Edge Electronic Structure of BiVO4: Elucidating the Role of the Bi s and V d Orbitals. Chemistry of Materials 2009, 21 (3), 547-551. DOI: 10.1021/cm802894z. (64) Gomez-Iriarte, G. A.; Pentón-Madrigal, A.; de Oliveira, L. A.; Sinnecker, J. P. XPS Study in BiFeO3 Surface Modified by Argon Etching. In Materials, 2022; Vol. 15. (65) Jiang, Z.; Liu, Y.; Jing, T.; Huang, B.; Zhang, X.; Qin, X.; Dai, Y.; Whangbo, M.-H. Enhancing the Photocatalytic Activity of BiVO4 for Oxygen Evolution by Ce Doping: Ce3+ Ions as Hole Traps. The Journal of Physical Chemistry C 2016, 120 (4), 2058-2063. DOI: 10.1021/acs.jpcc.5b10856. (66) Alexander V. Naumkin, A. K.-V., Stephen W. Gaarenstroom, Cedric J. Powell. NIST X-ray Photoelectron Spectroscopy Database. Version 4.1 ed.; NIST Standard Reference Database 20, 2012. (67) Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science 2011, 257 (7), 2717-2730. DOI: https://doi.org/10.1016/j.apsusc.2010.10.051. (68) Biesinger, M. C.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Applied Surface Science 2010, 257 (3), 887-898. DOI: https://doi.org/10.1016/j.apsusc.2010.07.086. (69) Silversmit, G.; Depla, D.; Poelman, H.; Marin, G. B.; De Gryse, R. Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). Journal of Electron Spectroscopy and Related Phenomena 2004, 135 (2), 167-175. DOI: https://doi.org/10.1016/j.elspec.2004.03.004. (70) Antony, R. P.; Zhang, M.; Zhou, K.; Loo, S. C. J.; Barber, J.; Wong, L. H. Synergistic Effect of Porosity and Gradient Doping in Efficient Solar Water Oxidation of Catalyst-Free Gradient Mo:BiVO4. ACS Omega 2018, 3 (3), 2724-2734. DOI: 10.1021/acsomega.7b01794. (71) Yin, X.; Li, J.; Du, L.; Zhan, F.; Kawashima, K.; Li, W.; Qiu, W.; Liu, Y.; Yang, X.; Wang, K.; et al. Boosting Photoelectrochemical Performance of BiVO4 through Photoassisted Self-Reduction. ACS Applied Energy Materials 2020, 3 (5), 4403-4410. DOI: 10.1021/acsaem.0c00109. (72) Chen, Y. B.; Katz, M. B.; Pan, X. Q.; Das, R. R.; Kim, D. M.; Baek, S. H.; Eom, C. B. Ferroelectric domain structures of epitaxial (001) BiFeO3 thin films. Applied Physics Letters 2007, 90 (7), 072907. DOI: 10.1063/1.2472092 (acccessed 7/17/2023). (73) Laohana, P.; Polin, S.; Jindata, W.; Rasritat, A.; Eknapakul, T.; Leuasoongnoen, P.; Pinitsoontorn, S.; Janphuang, P.; Saenrang, W.; Meevasana, W. Large increase in photo-induced conductivity of two-dimensional electron gas at SrTiO3 surface with BiFeO3 topping layer. Applied Physics Letters 2022, 121 (24), 241601. DOI: 10.1063/5.0123578 (acccessed 7/17/2023). (74) Alvarez, A. O.; García-Tecedor, M.; Montañés, L.; Mas-Marzá, E.; Giménez, S.; Fabregat-Santiago, F. New Views on Carrier Diffusion and Recombination by Combining Small Perturbation Techniques: Application to BiVO4 Photoelectrodes. Solar RRL 2022, 6 (12), 2200826, https://doi.org/10.1002/solr.202200826. DOI: https://doi.org/10.1002/solr.202200826 (acccessed 2023/07/17). (75) Franchini, C.; Reticcioli, M.; Setvin, M.; Diebold, U. Polarons in materials. Nature Reviews Materials 2021, 6 (7), 560-586. DOI: 10.1038/s41578-021-00289-w. (76) Park, J.-G.; Le, M. D.; Jeong, J.; Lee, S. Structure and spin dynamics of multiferroic BiFeO3. Journal of Physics: Condensed Matter 2014, 26 (43), 433202. DOI: 10.1088/0953-8984/26/43/433202. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90052 | - |
dc.description.abstract | 光電化學水分解是一個熱門的研究領域,用於綠色能源的生成和儲存。儘管過渡金屬氧化物具有良好的操作穩定性,但這些材料的載子遷移率低、復合速率高,導致入射光子到電流的效率低,限制了商業化的潛力。在可用的光吸收材料中,釩酸鉍(BiVO4,簡稱BVO)是最適合光電化學水氧化反應的金屬氧化物光陽極。本研究旨在通過於氟摻雜二氧化錫(FTO)基板與BVO薄膜之間或上方沉積一層鐵電性鐵酸鉍(BiFeO3,簡稱BFO)層來增強BVO的載子傳輸效率。通過對鐵電性BFO層進行電晕極化形成能帶彎曲,於BVO/BFO界面處產生強電場來協助分離BVO層中的光生電子-電洞對。藉著使用線性掃描伏安法來評估光電化學效率的提高;然後應用電化學阻抗譜(EIS)和強度調變光電流/電壓譜(IMPS/IMVS)來解析BVO和BVO/BFO複合材料的傳輸和復合時間常數、擴散係數和衰減長度。在無外加偏壓的情況下,進行瞬態吸收(TAS)光譜測量,以獲得不同極化方向的BFO/FTO的載子動力學。研究發現,BFO的自發極化不僅可以改善BVO中的載子分離,還能在BFO本身中顯著改變載子動力學。總體而言,本研究證明,BFO鐵電性所造成之能帶彎曲可以有效改變BVO中的載子動力學。然而,BFO內的載子傳輸特性主導了此異質接面電極的光子到電流轉換效率。 | zh_TW |
dc.description.abstract | Photoelectrochemical water splitting has been a vigorous field of research for the generation and storage of green energy. Although transition metal oxides exhibit decent operational stability, these materials also suffer from low carrier mobilities and high recombination rates, leading to low incident photon-to-current efficiencies and limited commercialization potential. Among the available light absorbers, bismuth vanadate (BiVO4, BVO) represents the best-performing metal oxide photoanode for PEC oxygen evolution reaction. This research aims to enhance the carrier transport efficiency of BVO by inserting a bismuth ferrite (BiFeO3, BFO) layer between or above a BVO thin film deposited on fluorine-doped tin oxide (FTO) substrate. Corona polling was performed to induce spontaneous polarization of the multiferroic BFO layer, with the aim of using the strong electric field at the BVO/BFO interface to assist the separation of photogenerated electron-hole pairs in the BVO layer. The enhancement in PEC efficiency was evaluated by linear sweep voltammetry; electrochemical impedance spectroscopy (EIS) and intensity modulated photocurrent/voltage spectroscopy (IMPS/IMVS) were then applied to deconvolute transport and recombination time constants, diffusion coefficients, and decay lengths for BVO, BFO, and BVO/BFO composite. Transient absorption spectroscopy (TAS) was conducted to obtain carrier dynamics of BFO/FTO with different polarization orientations in the absence of external bias. It was found that the spontaneous polarization of BFO can not only improve the carrier separation in BVO but also largely modifies the carrier dynamics within BFO itself. Overall, this work demonstrates that the ferroelectric band bending of BFO can efficiently alter the charge dynamics in the BVO. However, the carrier transport within BFO played a dominant role in affecting the photon-to-current conversion efficiency of the heterojunction electrode. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:12:54Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-22T17:12:54Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Contents
國立臺灣大學碩士學位論文口試委員會審定書 i 致謝 iii 摘要 iv Abstract v List of figures x List of tables xviii Chapter 1. Introductions 1 1.1 Photoelectrochemical water splitting 1 1.2 Selection criteria of photoelectrode material 3 1.2.1 Band alignment with electrolyte 3 1.2.2 Bandgap 4 1.2.3 Carrier transport, stability, and reactivity 4 1.3 BiVO4 photoanode for water splitting 6 1.4 Basic theory for ferroelectricity 8 1.4.1 Effects of ferroelectric spontaneous polarization on catalysis 12 1.5 Motivation for choosing ferroelectric BiFeO3 14 1.6 Impedance-Based Techniques 16 1.6.1 Basic circuitry 16 1.6.2 Impedance - Reactance & Resistance 17 1.6.3 The phasor approach for solving circuit impedance 18 1.6.4 Transfer function 19 1.6.5 Electrochemistry equivalent circuit components 20 1.6.6 Frequently used equivalent circuits in photoelectrochemistry 22 1.6.7 Electrochemical Impedance Spectroscopy 24 1.6.8 Intensity-modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS) 27 1.6.9 Microscopic perspective of impedance techniques in terms of semiconductor physics 37 Chapter 2. Experimental Techniques and Principles 44 2.1 Chemical solution deposition 44 2.2 Characterization methods 45 2.2.1 X-ray Diffractometry 45 2.2.2 Raman Spectroscopy 46 2.2.3 UV-Vis Spectroscopy 47 2.2.4 X-ray Photoelectron Spectroscopy 49 2.2.5 Scanning Electron Microscopy 50 2.2.6 Piezoresponse Force Microscopy 51 2.3 Electrochemical methods 52 2.3.1 Linear Sweep Voltammetry 52 2.3.2 Mott-Schottky Analysis 54 2.3.3 Electrochemical impedance spectroscopy 56 2.3.4 Impedance-modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS) 56 Chapter 3. Fabrication and characterization of BiVO4 and BiFeO3 thin films 58 3.1 FTO substrate 58 3.1.1 Substrate pretreatment 58 3.1.2 FTO X-ray diffractogram 58 3.1.3 FTO substrate SEM image 59 3.1.4 FTO substrate UV-Vis spectrum 60 3.2 BiFeO3 thin film 61 3.2.1 BiFeO3 thin film fabrication 61 3.2.2 BiFeO3 thin film characterization 62 3.3 BiVO4 thin film 68 3.3.1 BiVO4 thin film fabrication 68 3.3.2 BiVO4 thin film characterization 69 3.4 BiVO4/BiFeO3/FTO and BiFeO3/BiVO4/FTO thin film characterization 72 3.4.1 X-ray diffractogram of BiVO4/BiFeO3/FTO and BiFeO3/BiVO4/FTO 72 3.4.2 SEM images 73 3.4.3 Raman and UV-Vis spectra 76 3.4.4 Piezoresponse force microscopy 77 3.5 X-ray Photoelectron Spectroscopy 79 3.5.1 O 1s spectra 79 3.5.2 Bi 4f spectra 81 3.5.3 Fe 2p spectra 82 3.5.4 V 2p spectra 83 Chapter 4. Electrochemical Performance 84 4.1 Electrode fabrication and polarity definition 84 4.1.1 Electrode Fabrication 84 4.1.2 Corona polling 84 4.1.3 Polarity definition 85 4.2 Linear Sweep Voltammetry 86 4.2.1 BVO/FTO 86 4.2.2 BVO/BFO/FTO of different poling polarity 89 4.2.3 BFO/BVO/FTO of different poling polarity 92 4.3 Mott-Schottky Analysis 98 4.3.1 BVO/FTO 98 4.3.2 BVO/BFO/FTO of different poling polarity 99 4.3.3 BFO/BVO/FTO of different poling polarity 101 4.4 Electrochemical Impedance Spectroscopy 103 4.4.1 Equivalent circuits 103 4.4.2 Comparison of BVO/FTO front/back illumination 105 4.4.3 Comparison of BVO/BFO8L/FTO with different poling polarity 108 4.4.4 Comparison of BFO6L/BVO8L/FTO with different poling polarity 112 Chapter 5. Carrier Dynamics Measurements 116 5.1 Intensity modulated photocurrent spectroscopy 116 5.1.1 BVO/FTO 116 5.1.2 BVO/BFO10L/FTO of different poling polarity 119 5.2 Intensity modulated photovoltage spectroscopy 125 5.2.1 BVO/FTO 125 5.2.2 BVO/BFO10L/FTO of different poling polarity 127 5.3 BFO Transient Absorption Spectroscopy of different poling polarity 135 5.3.1 Spectra at different delay time 135 5.3.2 Decay profile at specific wavelength 137 Conclusion 143 Appendix: X-ray absorption spectroscopy 144 XAS spectra of different polarity BFO/FTO thin films 144 Comparing oxidation states of powder standards and BFO thin films 145 EXAFS analysis in R-space 146 References 147 | - |
dc.language.iso | en | - |
dc.title | 鐵電性鐵酸鉍層對釩酸鉍光陽極催化水分解之影響 | zh_TW |
dc.title | Photoelectrochemical Water Splitting by BiVO4 Photoanode Altered with Ferroelectric BiFeO3 | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳俊顯;陳浩銘;黃彥霖 | zh_TW |
dc.contributor.oralexamcommittee | Chun-Hsien Chen ;Hao-Ming Chen;Yen-Ling Huang | en |
dc.subject.keyword | 光電催化,過渡金屬氧化物,半導體載子動力學,阻抗方法, | zh_TW |
dc.subject.keyword | photoelectrochemical catalysis,transition metal oxide,semiconductor carrier dynamics,impedance-based techniques, | en |
dc.relation.page | 154 | - |
dc.identifier.doi | 10.6342/NTU202304062 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-08-13 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 化學系 | - |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 18.2 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。