Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90035
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧炯敏zh_TW
dc.contributor.advisorHyung-Min Rhoen
dc.contributor.author歐芷琪zh_TW
dc.contributor.authorJr-Chi Ouen
dc.date.accessioned2023-09-22T17:08:50Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-13-
dc.identifier.citationAdjatin, A., A. Dansi, C.S. Eze, P. Assogba, I. Dossou-Aminon, K. Akpagana, A. Akoègninou, and A. Sanni. 2012. Ethnobotanical investigation and diversity of Gbolo (Crassocephalum rubens (Juss. ex Jacq.) S. Moore and Crassocephalum crepidioides (Benth.) S. Moore), a traditional leafy vegetable under domestication in Benin. Genet. Resour. Crop Evol. 59:1867-1881. doi: 10.1007/s10722-012-9901-z.
Arkhipova, T.N., S.U. Veselov, A.I. Melentiev, E.V. Martynenko, and G.R. Kudoyarova. 2005. Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant and Soil 272:201-209. doi: 10.1007/s11104-004-5047-x.
Bakhshandeh, E., M. Gholamhosseini, Y. Yaghoubian, and H. Pirdashti. 2019. Plant growth promoting microorganisms can improve germination, seedling growth and potassium uptake of soybean under drought and salt stress. Plant Growth Regulation 90:123-136. doi: 10.1007/s10725-019-00556-5.
Batista, B.D. and B.K. Singh. 2021. Realities and hopes in the application of microbial tools in agriculture. Microb. Biotechnol. 14:1258-1268. doi: 10.1111/1751-7915.13866.
Bedi, M.S., V. Verma, and S. Chhibber. 2009. Amoxicillin and specific bacteriophage can be used together for eradication of biofilm of Klebsiella pneumoniae B5055. World J. Microbiol. Biotechnol. 25:1145-1151. doi: 10.1007/s11274-009-9991-8.
Bhatt, A., L.F. Daibes, X. Chen, and D.J.G. . 2023. Germination patterns of six herbs invading the Chinese subtropics. GECCO 43. doi: 10.1016/j.gecco.2023.e02469.
Blake, C., M.N. Christensen, and A.T. Kovacs. 2021. Molecular aspects of plant growth promotion and protection by Bacillus subtilis. Mol. Plant Microbe. Interact. 34:15-25. doi: 10.1094/MPMI-08-20-0225-CR.
Brown, V.S., T.E. Erickson, D.J. Merritt, M.D. Madsen, R.J. Hobbs, and A.L. Ritchie. 2021. A global review of seed enhancement technology use to inform improved applications in restoration. Sci. Total Environ. 798:149096. doi: 10.1016/j.scitotenv.2021.149096.
Cao, M., M. Narayanan, X. Shi, X. Chen, Z. Li, and Y. Ma. 2023. Optimistic contributions of plant growth-promoting bacteria for sustainable agriculture and climate stress alleviation. Environ. Res. 217:114924. doi: 10.1016/j.envres.2022.114924.
Cardarelli, M., S.L. Woo, Y. Rouphael, and G. Colla. 2022. Seed treatments with microorganisms can have a biostimulant effect by influencing germination and seedling growth of crops. Plants 11:259. doi: 10.3390/plants11030259.
Chan, T.H., H. Rho, and H.A. Ariyawansa. 2022. The effects of plant growth-promoting bacteria on the physiological properties, nutrition contents and growth performance in lettuce under heat-stress conditions, Angers, France Aug. 14-20.
Chen, G.Q., S.L. Guo, and Q.S. Huang. 2009. Invasiveness evaluation of fireweed (Crassocephalum crepidioides) based on its seed germination features. Weed Biol. Manag. 9:123-128. doi: 10.1111/j.1445-6664.2009.00329.x.
Compant, S., A. Samad, H. Faist, and A. Sessitsch. 2019. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. J. Adv. Res. 19:29-37. doi: 10.1016/j.jare.2019.03.004.
Coolbear, P., A. Francis, and D. Grierson. 1984. The effect of low temperature pre-sowing treatment on the germination performance and membrane integrity of artificially aged tomato seeds. J. Exp. Bot. 35:1609-1617.
Deaker, R., E. Hartley, and G. Gemell. 2012. Conditions affecting shelf-life of inoculated legume seed. Agriculture 2:38-51. doi: 10.3390/agriculture2010038.
Deva, C.R., M.O. Urban, A.J. Challinor, P. Falloon, and L. Svitakova. 2020. Enhanced leaf cooling is a pathway to heat tolerance in common bean. Front. Plant Sci. 11:19. doi: 10.3389/fpls.2020.00019.
Donohue, K., R. Rubio de Casas, L. Burghardt, K. Kovach, and C.G. Willis. 2010. Germination, postgermination adaptation, and species ecological ranges. Annu. Rev. Ecol. Evol. Syst. 41:293-319. doi: 10.1146/annurev-ecolsys-102209-144715.
Ellis, R.H. and E.H. Roberts. 1981. The quantification of ageing and survival in orthodox seeds. Seed Sci. Technol. 9:373-409.
Farooq, M., S.M.A. Basra, N. Ahmad, and K. Hafeez. 2005. Thermal hardening: a new seed vigor enhancement tool in rice. J.Integr. Plant Biol. 47:187-193. doi: 10.1111/j.1744-7909.2005.00031.x.
Gola, U., S. Kour, T. Kaur, K. Perveen, N.A. Bukhari, J.A. Alsulami, D. Maithani, H. Dasila, M. Singh, and D.C. Suyal. 2023. Prokaryotic diversity and community structure in the rhizosphere of Lantana weed (Lantana camara L.). Front. Plant Sci. 14:1174859. doi: 10.3389/fpls.2023.1174859.
Hou, C.C., Y.P. Chen, J.H. Wu, C.C. Huang, S.Y. Wang, N.S. Yang, and L.F. Shyur. 2007. A galactolipid possesses novel cancer chemopreventive effects by suppressing inflammatory mediators and mouse B16 melanoma. Cancer Res. 67:6907-6915. doi: 10.1158/0008-5472.CAN-07-0158.
Hsu, H.C. 2007. Plant use knowledge of Hakka ethnobotany in Beipu township, Hsinchu county. National Pingtung university of science and technology, Master.
Huang, Y.M. 2007. Seed coating technique development. Mordern trend of Seedling Ind. Development 181:73-80.
Huang, Y.M. 2008. Introduction of treatment for improving seed quality. SEED Sci. Technique 64:19-24. doi: 10.29582/XLZY.200810.0005.
Huang, Y.M. 2010. Establishment of multi-processing model for lettuce seeds. TSIPS Annu. Rep. 64:68-76.
Huang, Y.M. 2017a. The development and application of seed coating. Harvest 67:102-107.
Huang, Y.M. 2017b. The research and development for the technique of onion seed pelleting. TSIPS Annu. Rep.:100-102.
Huang, Y.M. and Y. Sung. 2011. The current situation and future prospects of seed coating Taiwan Seeds 120:2-9.
Hauchhum, R. and S.K. Tripathi. 2020. Impact of rhizosphere microbes of three early colonizing annual plants on improving soil fertility during vegetation establishment under different fallow periods following shifting cultivation. Agric. Res. 9:213-221.
Iniguez, A.L., Dong, Y. and E.W. Triplett. 2004. Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol. Plant Microbe Interact. 17:1078-1085.
Institute of ecology and evolutionary biology, National Taiwan University. 2022. Plants of TAIWAN. Institute of ecology and evolutionary biology, NTU, Taipei. Taiwan. 5.29 2023. <https://tai2.ntu.edu.tw/species/539%20034%2002%200>.
Issa, A., Q. Esmaeel, L. Sanchez, B. Courteaux, J.F. Guise, Y. Gibon, P. Ballias, C. Clement, C. Jacquard, N. Vaillant-Gaveau, and E. Ait Barka. 2018. Impacts of Paraburkholderia phytofirmans strain PsJN on Tomato (Lycopersicon esculentum L.) under high temperature. Front. Plant Sci. 9:1397. doi: 10.3389/fpls.2018.01397.
Javed, T. and I. Afzal. 2018. Impact of seed pelleting on germination potential, seedling growth and storage of tomato seed. 417-424.
Kim, D., K.S. Baik, M.S. Kim, S.C. Park, S.S. Kim, M.S. Rhee, Y.S. Kwak, and C.N. Seong. 2008. Acinetobacter soli sp. nov., isolated from forest soil. J. Microbiol 46:396-401. doi: 10.1007/s12275-008-0118-y.
Kusale, S.P., Y.C. Attar, R. Z. Sayyed, H. El Enshasy, S.Z. Hanapi, N. Ilyas, A.M. Elgorban, A.H. Bahkali, and N. Marraiki. 2021. Inoculation of Klebsiella variicola alleviated aalt atress and improved growth and nutrients in wheat and maize. Agron. 11. doi: 10.3390/agronomy11050927.
Li, J., J. Wang, H. Liu, C.A. Macdonald, and B.K. Singh. 2022. Application of microbial inoculants significantly  enhances crop productivity: a meta‐analysis of studies from 2010 to 2020. JSAE 1:216-225. doi: 10.1002/sae2.12028.
Liu, Y., S. Wang, S. Feng, S. Yan, Y. Li, Y. Huang, and M. Yang. 2023. Combined whole transcriptome analysis and physical-chemical reveals the leaf color change mechanism of Ulmus pulima under heat stress. Environ. Exp. Bot. 210. doi: 10.1016/j.envexpbot.2023.105347.
Lopes, M.J.D.S., M.B. Dias-Filho, and E.S.C. Gurgel. 2021. Successful plant growth-promoting microbes: inoculation methods and abiotic factors. Front. Sustain. Food Syst. 5:606454. doi: 10.3389/fsufs.2021.606454.
Luo, L., Y. Huang, and J. Liu. 2022. Genome Sequence Resources of Klebsiella michiganensis AKKL-001, Which Causes Bacterial Blight of Mulberry. Mol. Plant Microbe Interact. 35:349-351.
Lou, F., C.O. Okoye, L. Gao, H. Jiang, Y. Wu, Y. Wang, X. Li, and J. Jiang. 2023. Whole-genome sequence analysis reveals phenanthrene and pyrene degradation pathways in newly isolated bacteria Klebsiella michiganensis EF4 and Klebsiella oxytoca ETN19. Microbiol. Res. 273:127410. doi: 10.1016/j.micres.2023.127410.
Ma, Y. 2019. Seed coating with beneficial microorganisms for precision agriculture. Biotechnol. Adv. 37:107423. doi: 10.1016/j.biotechadv.2019.107423.
Mahapatra, S., R. Yadav, and W. Ramakrishna. 2022. Bacillus subtilis impact on plant growth, soil health and environment: Dr. Jekyll and Mr. Hyde. J. Appl. Microbiol. 132:3543-3562. doi: 10.1111/jam.15480.
Mishra, N. and S. K. Sundari. 2015. Native PGPM consortium: a beneficial solution to support plant growth in the presence of phytopathogens and residual organophosphate pesticides. J. Bioprocess. Biotech. 5:1-8. doi: 10.4172/2155-9821.1000202.
Mukhtar, T., S. Rehman, D. Smith, T. Sultan, M.F. Seleiman, A.A. Alsadon, Amna, S. Ali, H.J. Chaudhary, T.H.I. Solieman, A.A. Ibrahim, and M.A.O. Saad. 2020. Mitigation of heat stress in Solanum lycopersicum L. by ACC-deaminase and exopolysaccharide producing Bacillus cereus: effects on biochemical profiling. Sustainability 12. doi: 10.3390/su12062159.
Nakamura, I. and M.A. Hossain. 2009. Factors affecting the seed germination and seedling emergence of redflower ragleaf (Crassocephalum crepidioides). Weed Biol. Manag. 9:315-322. doi: 10.1111/j.1445-6664.2009.00356.x.
Paidhungat, M., B. Setlow, W.B. Daniels, D. Hoover, E. Papafragkou, and P. Setlow. 2002. Mechanisms of induction of germination of Bacillus subtilis spores by high pressure. Appl. Environ. Microbiol. 68:3172-3175. doi: 10.1128/AEM.68.6.3172-3175.2002.
Pan, W.Q. and X.L. Su. 2007. Organic wild vegetable cultivation management manual. Hualien county government, Hualien. Taiwan.
Pedrini, S., D.J. Merritt, J. Stevens, and K. Dixon. 2017. Seed coating: science or marketing spin? Trends Plant Sci. 22:106-116. doi: 10.1016/j.tplants.2016.11.002.
Pramanik, K., S. Mitra, A. Sarkar, T. Soren, and T.K. Maiti. 2017. Characterization of cadmium-resistant Klebsiella pneumoniae MCC 3091 promoted rice seedling growth by alleviating phytotoxicity of cadmium. Environ. Sci. Pollut. Res. Int. 24:24419-24437. doi: 10.1007/s11356-017-0033-z.
Qiu, Y., M. Amirkhani, H. Mayton, Z. Chen, and A.G. Taylor. 2020. Biostimulant seed coating treatments to improve cover crop germination and seedling growth. Agron. 10:154.
Rai, M. (Ed.). 2006. Handbook of Microbial Biofertilizers (1st ed.). CRC Press. https://doi.org/10.1201/9781482277760.
Rajkumari, J., L. Paikhomba Singha, and P. Pandey. 2018. Genomic insights of aromatic hydrocarbon degrading Klebsiella pneumoniae AWD5 with plant growth promoting attributes: a paradigm of soil isolate with elements of biodegradation. 3 Biotech. 8:1-22. doi: 10.1007/s13205-018-1134-1.
Rho, H., V. Van Epps, N. Wegley, S. L. Doty, and S.H. Kim. 2018. Salicaceae endophytes modulate stomatal behavior and increase water use efficiency in rice. Front. Plant Sci. 9:188.
Rocha, I., Y. Ma, P. Souza-Alonso, M. Vosatka, H. Freitas, and R.S. Oliveira. 2019. Seed coating: A tool for delivering beneficial microbes to agricultural crops. Front. Plant Sci. 10:1357. doi: 10.3389/fpls.2019.01357.
Rodriguez-Medina, N., H. Barrios-Camacho, J. Duran-Bedolla, and U. Garza-Ramos. 2019. Klebsiella variicola: an emerging pathogen in humans. Emerg. Microbes Infect. 8:973-988. doi: 10.1080/22221751.2019.1634981.
Rokhbakhsh-Zamin, F., D. Sachdev, N. Kazemi-Pour, A. Engineer, K.R. Pardesi, S. Zinjarde, P.K. Dhakephalkar, and B.A. Chopade. 2011. Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. J. Microbiol. Biotechnol. 21:556-566. doi: 10.4014/jmb.1012.12006.
Ryu, C.M., J. Kim, O. Choi, S.K. Kim, and C.S. Park. 2006. Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biol. Control 39:282-289. doi: 10.1016/j.biocontrol.2006.04.014.
Sachdev, D.P., H.G. Chaudhari, V.M. Kasture, D.D. Dhavale, and B.A. Chopade. 2009. Isolation and characterization of indole acetic acid (IAA) producing Klebsiella pneumoniae strains from rhizosphere of wheat (Triticum aestivum) and their effect on plant growth. Indian J. Exp. Biol. 47:993-1000.
Sakpere, A.M.A., O. Adedeji, and A.T. Folashade. 2013. Flowering, post-pollination development and propagation of Ebolo (Crassocephalum crepidioides (Benth.) S. Moore) in Ile-Ife, Nigeria. J. Sci. Technol. 33:37-49. doi: 10.4314/just.v33i2.4.
Schneider, C.A., W.S. Rasband, and K.W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671-675. doi: 10.1038/nmeth.2089.
Silalahi, M. 2022. Crassocephalum crepidioides (Bioactivity and Utilization). In Proceedings of the 3rd International Conference of Education and Science, ICES 2021, November 17-18, 2021, Jakarta, Indonesia.
Srivastava, R., A. Khalid, U.S. Singh, and A.K. Sharma. 2010. Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt. Biol. Control 53:24-31. doi: 10.1016/j.biocontrol.2009.11.012.
Sturz, A.V., B.G. Matheson, W. Arsenault, J. Kimpinski, and B.R. Christie. 2001. Weeds as a source of plant growth promoting rhizobacteria in agricultural soils. Can. J. Microbiol. 47:1013-1024. doi: 10.1139/w01-110.
Su, Y., C. Liu, H. Fang, and D. Zhang. 2020. Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microb. Cell Fact. 19:1-12. doi: 10.1186/s12934-020-01436-8.
Tien, W.J. and C.J. Hou. 2013. Ecological studies on the seed germination of Crassocephaium crepidioides (Benth.) S. Moore at different altitudes. Weed Sci. Bull. 34:133-154. doi: 10.6274/WSSROC-2013-034(2)-133.
Thoudam, S. and D. Sharma. 2020. Chapter-3 A Review Study on nutraceutical and nutritional efficacy of Crassocephalum crepidioides. Chief Editor 51.
Wang, H., Y. Wang, D. Jiang, Z. Xiang, S. Wang, C. Kang, W. Zhang, Y. Ge, T. Wang, L. Huang, D. Liu, and L. Guo. 2022. Soil microbe inoculation alters the bacterial communities and promotes root growth of Atractylodes lancea under heat stress. Plant and Soil 478:371-389. doi: 10.1007/s11104-022-05369-6.
Wang, J.H., J.L. Shu, and N.S. Yang. 2009. Characterization of cellular phenotypic changes in dendritic cells as a response to medicinal herb extracts. J. Mackay Jr. College Nurs. 7:87-123. doi: 10.7061/MJ.200907.0087.
Wang, Q.L., J.H. Chen, N.Y. He, and F.Q. Guo. 2018. Metabolic reprogramming in chloroplasts under heat stress in plants. Int. J. Mol. Sci. 19:849. doi: 10.3390/ijms19030849.
Wang, X.Q., D.L. Zhao, L.L. Shen, C.L. Jing, and C.S. Zhang. 2018. Application and mechanisms of Bacillus subtilis in biological control of plant disease, p. 225-250. In: V. Meena (ed.). Role of rhizospheric microbes in soil. Springer, Singapore. doi: https://doi.org/10.1007/978-981-10-8402-7_9.
Wang, Z., A. Chiarucci, H. Fang, and M. Chen. 2020. An interspecific variation in rhizosphere effects on soil anti-erodibility. Sci. Rep. 10:2411.
Xie, S.S., H.J. Wu, H.Y. Zang, L.M. Wu, Q.Q. Zhu, and X.W. Gao. 2014. Plant growth promotion by spermidine-producing Bacillus subtilis OKB105. Mol. Plant Microbe. Interact. 27:655-663. doi: 10.1094/MPMI-01-14-0010-R.
Yang, C., W. Tang, J. Sun, H. Guo, S. Sun, F. Miao, G. Yang, Y. Zhao, Z. Wang, and J. Sun. 2022. Weeds in the alfalfa field decrease rhizosphere microbial diversity and association networks in the north China plain. Front Microbiol 13:840774. doi: 10.3389/fmicb.2022.840774.
Yang, C.C. and L.F. Shyur. 2013. The treatment of melanoma and current research and development of medicinal herds Academia Sinica Weekly 1446:7-9.
Young C.C. 2014. Mechanisms in crop growth promotion of microbial fertilizers. Taichung district Agric. Res. Ext. Sta. Spec. 121:59-68. doi: 10.29563/ZHWHGX.
Yang, L. and K. Yang. 2020. Biological function of Klebsiella variicola and its effect on the rhizosphere soil of maize seedlings. PeerJ. 8:e9894. doi: 10.7717/peerj.9894.
Yuan, X. and B. Wen. 2018. Seed germination response to high temperature and water stress in three invasive Asteraceae weeds from Xishuangbanna, SW China. PLoS One 13:e0191710. doi: 10.1371/journal.pone.0191710.
Zilli, J.É., R.S. Pacheco, V. Gianluppi, O.J. Smiderle, S. Urquiaga, and M. Hungria. 2021. Biological N2 fixation and yield performance of soybean inoculated with Bradyrhizobium. Nutr. Cycling Agroecosyst. 119:323-336. doi: 10.1007/s10705-021-10128-7.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90035-
dc.description.abstract昭和草(Crassocephalum rabens)為分布於臺灣中低海拔的一年生菊科作物,全株萃取物可被用於生產治療癌症的藥物。然而,現有的商業生產規模受種子尺寸與台灣環境溫度限制,不利於大規模及週年性生產。為此,業界正在研製昭和草披衣種子以克服種子尺寸所造成的限制。本研究將目標放在溫度對昭和草發芽表現與幼苗生長勢之影響,並期望以接種植物生長促進細菌(plant growth-promoting bacteria;PGPB)改善其種子發芽與幼苗生長勢表現。試驗材料分為披衣種子(pelleted seed)與無披衣處理種子(non-pelleted seed),並在接種PGPB後栽種於不同環境溫度下,透過調查種子發芽表現與幼苗生長勢了解PGPB施用對昭和草之影響及其作為改善方案的潛力。試驗結果顯示,在培養皿進行的發芽試驗以30/25℃環境下培養基處理(LB)的93.33%為最高之最終發芽綠。在六、七月間於精密溫室中進行的幼苗生長勢試驗中以披衣種子土壤接種PGPB有最佳的幼苗生長勢表現;生長箱試驗中以種子接種Bacillus subtills (WO3)處理在減緩溫度對幼苗生長勢影響上有較佳表現。雖然環境溫度是影響種子發芽表現與幼苗生長勢的主要因素,但亦觀察到PGPB接種對幼苗生長勢有正向影響的趨勢。說明PGPB接種處理具有改善幼苗生長勢之潛力,未來研究可以接種菌株、接種濃度為研究主題,並對植物體中的化合物或藥用成分進行進一步的調查,以對PGPB接種所造成之影響有更明確的了解。PGPB接種則幼苗生長勢有助於改善高溫下幼苗生長勢表現,發芽表現主要受環境溫度影響。zh_TW
dc.description.abstractCrassocephalum rubens, a herbaceous plant belonging to the Asteraceae family, is distributed in Taiwan’s mid to low elevations. The whole plant can be used as a vegetable, and its extract can be used for producing anticancer drugs. However, the existing commercial production scale is limited by seed size and high-temperature environments, which restricts large-scale and year-round production. The industry is developing pelleting material for C. rubens to overcome the limitation caused by the seed size. This study investigates the effects of plant growth-promoting bacteria (PGPB) inoculation on germination performance and seedling growth of C. rubens under different temperature conditions in Taiwan. The seed materials include pelleted seeds and non-pelleted seeds. The potential of PGPB for improving C. rubens growth would be evaluated by investigating how seed germination and seedling growth performance after the inoculation of PGPB. The experiments will be conducted in a greenhouse and growth chambers separately. The greenhouse experiments showed that the combination of pelleted seed and soil inoculation reached the best seedling growth performance from May to July. For the chamber experiment, seed inoculation with Bacillus subtillis mitigated the damage caused by high temperatures on seedling growth. For the results from seed germinated in the petri dish showed that the highest final germination rate (93.33%) was observed in the chamber set at 30/25℃ and inoculated with the LB medium. In conclusion, PGPB inoculation positively impacts seedling growth performance under 30/25℃ temperature conditions, while temperature was the main factor affecting germination performance. Which suggest that PGPB inoculation has the potential to improve the growth of the seedlings. Future studies can focus on finding the optimum PGPB strains or the inoculation concentration, also investigate how inoculation treatment affect the compounds inside the host plant. Which could help people understand the mechanism of PGPBs on C. rubens and make better use of them.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:08:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T17:08:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
TABLE OF CONTENTS iv
LIST OF TABLES v
LIST OF FIGURES viii
1. Literature review and Background 1
1.1 Crassocephalum rubens 2
1.2 Seed pelleting 7
1.3 Plant growth-promoting microorganisms 8
1.4 Inoculation methods of PGPMs 11
1.5 Aims of the study 12
2. Greenhouse experiment 13
2.1 Materials and Methods 15
2.2 Results 25
2.3 Discussion 27
3. Chamber experiment 42
3.1 Materials and Methods 42
3.2 Results 45
3.3 Discussion 47
4. Overall conclusions 66
5. References 68
-
dc.language.isoen-
dc.subject昭和草zh_TW
dc.subject幼苗生長勢zh_TW
dc.subject植物生長促進細菌zh_TW
dc.subject發芽表現zh_TW
dc.subject溫度zh_TW
dc.subjectseedling growthen
dc.subjectplant growth-promoting bacteriaen
dc.subjectgerminationen
dc.subjectCrassocephalum rubensen
dc.subjectpelleted seeden
dc.title植物生長促進細菌對昭和草種子發芽率與幼苗生長勢之影響zh_TW
dc.titleThe effects of plant growth-promoting bacteria on the seed germination and seedling growth in Crassocephalum rubensen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊雯如;歐海仁zh_TW
dc.contributor.oralexamcommitteeWen-Ju Yang;Hiran Anjana Ariyawansaen
dc.subject.keyword昭和草,植物生長促進細菌,幼苗生長勢,發芽表現,溫度,zh_TW
dc.subject.keywordCrassocephalum rubens,seedling growth,plant growth-promoting bacteria,germination,pelleted seed,en
dc.relation.page74-
dc.identifier.doi10.6342/NTU202303131-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-13-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept園藝暨景觀學系-
dc.date.embargo-lift2028-08-10-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
1.91 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved