Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89984
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫雅麗zh_TW
dc.contributor.advisorYea-Li Sunen
dc.contributor.author呂晟維zh_TW
dc.contributor.authorCheng-Wei Luen
dc.date.accessioned2023-09-22T16:56:25Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-11-
dc.identifier.citation[1] Z. Li, J. Zeng, Y. Chen, and Z. Liang, “Attackg: Constructing technique knowledgegraph from cyber threat intelligence reports,” Lecture Notes in Computer Science,p. 589–609, 05 2022. [Online]. Available: https://arxiv.org/abs/2111.07093
[2] G. Husari, E. Al-Shaer, M. Ahmed, B. Chu, and X. Niu, “Ttpdrill,” Proceedingsof the 33rd Annual Computer Security Applications Conference, pp. 103–115, 122017. [Online]. Available: https://dl.acm.org/doi/10.1145/3134600.3134646
[3] M. T. Alam, D. Bhusal, Y. Park, and N. Rastogi, “Looking beyond iocs:Automatically extracting attack patterns from external cti,” arXiv.org, 11 2022.[Online]. Available: https://arxiv.org/abs/2211.01753
[4] K. Satvat, R. Gjomemo, and V. Venkatakrishnan, “Extractor: Extracting attackbehavior from threat reports,” 2021 IEEE EuroS&P, p. 598–615, 09 2021. [Online].Available: https://ieeexplore.ieee.org/document/9581182
[5] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. N. Venkatakrishnan,“Holmes: Real-time apt detection through correlation of suspicious informationflows,” IEEE Xplore, p. 1137–1152, 05 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8835390
[6] W. U. Hassan, A. Bates, and D. Marino, “Tactical provenance analysis for endpoint detection and response systems,” IEEE Xplore, p. 1172–1189, 05 2020. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9152771
[7] F. Liu, Y. Wen, D. Zhang, X. Jiang, X. Xing, and D. Meng, “Log2vec: A heterogeneousgraph embedding based approach for detecting cyber threats within enterprise,”Proceedings of the 2019 ACM SIGSAC Conference on Computer andCommunications Security, 11 2019.
[8] Y. Shen, E. Mariconti, P. A. Vervier, and G. Stringhini, “Tiresias: Predicting securityevents through deep learning,” Proceedings of the 2018 ACM SIGSAC Conferenceon Computer and Communications Security, 01 2018.
[9] K. A. Akbar, Y. Wang, M. S. Islam, A. Singhal, L. Khan, and B. Thuraisingham,“Identifying tactics of advanced persistent threats with limited attack traces,”Information Systems Security, pp. 3–25, 2021.
[10] “Iot developer survey,” Eclipse, 2019. [Online]. Available: https://iot.eclipse.org/resources/iot-developer-survey/iot-developer-survey-2019.pdf
[11] Q.-S. , “Usage statistics and market share of operating systems for websites,november 2019,” W3techs.com, 2019. [Online]. Available: https://w3techs.com/technologies/overview/operating_system
[12] “Endpoint protection - symantec enterprise,” community.broadcom.com, 032014. [Online]. Available: https://community.broadcom.com/symantecenterprise/viewdocument/iot-worm-used-to-mine-cryptocurrenc
[13] LloydLabs, “[part 1] - analysing the new linux/aes.ddos iot malware,” 11 2017. [Online]. Available: https://blog.syscall.party/2017/11/19/aes-ddos-analysis-part-1.html
[14] P. Litvak, “Evilgnome: Rare malware spying on linux desktop users,” Intezer, 07 2019. [Online]. Available: https://intezer.com/blog/malware-analysis/evilgnome-rare-malware-spying-on-linux-desktop-users/
[15] M. T. I. , “Rise in xorddos: A deeper look at the stealthy ddos malware targeting linux devices,” Microsoft Security Blog, 05 2022. [Online]. Available: https://www.microsoft.com/security/blog/2022/05/19/rise-in-xorddos-a-deeper-look-at-the-stealthy-ddos-malware-targeting-linux-devices/
[16] K. Ivy Titiwa, “Backdoor.linux.dofloo.ab - threat encyclopedia,” www.trendmicro.com, 06 2020. [Online]. Available: https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/Backdoor.Linux.DOFLOO.AB
[17] “Backdoor:osx/tsunami.a | f-secure labs,” www.f-secure.com. [Online]. Available: https://www.f-secure.com/v-descs/backdoor-osx-tsunami-a.shtml
[18] A. Remillano II, “Exposed docker server abused to drop cryptominer ddos bot,” Trend Micro, 09 2020. [Online]. Available: https://www.trendmicro.com/en_hk/research/20/i/exposed-docker-server-abused-to-drop-cryptominer-ddos-bot-.html
[19] P. Paganini, “Aesddos bot exploits cve-2019-3396 flaw to hit atlassian confluence server,” Security Affairs, 04 2019. [Online]. Available: https://securityaffairs.com/84591/malware/aesddos-bot-atlassian-confluence.html
[20] L. Abrams, “Bleepingcomputer,” BleepingComputer. [Online]. Available: https://www.bleepingcomputer.com/
[21] “Luabot: Njccic threat profile,” Nj.gov, 2023. [Online]. Available: https://www.cyber.nj.gov/threat-center/threat-profiles/trojan-variants/luabot
[22] P. Sharfman, “Information sharing in support of strategic intelligence,” International conference on Countering Modern Terrorism History, Current Issues, and Future Threats, Virginia, USA, 16‐17, 12 2004.
[23] V. Mavroeidis and S. Bromander, “Cyber threat intelligence model: An evaluation of taxonomies, sharing standards, and ontologies within cyber threat intelligence,” 2017 European Intelligence and Security Informatics Conference (EISIC), p. 91– 98, 09 2017. [Online]. Available: https://ieeexplore.ieee.org/document/8240774/
[24] D. Schlette, F. Böhm, M. Caselli, and G. Pernul, “Measuring and visualizing cyber threat intelligence quality,” International Journal of Information Security, vol. 20, 03 2020.
[25] L. Qiang, J. Zhengwei, Y. Zeming, L. Baoxu, W. Xin, and Z. Yunan, “A quality evaluation method of cyber threat intelligence in user perspective,” IEEE Xplore, p. 269–276, 08 2018. [Online]. Available: https://ieeexplore.ieee.org/document/8455917/
[26] V. G. Li, M. Dunn, P. Pearce, D. McCoy, G. M. Voelker, and S. Savage, “Reading the tea leaves: A comparative analysis of threat intelligence,” In Proceedings of the 28th USENIX Conference on Security Symposium (SEC’19), p. 851–867, 2019.
[27] “Alienvault - open threat exchange,” AlienVault Open Threat Exchange. [Online]. Available: https://otx.alienvault.com/
[28] “Blocklist ip sets,” GitHub, 05 2023. [Online]. Available: https://github.com/firehol/blocklist-ipsets
[29] “Abuse.ch - fighting malware and botnets,” Abuse.ch, 2019. [Online]. Available: https://abuse.ch/
[30] “Packet-mail,” Packet-mail.net, 2022. [Online]. Available: https://packet-mail.net/
[31] “Threatexchange,” Meta for Developers. [Online]. Available: https://developers.facebook.com/docs/threat-exchange/
[32] “Threatbook intelligence - threatbook cti,” threatbook.io. [Online]. Available: https://threatbook.io/
[33] “Ibm x-force exchange,” exchange.xforce.ibmcloud.com. [Online]. Available: https://exchange.xforce.ibmcloud.com/
[34] MITRE, “Mitre att&ck™,” Mitre.org. [Online]. Available: https://attack.mitre.org/
[35] Z. Cai, C. Marquart, and D. W. Shaffer, “Neural recall network: A neural network solution to low recall problem in regex-based qualitative coding,” ERIC, 2022. [Online]. Available: https://eric.ed.gov/?id=ED624125
[36] “iocextract,” GitHub, 05 2023. [Online]. Available: https://github.com/InQuest/iocextract
[37] S. N. G. , CoreNLP. [Online]. Available: https://stanfordnlp.github.io/CoreNLP/index.html
[38] “Linguistic features,” spaCy. [Online]. Available: https://spacy.io/usage/linguistic-features
[39] “Language processing pipelines,” spaCy. [Online]. Available: https://spacy.io/usage/processing-pipelines
[40] T. Dumitras and I. Neamtiu, “Experimental challenges in cyber security: a story of provenance and lineage for malware,” Proceedings of the 4th conference on Cyber security experimentation and test, pp. 9–9, 08 2011.
[41] N. J. Leeper and J. P. Cooke, “Microrna and mechanisms of impaired ngiogenesis in diabetes mellitus,” Circulation, vol. 123, pp. 236–238, 01 2011.
[42] M. Zipperle, F. Gottwalt, E. Chang, and T. Dillon, “Provenance-based intrusion detection systems: A survey,” ACM Computing Surveys, vol. 55, pp. 1–36, 12 2022.
[43] K. McCammon, “Evaluating endpoint security products: Visibility vs protection,” Red Canary, 06 2022. [Online]. Available: https://redcanary.com/blog/evaluating-endpoint-products-in-a-crowded-confusing-market/
[44] T. Nguyen, M. Orenbach, and A. Atamli, “Live system call trace reconstruction on linux,” Forensic Science International: Digital Investigation, vol. 42, p. 301398, 07 2022.
[45] “syscalls(2) - linux manual page,” man7.org. [Online]. Available: https://man7.org/linux/man-pages/man2/syscalls.2.html
[46] “Chromiumos docs - linux system call table,” googlesource.com. [Online]. Available: https://chromium.googlesource.com/chromiumos/docs/+/HEAD/constants/syscalls.md
[47] “strace: the linux syscall tracer,” GitHub, 06 2023. [Online]. Available: https://github.com/strace/strace/blob/master/src/linux/arm/syscallent.h
[48] T. Schaberreiter, V. Kupfersberger, K. Rantos, A. Spyros, A. Papanikolaou, C. Ilioudis, and G. Quirchmayr, “A quantitative evaluation of trust in the quality of cyber threat intelligence sources,” Proceedings of the 14th International Conference on Availability, Reliability and Security - ARES ’19, 2019.
[49] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv.org, 10 2018. [Online]. Available: https://arxiv.org/abs/1810.04805
[50] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” arXiv.org, 2017. [Online]. Available: https://arxiv.org/abs/1706.03762
[51] I. Balazevic, C. Allen, and T. Hospedales, “Tucker: Tensor factorization for knowledge graph completion,” ACLWeb, p. 5185–5194, 11 2019. [Online]. Available: https://aclanthology.org/D19-1522/
[52] Y. Liu, M. Zhang, D. Li, K. Jee, Z. Li, Z. Wu, J. Rhee, and P. Mittal, “Towards a timely causality analysis for enterprise security,” Proceedings 2018 Network and Distributed System Security Symposium, 2018.
[53] Z. Xu, Z. Wu, Z.-C. Li, K. Jee, J. Rhee, X. Xiao, F. Xu, H. Wang, and G. Jiang, “High fidelity data reduction for big data security dependency analyses,” Computer and Communications Security, 10 2016.
[54] “Chapter 13. auditing the system red hat enterprise linux 8,” access. redhat.com. [Online]. Available: https://access.redhat.com/documentation/zh-tw/red_hat_enterprise_linux/8/html/security_hardening/auditing-the-system_security-hardening
[55] DOMARS, “Event tracing for windows (etw),” learn.microsoft.com, 12 2021. [Online]. Available: https://learn.microsoft.com/en-us/windows-hardware/drivers/devtest/event-tracing-for-windows--etw-
[56] A. Gokhale and D. C. Schmidt, “Principles for optimizing corba internet inter-protocol performance,” Proceedings of the Thirty-First Hawaii International Conference on System Sciences, 01 1998.
[57] G. Wang, J. Koshy, S. Subramanian, K. Paramasivam, M. Zadeh, N. Narkhede, J. Rao, J. Kreps, and J. Stein, “Building a replicated logging system with apache kafka,” Proceedings of the VLDB Endowment, vol. 8, pp. 1654–1655, 08 2015.
[58] “Xorddos malware information,” success.trendmicro.com. [Online]. Available: https://success.trendmicro.com/tw/solution/000278087
[59] J. Kennedy, “Linux backdoor redxor likely operated by chinese nation-state,” Intezer, 03 2021. [Online]. Available: https://www.intezer.com/blog/malware-analysis/new-linux-backdoor-redxor-likely-operated-by-chinese-nation-state-actor/
[60] J. C. HE, “Attack scenario analysis for linux-based malware,” 08 2020.
[61] “Accelerating deployment of arm-based solutions,” Linaro. [Online]. Available: https://www.linaro.org
[62] “General overview of the linux file system,” tldp.org. [Online]. Available: https://tldp.org/LDP/intro-linux/html/sect_03_01.html
[63] A. Loukas, “Graph reduction with spectral and cut guarantees,” Journal of Machine Learning Research, vol. 20, p. 1–42, 2019. [Online]. Available: https://jmlr.org/papers/v20/18-680.html
[64] “The linux documentation project,” tldp.org. [Online]. Available: https://tldp.org/
[65] M. Kerrisk, man7.org. [Online]. Available: https://man7.org/
[66] “Malware technical insight turla penquin_x64,” 05 2020. [Online]. Available: https://www.leonardo.com/documents/20142/10868623/Malware+Technical+Insight+_Turla+“Penquin_x64”.pdf
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89984-
dc.description.abstract惡意程式的資安威脅情報(CTI)記錄入侵指標(IoCs)和惡意活動,對於偵測和應對網路威脅的環節扮演了至關重要的角色。然而,目前現有研究很少涉及文本報告的評估,我們需要解決評估層面、自動化和基本事實等方面的議題。在這篇論文中,我們引入了基於系統物件和行為層次的 CTI 文件質量評估概念,並使用評估指標和視覺的攻擊圖譜來進行評估。我們的評估系統是客觀、自動化和有效率的,並通過案例研究來展示其流程、功能和效能。此外,我們還提供了一個嶄新的、整理有序的資安威脅情報文件數據集,以及一個 Syscall SynonymBase,用於彌合 Linux 系統呼叫和自然語言之間的語意隔閡。zh_TW
dc.description.abstractMalware Cyber Threat Intelligence (CTI) reports – which record the Indicators of Compromise (IoCs) and malicious activities – playing a crucial role in detecting and responding to cyber threats. Text report evaluation is an area that is not often covered by existing research and we need to overcome evaluation aspect issue, automation issue and ground truth issue. In this paper, we introduce concepts of measuring the quality of individual CTI document based on system object and behavior levels with quality metrics and visual representations. Our evaluation system is objective, automated, and distinguished, and we demonstrate its pipeline, functionality, and effectiveness through case studies. We also contribute a new, well-sorted malware CTI documents dataset and a Syscall SynonymBase that bridge the semantic gap between Linux system call and natural language.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:56:25Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T16:56:25Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要iii
Abstract v
Contents vii
List of Figures xi
List of Tables xiii
Denotation xv
Chapter 1 Introduction 1
1.1 Overview 1
1.2 Cyber Threat Intelligence 1
1.3 Cyber Threat Intelligence document 2
1.3.1 Malware Analysis Report 2
1.3.2 Malware Technical Report 3
1.3.3 Campaign Report 4
1.3.4 Security News 4
1.4 Need of CTI documents quality evaluation 5
1.5 Issues to face to accomplish the work 6
1.5.1 Evaluation Aspect Issue 6
1.5.2 Automation Issue 7
1.5.3 Ground Truth Issue 7
1.6 Contributions 8
Chapter 2 Background 11
2.1 MITRE ATTACK overview 11
2.2 Cyber Attacks and CTI Documents 11
2.2.1 Named Entity Recognition (NER) 12
2.2.2 Relationships Extraction (RE) 12
2.2.3 Part of Speech (POS) 12
2.2.4 Dependency Parsing (DP) 13
2.3 Regular Expression 14
2.4 Provenance Graph 15
2.4.1 Data Sources 15
2.4.2 Components 16
2.4.3 System Resource 17
2.4.4 Operations that Change System State 18
2.5 System Call 19
Chapter 3 Related works 21
3.1 Cyber Threat Intelligence Evaluation 21
3.2 Report Extraction state-of-the-art 23
3.3 Provenance Graph Application state-of-the-art 24
Chapter 4 Problem Statement 27
4.1 Motivating Example 27
4.2 Issues arise from the scenario 30
Chapter 5 Solution Approach 33
5.1 System Design 33
5.2 Preprocessing Subject CTI Document 34
5.3 Constructing ASG as the Baseline Reference 35
5.3.1 Sandbox and supported architectures 35
5.3.2 Handling of recorded traces and conversion to ASG 36
5.3.3 Graph Reduction without information loss 37
5.3.4 Doc Search Regex Generator 37
5.4 Extracting Attack Activity Description from CTI Document 38
5.4.1 Filtering Sentence Segments containing STobjects 38
5.4.2 Extracting Attack Activity Descriptions 39
5.5 Bridging Semantic Gap between CTI Natural Language and System Calls 41
5.5.1 Extracting Linux System Manual Page 41
5.5.2 Establishing Synonymbase 42
5.5.3 Using Synonymbase to Achieve Mutual Conversion 43
5.6 Quality Evaluation Metrics 43
5.6.1 The Quality Metrics 44
5.6.2 Parallel Processing of CTI Documents with the same Subject Malware 45
5.6.3 Activity Description Attack Flow Diagram 46
Chapter 6 Implementation 47
6.1 Dataset 47
6.2 Environment 48
Chapter 7 Experiments and Results 51
7.1 Results of 77 CTI documents 51
7.2 Experiments 55
7.2.1 Effectiveness of Document Extraction 55
7.2.2 Reliability of Scheme 56
7.3 Case Study: Quality Scores and Attack-Flow on Dofloo Malware 58
7.3.1 About the Dofloo Family 58
7.3.2 Quality Scores 59
7.3.3 Activity Description Attack Flow Diagram 61
Chapter 8 Conclusion 63
References 65
Appendix A — Algorithms 75
A.1 Construct CTI SyscallSynonymBase 75
A.2 Query CTI SyscallSynonymBase 75
A.3 Classify Document 75
-
dc.language.isoen-
dc.title利用惡意攻擊樣板比對評量資安威脅情資報告品質zh_TW
dc.titleMeasuring the Quality of Cyber Threat Intelligence Documents through Malware Attack Pattern Matchingen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李育杰;陳俊良;陳孟彰;黃意婷zh_TW
dc.contributor.oralexamcommitteeYuh-Jye Lee;Jiann-Liang Chen;Meng-Chang Chen;Yi-Ting Huangen
dc.subject.keyword惡意程式動態分析,威脅情資報評量,報告解析,Syscall Synonym Base,zh_TW
dc.subject.keywordDynamically Analysis,Malware CTI Document Quality Evaluation,Report Extraction,Syscall Synonym Base,en
dc.relation.page78-
dc.identifier.doi10.6342/NTU202302378-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-12-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf4.43 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved