Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89993
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃建璋zh_TW
dc.contributor.advisorJian-Jang Huangen
dc.contributor.author江泓毅zh_TW
dc.contributor.authorHung-Yi Chiangen
dc.date.accessioned2023-09-22T16:58:35Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-11-
dc.identifier.citation[1] L. Zhang, F. Ou, W. C. Chong, Y. Chen, Y. Zhu, and Q. Li, "31.1: Invited Paper: Monochromatic Active Matrix Micro-LED Micro-Displays with >5,000 dpi Pixel Density Fabricated using Monolithic Hybrid Integration Process," SID Symposium Digest of Technical Papers, https://doi.org/10.1002/sdtp.12718 vol. 49, no. S1, pp. 333-336, 2018/04/01 2018, doi: https://doi.org/10.1002/sdtp.12718.
[2] H. E. Lee et al., "Monolithic Flexible Vertical GaN Light-Emitting Diodes for a Transparent Wireless Brain Optical Stimulator," Advanced Materials, https://doi.org/10.1002/adma.201800649 vol. 30, no. 28, p. 1800649, 2018/07/01 2018, doi: https://doi.org/10.1002/adma.201800649.
[3] S.-M. Kang et al., "Self-Powered Flexible Full-Color Display via Dielectric-Tuned Hybrimer Triboelectric Nanogenerators," ACS Energy Letters, vol. 6, no. 11, pp. 4097-4107, 2021/11/12 2021, doi: 10.1021/acsenergylett.1c01729.
[4] H. E. Lee et al., "Wireless powered wearable micro light-emitting diodes," Nano Energy, vol. 55, pp. 454-462, 2019/01/01/ 2019, doi: https://doi.org/10.1016/j.nanoen.2018.11.017.
[5] J. F. C. Carreira et al., "On-chip GaN-based dual-color micro-LED arrays and their application in visible light communication," Opt. Express, vol. 27, no. 20, pp. A1517-A1528, 2019/09/30 2019, doi: 10.1364/OE.27.0A1517.
[6] Z. Cao, X. Zhang, G. Osnabrugge, J. Li, I. M. Vellekoop, and A. M. J. Koonen, "Reconfigurable beam system for non-line-of-sight free-space optical communication," Light: Science & Applications, vol. 8, no. 1, p. 69, 2019/07/24 2019, doi: 10.1038/s41377-019-0177-3.
[7] P. Qiu, S. Zhu, Z. Jin, X. Zhou, X. Cui, and P. Tian, "Beyond 25 Gbps optical wireless communication using wavelength division multiplexed LEDs and micro-LEDs," Opt. Lett., vol. 47, no. 2, pp. 317-320, 2022/01/15 2022, doi: 10.1364/OL.447540.
[8] G. H. Heilmeier, L. A. Zanoni, and L. A. Barton, "Dynamic scattering: A new electrooptic effect in certain classes of nematic liquid crystals," Proceedings of the IEEE, vol. 56, no. 7, pp. 1162-1171, 1968, doi: 10.1109/PROC.1968.6513.
[9] M. Schadt and W. Helfrich, "VOLTAGE‐DEPENDENT OPTICAL ACTIVITY OF A TWISTED NEMATIC LIQUID CRYSTAL," Applied Physics Letters, vol. 18, no. 4, pp. 127-128, 2003, doi: 10.1063/1.1653593.
[10] M. F. Schiekel and K. Fahrenschon, "Deformation of Nematic Liquid Crystals with Vertical Orientation in Electrical Fields," Applied Physics Letters, vol. 19, no. 10, pp. 391-393, 2003, doi: 10.1063/1.1653743.
[11] M. Schadt, "Milestone in the History of Field-Effect Liquid Crystal Displays and Materials," Japanese Journal of Applied Physics, vol. 48, no. 3S2, p. 03B001, 2009/03/23 2009, doi: 10.1143/JJAP.48.03B001.
[12] C. W. Tang and S. A. VanSlyke, "Organic electroluminescent diodes," Applied Physics Letters, vol. 51, no. 12, pp. 913-915, 1987, doi: 10.1063/1.98799.
[13] J.-H. Lee et al., "Blue organic light-emitting diodes: current status, challenges, and future outlook," Journal of Materials Chemistry C, 10.1039/C9TC00204A vol. 7, no. 20, pp. 5874-5888, 2019, doi: 10.1039/C9TC00204A.
[14] A. Buckley, Organic Light-Emitting Diodes (OLEDs): Materials, Devices and Applications. Philadelphia: Woodhead Publishing Limited, 2013.
[15] T. Tsujimura, OLED Display Fundamentals and Applications. Hoboken,NJ: John Wiley & Sons, 2017.
[16] M.-K. Fung, Y.-Q. Li, and L.-S. Liao, "Tandem Organic Light-Emitting Diodes," Advanced Materials, https://doi.org/10.1002/adma.201601737 vol. 28, no. 47, pp. 10381-10408, 2016/12/01 2016, doi: https://doi.org/10.1002/adma.201601737.
[17] S. P. DenBaars et al., "Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays," Acta Materialia, vol. 61, no. 3, pp. 945-951, 2013/02/01/ 2013, doi: https://doi.org/10.1016/j.actamat.2012.10.042.
[18] Z. Y. Fan, J. Y. Lin, and H. X. Jiang, "III-nitride micro-emitter arrays: development and applications," Journal of Physics D: Applied Physics, vol. 41, no. 9, 2008, doi: 10.1088/0022-3727/41/9/094001.
[19] D. Ludovic et al., "Processing and characterization of high resolution GaN/InGaN LED arrays at 10 micron pitch for micro display applications," in Proc.SPIE, 2017, vol. 10104, p. 1010422, doi: 10.1117/12.2252196. [Online]. Available: https://doi.org/10.1117/12.2252196
[20] Y. Huang, E.-L. Hsiang, M.-Y. Deng, and S.-T. Wu, "Mini-LED, Micro-LED and OLED displays: present status and future perspectives," Light: Science & Applications, vol. 9, no. 1, p. 105, 2020/06/18 2020, doi: 10.1038/s41377-020-0341-9.
[21] T. Wu et al., "Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology," Applied Sciences, vol. 8, no. 9, 2018, doi: 10.3390/app8091557.
[22] S. Nakamura, T. Mukai, and M. Senoh, "Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes," Applied Physics Letters, vol. 64, no. 13, pp. 1687-1689, 1994, doi: 10.1063/1.111832.
[23] H. X. Jiang, S. X. Jin, J. Li, J. Shakya, and J. Y. Lin, "III-nitride blue microdisplays," Applied Physics Letters, vol. 78, no. 9, pp. 1303-1305, 2001, doi: DOI:101063/11351521.
[24] Z. Gong et al., "Efficient flip-chip InGaN micro-pixellated light-emitting diode arrays: promising candidates for micro-displays and colour conversion," Journal of Physics D: Applied Physics, vol. 41, no. 9, p. 094002, 2008/04/04 2008, doi: 10.1088/0022-3727/41/9/094002.
[25] J. Shin et al., "Vertical full-colour micro-LEDs via 2D materials-based layer transfer," Nature, vol. 614, no. 7946, pp. 81-87, 2023/02/01 2023, doi: 10.1038/s41586-022-05612-1.
[26] E.-L. Hsiang, Z. He, Y. Huang, F. Gou, Y.-F. Lan, and S.-T. Wu, "Improving the Power Efficiency of Micro-LED Displays with Optimized LED Chip Sizes," Crystals, vol. 10, no. 6, doi: 10.3390/cryst10060494.
[27] M. S. Wong et al., "High efficiency of III-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition," Opt. Express, vol. 26, no. 16, pp. 21324-21331, 2018/08/06 2018, doi: 10.1364/OE.26.021324.
[28] M. S. Wong et al., "Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation," Applied Physics Express, vol. 12, no. 9, p. 097004, 2019/08/21 2019, doi: 10.7567/1882-0786/ab3949.
[29] J. Zhu et al., "Near-Complete Elimination of Size-Dependent Efficiency Decrease in GaN Micro-Light-Emitting Diodes," physica status solidi (a), https://doi.org/10.1002/pssa.201900380 vol. 216, no. 22, p. 1900380, 2019/11/01 2019, doi: https://doi.org/10.1002/pssa.201900380.
[30] D. Hwang, A. Mughal, C. D. Pynn, S. Nakamura, and S. P. DenBaars, "Sustained high external quantum efficiency in ultrasmall blue III–nitride micro-LEDs," Applied Physics Express, vol. 10, no. 3, p. 032101, 2017/02/01 2017, doi: 10.7567/APEX.10.032101.
[31] A. B. M. P. SH., "Inspection mehod for micro-LED," Patent 11069584.B, 2021.
[32] F. J. Henley, "52-3: Invited Paper: Combining Engineered EPI Growth Substrate Materials with Novel Test and Mass-Transfer Equipment to Enable MicroLED Mass-Production," SID Symposium Digest of Technical Papers, https://doi.org/10.1002/sdtp.12351 vol. 49, no. 1, pp. 688-691, 2018/05/01 2018, doi: https://doi.org/10.1002/sdtp.12351.
[33] L. Zheng et al., "Research on a Camera-Based Microscopic Imaging System to Inspect the Surface Luminance of the Micro-LED Array," IEEE Access, vol. 6, pp. 51329-51336, 2018, doi: 10.1109/ACCESS.2018.2869778.
[34] Y. Shu, B. Li, and H. Lin, "Quality safety monitoring of LED chips using deep learning-based vision inspection methods," Measurement, vol. 168, p. 108123, 2021/01/15/ 2021, doi: https://doi.org/10.1016/j.measurement.2020.108123.
[35] J. J. Wierer Jr and N. Tansu, "III-Nitride Micro-LEDs for Efficient Emissive Displays," Laser & Photonics Reviews, https://doi.org/10.1002/lpor.201900141 vol. 13, no. 9, p. 1900141, 2019/09/01 2019, doi: https://doi.org/10.1002/lpor.201900141.
[36] H. X. Jiang and J. Y. Lin, "Nitride micro-LEDs and beyond - a decade progress review," Opt. Express, vol. 21, no. S3, pp. A475-A484, 2013/05/06 2013, doi: 10.1364/OE.21.00A475.
[37] Z. Liu et al., "Micro-light-emitting diodes with quantum dots in display technology," Light: Science & Applications, vol. 9, no. 1, p. 83, 2020/05/11 2020, doi: 10.1038/s41377-020-0268-1.
[38] F. Olivier, S. Tirano, L. Dupré, B. Aventurier, C. Largeron, and F. Templier, "Influence of size-reduction on the performances of GaN-based micro-LEDs for display application," Journal of Luminescence, vol. 191, pp. 112-116, 2017/11/01/ 2017, doi: https://doi.org/10.1016/j.jlumin.2016.09.052.
[39] S. S. Konoplev, K. A. Bulashevich, and S. Y. Karpov, "From Large-Size to Micro-LEDs: Scaling Trends Revealed by Modeling," physica status solidi (a), https://doi.org/10.1002/pssa.201700508 vol. 215, no. 10, p. 1700508, 2018/05/01 2018, doi: https://doi.org/10.1002/pssa.201700508.
[40] J. M. Smith et al., "Comparison of size-dependent characteristics of blue and green InGaN microLEDs down to 1 μm in diameter," Applied Physics Letters, vol. 116, p. 071102, February 01, 2020 2020, doi: 10.1063/1.5144819.
[41] K. A. Bulashevich and S. Y. Karpov, "Impact of surface recombination on efficiency of III-nitride light-emitting diodes," physica status solidi (RRL) – Rapid Research Letters, https://doi.org/10.1002/pssr.201600059 vol. 10, no. 6, pp. 480-484, 2016/06/01 2016, doi: https://doi.org/10.1002/pssr.201600059.
[42] Y.-K. Jin, H.-Y. Chiang, K.-H. Lin, C.-A. Lee, and J.-J. Huang, "Luminescence efficiency improvement of small-size micro light-emitting diodes by a digital etching technology," Opt. Lett., vol. 47, no. 23, pp. 6277-6280, 2022/12/01 2022, doi: 10.1364/OL.476967.
[43] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 27-30 June 2016 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90.
[44] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," 2015.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89993-
dc.description.abstract近期,隨著不同光電應用,如擴增實境(AR)、可彎曲螢幕、虛擬實境(VR)等的蓬勃發展,微發光二極體(micro-LED)嶄露頭角,因此被視為未來下一代顯示技術。儘管微發光二極體具有低功耗、長壽命和高對比度等優勢,但仍然存在許多需要改進的問題。
微發光二極體面臨的挑戰之一是隨著亮度尺寸變小,外部量子效率(EQE)急劇降低。由於表面體積與體積的比例增加,感應耦合式電漿蝕刻(ICP-RIE)造成的側壁損傷變得越來越顯著。在我們的研究中,我們引入了數字蝕刻和不同處理時間的N2處理技術,以比較不同發光二極體尺寸大小的效果。在注入25 A/cm2 電流密度的電流時,隨著微發光二極體的尺寸從50x50 µm²減少至8x8 µm²,其量子效率(EQE)減少了33.6 %。同樣地,當尺寸進一步從50x50 µm²減少至4x4 µm²,EQE僅減少56.9 %。
此外,由於發光二極體尺寸的減小,檢測也面臨許多限制以及挑戰。在這篇文章中,我們展示了使用無害的ITO玻璃接觸微發光二極體陣列來檢測發光亮度和輻射概況的電致發光巨量檢測方法。巨量檢測包括兩個階段。在第一階段,我們通過多元線性回歸分析對每個單獨的微發光二極體分析得到不同位置的校準方程式,以校準因電阻而有所不同的發光數據。在第二階段,我們透過構建以及比較不同的2D卷積神經網絡(2D-CNN)模型來判斷有破壞性或發光不均勻的微發光二極體並找出最適合的模型。我們的新解決方案在檢測方面實現了更高效和更準確的方式,發光檢測的誤差僅為8 %,輻射概況透過模型判斷的準確率達到96.7 %、精確率達到96.7 %、召回率達到96.7 %。
zh_TW
dc.description.abstractRecently, micro-LEDs (light-emitting diode) have emerged by the tremendous development of different optoelectronic applications such as augmented reality (AR), flexible screens, virtual reality (VR), etc. and is thus considered as the future display technology of next generation. Although micro-LEDs possess advantages of low power consumption, long lifetime, and high contrast, they still have many obstacles to improve.
One of the challenges of micro-LEDs is the sharply reduction of external quantum efficiency (EQE) as the luminance size gets smaller. As the ratio of surface volume to volume increases, the sidewall damage caused by Inductively Coupled Plasma - Reactive Ion Etching (ICP-RIE) becomes increasingly significant. In our study, we introduce a digital etching and N2 treatment technology with different treatment times compared to different mesa sizes to repair the sidewall damage. As a result, at 25 A/cm2 of injection current, as the size of micro-LEDs decreases from 50x50 µm² to 8x8 µm², the EQE shows a reduction of 33.6%. Likewise, with a further reduction in size from 50x50 µm² to 4x4 µm², the EQE decreases by 56.9%.
Furthermore, the detection is subject to many limitations due to the reduction in the size of micro-LEDs. Here, we demonstrated mass detection methods to examine both luminance and radiation profiles by using harmless ITO-glass contact on micro-LED array. The mass detection consists of two stages. In the first stage, we perform a calibration equation to calibrate the luminance data from resistance variation on every single micro-LED by multi-variable regression analysis. In the second stage, we determine the defective or non-uniform micro-LEDs by constructing and comparing different 2-D Convolutional Neural Network (CNN) models to find the most optimized one for micro-LED detection. Our new solution achieves in more efficiency and accuracy way for detection with error down to only 8 % for luminance detection and 96.7 % accuracy, 96.29 % precious, and 99.45 % recall for radiation profile recognition.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:58:35Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T16:58:35Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES xii
Chapter 1. Introduction 1
1.1 Overview of micro-LED 1
1.2 Research Motivation 3
1.3 Thesis Outline 7
Chapter 2. Luminance Efficiency Improvement of Small-sized Micro-LEDs 8
2.1 Reviews of Micro-LEDs size effect 8
2.2 Device Fabrication 10
2.3 Digital etching / N2 treatment 12
2.4 Electrical Behavior of micro-LED with Digital etching / N2 treatment 15
2.5 Optical Behavior of micro-LED with Digital etching / N2 treatment 20
2.6 Material analysis 25
2.7 Summary 27
Chapter 3. Mass Detection for Micro-LEDs 28
3.1 Background of detection for micro-LEDs 28
3.2 Device structure of micro-LED array 30
3.3 Device and System 32
3.4 Methodology of mass detection in micro-LED array 34
3.5 Measurement result 36
3.6 Multi-variable Regression analysis 38
3.6.1 Simulation model of mass detection in LTspice 38
3.6.2 Development of multi-variable regression correlation curves for mas detection data 44
3.6.3 Prediction of luminescence of individual micro-LED under separate bias using the regression fitting equations 46
3.6.4 Verification of the mass detection 47
3.7 Deep Residual Networks for micro-LED 48
3.7.1 Deep Residual Network (Res-Net) model 48
3.7.2 Image preprocessing 52
3.7.3 Results and Discussion 53
3.8 Summary 57
Chapter 4. Conclusion 58
Reference 60
-
dc.language.isoen-
dc.subject殘差網路zh_TW
dc.subject氮氣修復處理zh_TW
dc.subject微發光二極體zh_TW
dc.subject側壁缺陷zh_TW
dc.subject巨量檢測zh_TW
dc.subject卷積神經網路zh_TW
dc.subject多元線性回歸分析zh_TW
dc.subjectmicro light-emitting diodeen
dc.subjectconvolutional neutral network (CNN)en
dc.subjectmass detectionen
dc.subjectsidewall defectsen
dc.subjectN2 treatmenten
dc.subjectmulti-variable regression analysisen
dc.subjectdeep residual neural network (Resnet)en
dc.title微發光二極體顯示器亮度提升及巨量檢測zh_TW
dc.titleLuminance Improvement and Mass Detection for Micro Light-emitting Diode Displaysen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee施吉昇;吳肇欣;吳育任zh_TW
dc.contributor.oralexamcommitteeChi-Sheng Shih;Chao-Hsin Wu;Yuh-Renn Wuen
dc.subject.keyword微發光二極體,側壁缺陷,巨量檢測,卷積神經網路,多元線性回歸分析,殘差網路,氮氣修復處理,zh_TW
dc.subject.keywordmicro light-emitting diode,N2 treatment,sidewall defects,mass detection,convolutional neutral network (CNN),multi-variable regression analysis,deep residual neural network (Resnet),en
dc.relation.page63-
dc.identifier.doi10.6342/NTU202304015-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-13-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-lift2028-08-10-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  此日期後於網路公開 2028-08-10
2.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved