Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90051
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張瑞益zh_TW
dc.contributor.advisorRay-I Changen
dc.contributor.author李欣恩zh_TW
dc.contributor.authorHsin-En Leeen
dc.date.accessioned2023-09-22T17:12:40Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-13-
dc.identifier.citation1. Midgley, P. (2009). The role of smart bike-sharing systems in urban mobility. Journeys, p.23-31.
2. Froehlich, J. E., Neumann, J., and Oliver, N. (2009). Sensing and predicting the pulse of the city through shared bicycling. 21st International Joint Conference on Artificial Intelligence, p.1420-1426.
3. Caggiani, L., and Ottomanelli, M. (2012). A modular soft computing based method for vehicles repositioning in bike-sharing systems. Procedia-Social and Behavioral Sciences , Vol 54, p.675-684.
4. Doug, L. (2012). The Importance of ‘Big Data’: A Definition. Gartner, 2012.
5. 余書玫. (2009). 公共自行車租借系統選擇行為之研究. 國立交通大學運輸與物流管理學系碩士論文.
6. 黃仁皇. (2010). 公共自行車騎乘特性、服務便利性、騎乘滿意度之相關研究-以台北市微笑單車為例. 朝陽科技大學休閒事業管理系碩士論文.
7. 白詩滎. (2012). 臺北公共自行車使用行為特性分析與友善環境建構之研究. 國立政治大學地政研究所碩士論文.
8. 黃晏珊. (2015). 臺北市公共自行車系統營運特性分析. 淡江大學運輸管理學系碩士論文.
9. 鍾智林, and簡佑勳. (2013). 公共自行車時空分析法之構建與營運策略改善-以台北微笑自行車為例. 海峽兩岸都市交通學術研討會, 第21屆.
10. 倪如霖. (2016). 公共自行車租借量之影響因素分析-地理加權迴歸和函數資料分析方法之應用.國立交通大學運輸與物流管理學系碩士論文.
11. 楊瑞宇. (2012). 穩健公共自行車租用系統輛配置模式. 台北科技大學資訊管理研究所碩士論文.
12. Vogel, M., Hamon, R., Lozenguez, G., Merchez, L., Abry, P., Barnier, J., Borgnat, P., Flandrin,P.,Mallon,I.,Robardet,Céline. (2014). From bicycle sharing system movements to users: a typology of Vélo’v cyclists in Lyon based on large-scale behavioural dataset., Journal of Transport Geography, Vol.41, p.280-291.
13. Shu, J., Chou, M., Liu, Q., Teo, C. P., and Wang, I. L. (2010). Bike-sharing system: deployment, utilization and the value of redistribution. National University of Singapore Business School working paper.
14. 張勻威. (2011). 自行車租賃佈署暨調度最佳之化之研究. 國立中央大學土木工程學系碩士論文.
15. Lin, J. R., and Yang, T. H. (2011). Strategic design of public bicycle sharing systems with service level constraints. Transportation research part E: logistics and transportation review, p.284-294.
16. Caggiani, L., and Ottomanelli, M. (2012). A modular soft computing based method for vehicles repositioning in bike-sharing systems. Procedia-Social and Behavioral Sciences, Vol 54, p.675-684.
17. Raviv, T., Tzur, M., and Forma, I. A. (2013). Static repositioning in a bike-sharing system: models and solution approaches. EURO Journal on Transportation and Logistics, 2(3), p.187-229.
18. 張立蓁. (2010). 都會區公共自行車租借系統之設計與營運方式研究. 國立成功大學工業與資訊管理學系碩士論文.
19. Benarbia, T., Labadi, K., Omari, A., & Barbot, J. P. (2013). Balancing dynamic bike-sharing systems: A Petri nets with variable arc weights based approach. International Conference on Control, Decision and Information Technologies (CoDIT), IEEE, p.112-117.
20. Caggiani, L., and Ottomanelli, M. (2013). A dynamic simulation based model for optimal fleet repositioning in bike-sharing systems. Procedia-Social and Behavioral Sciences, 87, p.203-210.
21. 廖敏婷. (2012) 考慮需求比例及暫時人力配置之公共自行車租借系統管理策略研究. 國立成功大學工業與資訊管理學系碩士論文.
22. 洪菁蓬. (2011). 公共自行車租借系統之最佳租借站位址設置及車輛運補策略之研究. 國立成功大學工業與資訊管理學系碩士論文.
23. 陳俐瑋. (2021). 公共自行車系統調度規劃之研究-以桃園市中壢區為例. 國立中央大學土木工程學系碩士論文.
24. 王俊偉. (2011). 以系統模擬探討公共自行車租借系統之建置及營運策略. 國立成功大學工業與資訊管理學系碩士論文.
25. 劉宜青. (2012). 以模擬最佳化求解公共自行車共享系統之初始車輛配置策略. 國立成功大學工業與資訊管理學系碩士論文.
26. 劉丁己. (2017). 大數據於全球與澳門市場營銷上的應用. 澳門研究, 2017, 第4期.
27. Hung. (2020). Forecasting Demand for Bike Sharing System with Python. Retrieved July 20, 2022, from https://medium.com/supervised-learning-on-python-predicting-customer/forecasting-demand-for-bike-sharing-system-with-python-part-3-f385a87e2e90.
28. 周志華. (2009). Ensemble Learning. Encyclopedia of Biometrics.
29. Andy. (2021). 機器學習常勝軍-XGBoost. Retrieved July 25, 2022, from https://ithelp.ithome.com.tw/articles/10273094.
30. Chen T , Guestrin C . (2016). XGBoost: A Scalable Tree Boosting System[J].ACM, 2016.DOI:10.1145/2939672.2939785.
31. 劉啟林. (2021). XGBoost的原理. Retrieved July 20, 2022, from https://zhuanlan.zhihu.com/p/162001079.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90051-
dc.description.abstract為降低環境汙染、減少資源消耗,綠色運輸導向發展(Greening Transport Oriented Development)成為全球重視議題。然而近年因為受COVID-19疫情影響,各國開始重視社交距離,進而改變民眾搭乘公共運輸之習慣。共享自行車系統(Public Bicycle System,PBS)即為其一快速發展之綠色交通方式,為被動、機動之個人出行提供有效的替代方案。隨著共享自行車普及,產生供需失衡問題,因此共享自行車存量平衡成為重要課題。
本研究以台北市區為範圍,對其微笑單車(YouBike)之共享自行車系統服務,執行租賃分析與評估,並重新平衡租賃站之庫存車量。研究分為三部分,租賃需求預測、站點庫存車量風險、混和調度建議。第一部分:租賃需求預測,將計算租賃站最佳庫存車量,首先使各租賃站不同時段之用戶租借和歸還資料建模,並加入CPSS(Cyber-Physical-Social Systems)概念之社會化因子,將氣候、季節、假日等因素考量進去,分析各租賃站用戶租賃需求。統整後透過XGBoost(eXtreme Gradient Boosting)演算法來預測未來租借和歸還率。第二部分:站點庫存車量風險,則是將管理學科之風險水準理念納入研究,擬定運補需求指標,透過數值化之指標將缺車和缺位站點歸納至熱點區。第三部分:混和調度建議,將透過預測分析出的租賃站最佳庫存車量與熱點區位,將運補策略劃分為動態與靜態調度,優化最終之共享自行車存量調度與分析系統。綜合上述研究,期望改善共享自行車供需失衡問題,以此提升租賃服務品質、提供營運方進行更好的調度規劃參考。
zh_TW
dc.description.abstractIn order to reduce environmental pollution and minimize resource consumption, the development of Greening Transport Oriented Development (GTOD) has become a globally significant issue. However, in recent years, due to the impact of the COVID-19 pandemic, countries have begun to emphasize social distancing, leading to changes in people's habits of using public transportation. The Public Bicycle System (PBS) is one rapidly developing form of green transportation, offering an effective alternative for both passive and active individual travel. With the widespread adoption of shared bicycles, an issue of supply-demand imbalance has emerged, making the inventory balance of shared bicycles a crucial concern.
This study focuses on the urban area of Taipei City and examines the shared bicycle system service provided by its YouBike program. The study conducts an analysis and evaluation of rental patterns and re-balances the inventory of bicycles at rental stations. The research is divided into three parts: rental demand prediction, station inventory risk, and hybrid scheduling recommendations.
In the first part, rental demand prediction involves calculating the optimal inventory of bicycles at rental stations. Initially, user rental and return data for different time periods at each rental station are modeled, incorporating the concept of Cyber-Physical-Social Systems (CPSS) and considering social factors such as climate, season, and holidays to analyze user rental demand at each rental station. The XGBoost (eXtreme Gradient Boosting) algorithm is utilized to predict future rental and return rates.
The second part focuses on station inventory risk, where the concept of risk levels from the field of management is incorporated. Operational demand indicators are formulated to identify hotspots for bike shortages and station vacancies using numerical indicators.
The third part, hybrid scheduling recommendations, utilizes the predicted optimal inventory of bicycles at rental stations and the identified hotspots. Operational strategies are divided into dynamic and static scheduling, optimizing the final shared bicycle inventory scheduling and analysis system.
In summary, this comprehensive study aims to address the issue of supply-demand imbalance in shared bicycles, thereby enhancing the quality of rental services and providing operational guidelines for improved scheduling for service providers.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:12:40Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:12:40Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
中文摘要 III
ABSTRACT IV
論文目錄 VI
圖目錄 VIII
表目錄 IX
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 1
1.3 論文架構 2
第二章 文獻探討 3
2.1 租賃行為 3
2.2 運補調度 3
2.3 機器學習 5
2.4 預測演算法 6
2.4.1 集成學習 7
2.4.2 XGBoost演算法 8
2.5 文獻總結 10
第三章 研究方法 11
3.1 模型設計 11
3.2 模型建構 11
3.2.1 資料蒐集與分析 12
3.2.2 預測演算模組 13
3.2.3 運補指標模組 14
3.2.4 調度模組 16
第四章 模型實作與研究結果 18
4.1 模型實作 18
4.1.1 預測演算模組 18
4.1.2 運補指標模組 21
4.1.3 混和調度模組 25
4.2 小結 26
第五章 結論與未來展望 27
5.1 結論 27
5.2 未來展望 28
參考文獻 30
附錄 32
附錄1預測存量 32
附錄2風險指標 33
-
dc.language.isozh_TW-
dc.subject需求預測zh_TW
dc.subject再平衡問題zh_TW
dc.subject大數據分析zh_TW
dc.subject微笑單車zh_TW
dc.subject共享自行車系統zh_TW
dc.subject調度規劃zh_TW
dc.subject庫存水平zh_TW
dc.subjectYouBikeen
dc.subjectDemand Predictionen
dc.subjectRebalancing Issueen
dc.subjectShared Bicycle Systemen
dc.subjectInventory Levelen
dc.subjectBig Data Analysisen
dc.subjectScheduling Planningen
dc.title基於CPSS之共享自行車存量調度分析系統zh_TW
dc.titleInventory Rebalancing in CPSS-Based Bike-Sharing Systemsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.coadvisor王昭男zh_TW
dc.contributor.coadvisorChao-Nan Wangen
dc.contributor.oralexamcommittee黃乾綱;林書宇;呂菁菁zh_TW
dc.contributor.oralexamcommitteeChien-Kang Huang;Shu-yu Lin;Ching-Ching Luen
dc.subject.keyword共享自行車系統,微笑單車,大數據分析,再平衡問題,需求預測,庫存水平,調度規劃,zh_TW
dc.subject.keywordShared Bicycle System,YouBike,Big Data Analysis,Rebalancing Issue,Demand Prediction,Inventory Level,Scheduling Planning,en
dc.relation.page34-
dc.identifier.doi10.6342/NTU202304030-
dc.rights.note未授權-
dc.date.accepted2023-08-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
2.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved