Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90014
標題: 可調式液晶透鏡在老花眼鏡上的應用
Application of Focus-Tunable Liquid Crystal Lens on Presbyopic Glasses
作者: 孫紹哲
Shao-Che Sun
指導教授: 蘇國棟
Guo-Dung J. Su
關鍵字: 可變焦距透鏡,液晶透鏡,老花眼鏡,相位重製,精密加工,
focus-tunable lens,liquid crystal lens,presbyopic glasses,phase reset,precision machining,
出版年 : 2023
學位: 碩士
摘要: 本論文主要介紹如何製造大孔徑液晶透鏡的過程。總共分為液晶模擬以及實做液晶透鏡的部分。在模擬方面則是介紹用Fresnel lens 概念來設計出3D立體電極結構。並將電極劃成三個區域,且三個區域切割的位置點正好位於液晶透鏡的相位重製的點上。可以透過施加電壓來讓不同位置的液晶分子分別旋轉至特定的角度,並搭配 Grin lens 的概念來讓折射率及相位差呈現漸變式分佈,使的三個區域所造成的相位差皆相同。此方法能在不增加液晶層厚度的情況下,實現高屈光度及大孔徑的液晶透鏡製作。此研究能應用在老花眼鏡的度數調整上。我們設計了一個接近於人眼瞳孔大小的液晶透鏡,大小為 5 mm且屈光度為 - 6。透過商業軟體Techwiz LCD 3D來進行液晶的模擬,經過反覆模擬確認液晶分子在不同位置所旋轉角度後,透過計算去將對應的旋轉角度轉換成折射率及相位延遲圖。接著實做部分就是將模擬出來的電極形狀透過超精密四軸自由曲面加工機精密製造出3D立體漸變的金屬模具。透過翻印能大量製造3D立體結構,並在上面濺鍍一層ITO,就能得到薄薄一層的3D立體電極。使用NBA107將3D立體電極給填平以消除立體結構所帶來的相位差。將3D立體電極基板配向後與ITO電極的玻璃基板進行封裝。最後利用毛細現象將E7液晶給注入,即可製作出與瞳孔大小接近的液晶透鏡。透過CCD去觀察液晶透鏡在施加不同電壓下的同心環條紋數目即可換算出屈光度。搭配使用Techwiz LCD 3D模擬出來的結果來確認是否吻合設計。再將液晶透鏡放置Axo-step 機器下去做精密的相位計算,將相位圖與模擬結果對比確認。再透過幾個簡單實驗來去拍攝並觀察液晶透鏡的成像品質。我們認為設計出可變焦的液晶透鏡能加以應用在老花族群上,透過微小的電壓改變鏡片之間所夾的液晶透鏡焦距,達到一副眼鏡就能擁有多個焦點可切換的功能。
The primary focus of this thesis is to present the fabrication process of large-aperture liquid crystal lens. This process is divided into two main sections: liquid crystal simulation and the practical implementation of liquid crystal lens. The simulation aspect the focuses on elucidating the design of a three-dimensional electrode structure using concepts inspired by the Fresnel lens. The electrodes are divided into three regions, each precisely positioned at the phase reset points of the liquid crystal lens. By applying voltages, it is feasible to include specific rotational angles in liquid crystal molecules at different positions. Couple with the concept of a gradient index lens (GRIN lens), a gradual variation in refractive index and phase difference can be achieved, ensuring that the contributed phase differences from the three regions remain consistent. This method enables the production of high optical power and large aperture liquid crystal lens without increasing the liquid crystal cell thickness. This research has potential applications in adjusting the prescription for presbyopic glasses. We devised a liquid crystal lens with an aperture size approximating that of the human pupil, measuring 5 mm in diameter and possessing a refractive power of -6 diopters. Using Techwiz LCD 3D which is a commercial software to simulate the liquid crystal molecules. After multiple simulation iterations, the rotation angles of liquid crystal molecules at different positions are verified, and the obtained rotation angles are converted into refractive index and phase retardation distributions through calculation. Subsequently, in the implementation phase, the simulated electrode patterns were precisely translated into a three-dimensional gradient metal mold using an ultra-precision four-axis freeform machining system. By means of imprinting, a substantial production of three-dimensional structures can be achieved, and subsequently, a thin layer of three-dimensional electrodes can be obtained by sputtering an ITO coating onto them. NBA107 was used to flatten the electrode structure and eliminate the phase difference caused by the three-dimensional structure. After the 3D three-dimensional electrode substrate is aligned, it is packaged with ITO glass substrate. Finally, the E7 liquid crystal is introduced via capillary action, resulting in the formation of a liquid crystal lens closely resembling the size of the pupil. Using a charge-coupled device (CCD) to observe the number of concentric ring patterns produced by the liquid crystal lens under varying applied voltages allows for the calculation of refractive power. The results can be cross-referenced with those obtained from the Techwiz LCD three-dimensional simulations to validate the design. The liquid crystal lens is also placed under an Axo-step machine for precise phase calculations, comparing the phase profile with the simulated results for confirmation. Several simple experiments are conducted to capture and observe the imaging quality of the LC lens. We posit that the development of a variable-focus liquid crystal lens holds potential applications for presbyopic individuals. By utilizing minute voltage adjustments to modify the focal length of the interposed LC lens, a single pair of eyeglasses could possess the capability to seamlessly switch between multiple focal points.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/90014
DOI: 10.6342/NTU202303998
全文授權: 同意授權(全球公開)
電子全文公開日期: 2028-08-11
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  此日期後於網路公開 2028-08-11
3.48 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved