請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90021完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉建豪 | zh_TW |
| dc.contributor.advisor | Chien-Hao Liu | en |
| dc.contributor.author | 陳柏云 | zh_TW |
| dc.contributor.author | Po-Yun Chen | en |
| dc.date.accessioned | 2023-09-22T17:05:15Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | [1] H. A. Wheeler, “Fundamental Limitations of Small Antennas,” Proceedings of the IRE, vol. 35, no. 12, pp. 1479–1484, Feb. 1947.
[2] K. Carver and J. Mink, “Microstrip antenna technology,” IEEE Transactions on Antennas and Propagation, vol. 29, no. 1, pp. 2–24, Jan. 1981. [3] H. Nakano, H. Tagami, A. Yoshizawa, and J. Yamauchi, “Shortening ratios of modified dipole antennas,” IEEE Transactions on Antennas and Propagation, vol. 32, no. 4, pp. 385–386, Apr. 1984. [4] R. C. Hansen and M. Burke, “Antennas with magneto-dielectrics,” Microwave and Optical Technology Letters, vol. 26, no. 2, pp. 75–78, 2000. [5] J. P. Gianvittorio and Y. Rahmat-Samii, “Fractal antennas: a novel antenna miniaturization technique, and applications,” IEEE Antennas and Propagation Magazine, vol. 44, no. 1, pp. 20–36, Feb. 2002. [6] S. R. Best and J. D. Morrow, “The effectiveness of space-filling fractal geometry in lowering resonant frequency,” IEEE Antennas and Wireless Propagation Letters, vol. 1, pp. 112–115, 2002. [7] D. H. Werner and S. Ganguly, “An overview of fractal antenna engineering research,” IEEE Antennas and Propagation Magazine, vol. 45, no. 1, pp. 38–57, Feb. 2003. [8] A. Holub and M. Polivka, “A Novel Microstrip Patch Antenna Miniaturization Technique: A Meanderly Folded Shorted-Patch Antenna,” in 2008 14th Conference on Microwave Techniques, Apr. 2008, pp. 1–4. [9] T. Yousefi and R. E. Diaz, “Pushing the limits of radiofrequency (RF) neuronal telemetry,” Sci Rep, vol. 5, no. 1, p. 10588, Jun. 2015. [10] P. Banerjee and T. Bezboruah, “Theoretical Study of Radiation Characteristics of Short Dipole Antenna,” Lecture Notes in Engineering and Computer Science, vol. 2210, Mar. 2014. [11] S.-Y. Chen, H.-T. Chou, and Y.-L. Chiu, “A size-reduced microstrip antenna for the applications of GPS signal reception,” in 2007 IEEE Antennas and Propagation Society International Symposium, Jun. 2007, pp. 5443–5446. [12] Y. Zhou, C.-C. Chen, and J. L. Volakis, “A compact 4-element dual-band GPS array,” in 2009 IEEE Antennas and Propagation Society International Symposium, Jun. 2009, pp. 1–4. [13] “Antenna Theory: Analysis and Design, 4th Edition | Wiley,” Wiley.com. (accessed Jul. 20, 2023). [14] G. Y. Yang, J. K. Du, B. Huang, Y. A. Jin, and M. H. Xu, “Surface acoustic waves in acoustic superlattice lithium niobate coated with a waveguide layer,” AIP Advances, vol. 7, no. 4, p. 045206, Apr. 2017. [15] Y. Chao, J. Sheng, J. A. Sedlacek, and J. P. Shaffer, “Surface phonon polaritons on anisotropic piezoelectric superlattices,” Phys. Rev. B, vol. 93, no. 4, p. 045419, Jan. 2016. [16] D. Yudistira, S. Benchabane, D. Janner, and V. Pruneri, “Surface acoustic wave generation in ZX-cut LiNbO3 superlattices using coplanar electrodes,” Appl. Phys. Lett., vol. 95, no. 5, p. 052901, Aug. 2009. [17] H.-C. Wang and C.-H. Liu, “A Miniaturized Two-Element Piezoelectric-Based Antenna Array for Direction Finding”. [18] 陽明益, “壓電超晶格之極子特性研究” 博士論文, 國立臺灣大學機械工程學研究所, 2008. [19] 張哲源, “壓電微型化天線陣列應用於VHF波源判定” 碩士論文, 國立臺灣大學機械工程學研究所, 2020. [20] 呂晉祥, “利用壓電超晶格極子之機械波與電磁波共生特性開發FM天線” 碩士論文, 國立臺灣大學機械工程學研究所, 2019. [21] 白立宇, “脈衝雷射激發壓電超晶格受聲學致動的電磁輻射” 碩士論文, 國立臺灣大學機械工程學研究所, 2021. [22] C.-H. Meng and C.-H. Liu, “Enhancement of Electromagnetic Radiation of Piezoelectric Superlattice Antennas,” Aug. 2022. [23] A. E. Hassanien, M. Breen, M.-H. Li, and S. Gong, “A theoretical study of acoustically driven antennas,” Journal of Applied Physics, vol. 127, no. 1, p. 014903, Jan. 2020. [24] T. Nan et al., “Acoustically actuated ultra-compact NEMS magnetoelectric antennas,” Nat Commun, vol. 8, no. 1, p. 296, Aug. 2017. [25] R. M. White, “Elastic Wave Generation by Electron Bombardment or Electromagnetic Wave Absorption,” Journal of Applied Physics, vol. 34, no. 7, pp. 2123–2124, Jul. 1963. [26] H. W. Lo and A. Compaan, “Raman measurements of temperature during cw laser heating of silicon,” Journal of Applied Physics, vol. 51, no. 3, pp. 1565–1568, Mar. 1980. [27] J. D. Aussel, A. Le Brun, and J. C. Baboux, “Generating acoustic waves by laser: theoretical and experimental study of the emission source,” Ultrasonics, vol. 26, no. 5, pp. 245–255, Sep. 1988. [28] I. J. Collison, T. Stratoudaki, M. Clark, and M. G. Somekh, “Measurement of elastic nonlinearity using remote laser ultrasonics and CHeap Optical Transducers and dual frequency surface acoustic waves,” Ultrasonics, vol. 48, no. 6–7, pp. 471–477, Nov. 2008. [29] R. Salenbien, R. Côte, J. Goossens, P. Limaye, R. Labie, and C. Glorieux, “Laser-based surface acoustic wave dispersion spectroscopy for extraction of thicknesses, depth, and elastic parameters of a subsurface layer: Feasibility study on intermetallic layer structure in integrated circuit solder joint,” Journal of Applied Physics, vol. 109, no. 9, p. 093104, May 2011. [30] X. Wang, Y. Yue, and X. Xu, “Thermoelastic Waves Induced by Pulsed Laser Heating,” in Encyclopedia of Thermal Stresses, R. B. Hetnarski, Ed. Dordrecht: Springer Netherlands, 2014, pp. 5808–5826. [31] F. Qin, B. Li, L. Chen, and Z. Shang, “Laser-induced surface acoustic waves for measurement of elastic constants based on mode conversion,” Materials Chemistry and Physics, vol. 242, p. 122523, Feb. 2020. [32] J. A. Bickford, A. E. Duwel, M. S. Weinberg, R. S. McNabb, D. K. Freeman, and P. A. Ward, “Performance of Electrically Small Conventional and Mechanical Antennas,” IEEE Trans. Antennas Propagat., vol. 67, no. 4, pp. 2209–2223, Apr. 2019. [33] J. A. Bickford, R. S. McNabb, P. A. Ward, D. K. Freeman, and M. S. Weinberg, “Low frequency mechanical antennas: Electrically short transmitters from mechanically-actuated dielectrics,” in 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, Jul. 2017, pp. 1475–1476. [34] M. N. S. Prasad, Y. Huang, and Y. E. Wang, “Going beyond Chu harrington limit: ULF radiation with a spinning magnet array,” in 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Montreal, QC, Aug. 2017, pp. 1–3. [35] C. Wang, Y. Cui, and M. Wei, “Mechanically-Rotating Electret ULF/VLF Antenna Transmitter,” in 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, Jul. 2019, pp. 1383–1384. [36] R. D. Mindlin, “Electromagnetic radiation from a vibrating quartz plate,” International Journal of Solids and Structures, vol. 9, no. 6, pp. 697–702, Jun. 1973. [37] P. C. Y. Lee, Y.-G. Kim, and J. H. Prevost, “Electromagnetic radiation from doubly rotated piezoelectric crystal plates vibrating at thickness frequencies,” in Proceedings., IEEE Ultrasonics Symposium, Montreal, Que., Canada, 1989, pp. 423–428. [38] J. P. Domann and G. P. Carman, “Strain powered antennas,” Journal of Applied Physics, vol. 121, no. 4, p. 044905, Jan. 2017. [39] C. F. Campbell and R. J. Weber, “Calculation of radiated electromagnetic power from bulk acoustic wave resonators,” in 1993 IEEE International Frequency Control Symposium, Salt Lake City, UT, USA, 1993, pp. 472–475. [40] Z. Zhou, S. Keller, A. Sepulveda, and G. Carman, “Modeling Electromagnetic Radiation Induced From a Piezoelectric Shear-Mode Resonator,” IEEE J. Multiscale Multiphys. Comput. Tech., vol. 1, pp. 129–138, 2016. [41] A. E. Hassanien, M. Breen, M.-H. Li, and S. Gong, “Acoustically driven electromagnetic radiating elements,” Sci Rep, vol. 10, no. 1, p. 17006, Oct. 2020. [42] G. Xu, S. Xiao, Y. Li, and B.-Z. Wang, “Modeling of electromagnetic radiation-induced from a magnetostrictive/piezoelectric laminated composite,” Physics Letters A, vol. 385, p. 126959, Jan. 2021. [43] X. Jiang and S. Xiao, “Research on New Electromagnetic Radiation Method for Antenna Miniaturization,” in 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), Taiyuan, China, Jul. 2019, pp. 1–3. [44] Z. Yao, Y. E. Wang, S. Keller, and G. P. Carman, “Bulk Acoustic Wave-Mediated Multiferroic Antennas: Architecture and Performance Bound,” IEEE Trans. Antennas Propagat., vol. 63, no. 8, pp. 3335–3344, Aug. 2015. [45] G. Xu and S. Xiao, “Modeling of Piezoelectric Resonator Antennas for VLF Electromagnetic Radiation,” in 2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC), Fuzhou, China, Dec. 2020, pp. 1–3. [46] X. Ma and H. Zheng, “A VLF Resonant Antenna Based on Piezoelectric Ceramics,” in 2021 IEEE 4th International Conference on Electronic Information and Communication Technology (ICEICT), Xi’an, China, Aug. 2021, pp. 338–341. [47] M. Sigalas and E. N. Economou, “Band structure of elastic waves in two dimensional systems,” Solid State Communications, vol. 86, no. 3, pp. 141–143, Apr. 1993. [48] M. I. Hussein, G. M. Hulbert, and R. A. Scott, “Dispersive elastodynamics of 1D banded materials and structures: analysis,” Journal of Sound and Vibration, vol. 289, no. 4–5, pp. 779–806, Feb. 2006. [49] Y.-Y. ZHU, “Dielectric superlattices for nonlinear optical effects,” Jan. 1999. [50] R. Tsu and S. S. Jha, “Phonon and Polariton Modes in a Superlattice,” Applied Physics Letters, vol. 20, no. 1, pp. 16–18, Jan. 1972. [51] L. Airoldi, M. Senesi, and M. Ruzzene, “Piezoelectric Superlattices and Shunted Periodic Arrays as Tunable Periodic Structures and Metamaterials,” in Wave Propagation in Linear and Nonlinear Periodic Media: Analysis and Applications, F. Romeo and M. Ruzzene, Eds. Vienna: Springer, 2012, pp. 33–108. [52] Y. Lu, Y. Zhu, Y. Chen, S. Zhu, N. Ming, and Y.-J. Feng, “Optical Properties of an Ionic-Type Phononic Crystal,” Science, vol. 284, no. 5421, pp. 1822–1824, Jun. 1999. [53] X. Hu, Y. Ming, X. Zhang, Y. Lu, and Y. Zhu, “Mimicing surface phonon polaritons in microwave band based on ionic-type phononic crystal,” Appl. Phys. Lett., vol. 101, no. 15, p. 151109, Oct. 2012. [54] W. Zhang, Z. Liu, and Z. Wang, “Band structures and transmission spectra of piezoelectric superlattices,” Phys. Rev. B, vol. 71, no. 19, p. 195114, May 2005. [55] X. Zhang, R. Zhu, J. Zhao, Y. Chen, and Y. Zhu, “Phonon-polariton dispersion and the polariton-based photonic band gap in piezoelectric superlattices,” Phys. Rev. B, vol. 69, no. 8, p. 085118, Feb. 2004. [56] C. Huang and Y. Zhu, “Piezoelectric-Induced Polariton Coupling in a Superlattice,” Phys. Rev. Lett., vol. 94, no. 11, p. 117401, Mar. 2005. [57] H. Liu et al., “Coupling of electromagnetic waves and superlattice vibrations in a piezomagnetic superlattice: Creation of a polariton through the piezomagnetic effect,” Phys. Rev. B, vol. 71, no. 12, p. 125106, Mar. 2005. [58] Y. Zhu, S. Zhu, Y. Qin, and N. Ming, “Further studies on ultrasonic excitation in an acoustic superlattice,” Journal of Applied Physics, vol. 79, no. 5, pp. 2221–2224, Mar. 1996. [59] Y.-F. Chen, S.-N. Zhu, Y.-Y. Zhu, N.-B. Ming, B.-B. Jin, and R.-X. Wu, “High-frequency resonance in acoustic superlattice of periodically poledLiTaO3,” Appl. Phys. Lett., vol. 70, no. 5, pp. 592–594, Feb. 1997. [60] Y. Zhu, X. Zhang, Y. Lu, Y. Chen, S. Zhu, and N. Ming, “New Type of Polariton in a Piezoelectric Superlattice,” Phys. Rev. Lett., vol. 90, no. 5, p. 053903, Feb. 2003. [61] E. Courjon et al., “Lamb wave transducers built on periodically poled Z-cut LiNbO3 wafers,” Journal of Applied Physics, vol. 102, no. 11, p. 114107, Dec. 2007. [62] Y.-F. Chou and M.-Y. Yang, “Energy conversion in piezoelectric superlattices,” presented at the The 14th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, San Diego, California, Apr. 2007, p. 65260L. [63] Y.-F. Chou and C.-H. Shih, “Electromagnetic radiation of polaritons in piezoelectric superlattices,” presented at the SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, California, USA, Mar. 2011, p. 797820. [64] D. Yudistira, A. Boes, D. Janner, V. Pruneri, J. Friend, and A. Mitchell, “Polariton-based band gap and generation of surface acoustic waves in acoustic superlattice lithium niobate,” Journal of Applied Physics, vol. 114, no. 5, p. 054904, Aug. 2013. [65] D. Yudistira, D. Janner, S. Benchabane, and V. Pruneri, “Low power consumption integrated acousto-optic filter in domain inverted LiNbO_3 superlattice,” Opt. Express, vol. 18, no. 26, p. 27181, Dec. 2010. [66] B. A. Auld, Acoustic fields and waves in solids. Рипол Классик, 1973. [67] K. Uchino, Advanced piezoelectric materials: Science and technology. 2010, p. 678. [68] S. C. Abrahams, H. J. Levinstein, J. M. Reddy, and B. Telephone, “Ferroelectric Lithium Niobate. 5. Polycrystal X-ray Diffraction Study Between 24” And 1200°c,” Oct. 1965. [69] X. Kang, L. Liang, W. Song, F. Wang, Y. Sang, and H. Liu, “Formation mechanism and elimination methods for anti-site defects in LiNbO 3 /LiTaO 3 crystals,” CrystEngComm, vol. 18, no. 42, pp. 8136–8146, 2016. [70] T. Volk and M. Wöhlecke, Lithium niobate: defects, photorefraction and ferroelectric switching. Berlin: Springer, 2008. [71] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of Computational Physics, vol. 114, no. 2, pp. 185–200, Oct. 1994. [72] S. G. Johnson, “Notes on Perfectly Matched Layers (PMLs).” arXiv, Aug. 04, 2021. [73] C. Hakoda, J. Rose, P. Shokouhi, and C. Lissenden, “Using Floquet periodicity to easily calculate dispersion curves and wave structures of homogeneous waveguides,” presented at the 44th Annual Review Of Progress In Quantitative Nondestructive Evaluation, Volume 37, Provo, Utah, USA, 2018, p. 020016. [74] M. Leidinger, S. Fieberg, N. Waasem, F. Kühnemann, K. Buse, and I. Breunig, “Comparative study on three highly sensitive absorption measurement techniques characterizing lithium niobate over its entire transparent spectral range,” Opt. Express, vol. 23, no. 17, p. 21690, Aug. 2015. [75] C. K. N. Patel and A. C. Tam, “Pulsed optoacoustic spectroscopy of condensed matter,” Rev. Mod. Phys., vol. 53, no. 3, pp. 517–550, Jul. 1981. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90021 | - |
| dc.description.abstract | 壓電超晶格是一種具有空間中週期性調變壓電係數結構。其內部存在機械波、電磁波,以及機械波與電磁波強烈耦合產生的極子波。這種強烈耦合是藉由與反轉週期匹配的波動形呈均勻電場產生。
根據壓電超晶格的理論,輸入機械能或電磁能都會因為壓電耦合產生電磁輻射。多數研究利用電磁式的輸入來激發壓電超晶格,主要因其振動頻率通常在 MHz 以上,而機械式的激發方式大多是接觸式,容易干擾材料內部的機械場,使得理論分析變得困難。 本研究目標利用非破壞性檢測中使用的脈衝雷射,產生 MHz 等級與壓電超晶格共振的機械波,並在材料內部激發對應頻率的極子波。 為了完整驗證壓電超晶格的理論,本研究利用電磁式激發,並以量測散射參數方式確認輻射頻率,再利用有限元素模擬尋找對應的機械場形與電磁場形。同時,利用模擬不同形式的脈衝雷射等效外力,在材料上產生機械波並觀察其波型。這樣的研究成果可以驗證雷射實驗設置與假設的正確性。 | zh_TW |
| dc.description.abstract | Piezoelectric superlattice is a structure with periodic modulation of the piezoelectric coefficient in space. It contains mechanical waves, electromagnetic waves, and polariton waves generated by the strong coupling between mechanical and electromagnetic waves. This strong coupling is achieved through the generation of a uniform electric field that matches the inversion period.
According to the theory of piezoelectric superlattice, both mechanical and electromagnetic energies can generate electromagnetic radiation due to piezoelectric coupling. Most studies use electromagnetic excitation because the vibration frequency is typically above MHz, while mechanical excitation is mostly contact-based, which complicates theoretical analysis by interfering with the internal mechanical field. The objective of this research is to use pulsed lasers commonly used in non-destructive testing to generate mechanical waves resonating at MHz frequencies with the piezoelectric superlattice and excite corresponding polariton waves within the material. To fully validate the theory of piezoelectric superlattice, this study will use electromagnetic excitation and measure the scattering parameters to confirm the radiation frequency. Finite element simulations will be employed to find the corresponding mechanical and electromagnetic field patterns. Additionally, different forms of pulsed lasers will be simulated to generate mechanical waves on the material and observe their waveforms. The results of this research will validate the correctness of the laser experimental setup and assumptions. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T17:05:15Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T17:05:15Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vii 表目錄 x Chapter 1 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 機械式天線 2 1.2.2 壓電超晶格 4 Chapter 2 理論 8 2.1 壓電超晶格 8 2.1.1 壓電超晶格簡介 8 2.1.2 壓電晶體統御方程式 8 2.2 一維無限域波傳 10 2.2.1 特徵值解 10 2.2.2 頻散曲線 16 2.2.3 頻散曲線中的能量分布 19 Chapter 3 壓電超晶格製作與檢驗 26 3.1 材料結構 26 3.2 週期極化製作 27 3.2.1 光罩設計 27 3.2.2 晶片規格 29 3.2.3 黃光顯影製程 30 3.2.4 晶片夾持 31 3.2.5 晶片極化 32 3.3 壓電超晶格成品檢驗 35 3.3.1 光學顯微鏡 35 3.3.2 輪廓儀 36 3.3.3 SEM 37 3.4 散射參數量測 38 3.4.1 散射參數 38 3.4.2 量測架設 39 3.4.3 量測結果 39 Chapter 4 有限元素模擬 45 4.1 模型基本參數 45 4.1.1 材料參數與座標轉換 45 4.1.2 網格設計 45 4.2 模態分析 45 4.2.1 週期性邊界條件 45 4.2.2 模態分析 46 4.3 頻域分析 50 4.3.1 電磁激發頻域反應 50 4.3.2 外力激發頻域反應 52 4.3.3 等效外部電流 54 4.3.4 電磁波模組頻域反應 55 4.4 時域分析 57 4.4.1 雷射激發方式 57 4.4.2 雷射激發彈性波 61 Chapter 5 結論與未來展望 64 5.1 結論 64 5.2 未來展望 65 REFERENCE 67 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 壓電超晶格 | zh_TW |
| dc.subject | 極子 | zh_TW |
| dc.subject | 脈衝雷射 | zh_TW |
| dc.subject | Pulsed Laser | en |
| dc.subject | Piezoelectric Superlattices | en |
| dc.subject | Polariton | en |
| dc.title | 機械制動壓電極子天線之電磁輻射效應 | zh_TW |
| dc.title | Mechanical excited EM radiation of piezoelectric polariton antenna | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 周元昉;莊嘉揚;黃琴雅 | zh_TW |
| dc.contributor.oralexamcommittee | Yuan-Fang Chou;Jia-Yang Juang;Chin-Ya Huang | en |
| dc.subject.keyword | 壓電超晶格,極子,脈衝雷射, | zh_TW |
| dc.subject.keyword | Piezoelectric Superlattices,Polariton,Pulsed Laser, | en |
| dc.relation.page | 71 | - |
| dc.identifier.doi | 10.6342/NTU202303441 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
