請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89976完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林永松 | zh_TW |
| dc.contributor.advisor | Frank Yeong-Sung Lin | en |
| dc.contributor.author | 謝佳穎 | zh_TW |
| dc.contributor.author | Chia-Ying Hsieh | en |
| dc.date.accessioned | 2023-09-22T16:54:30Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | G. Naveen, M. Subrat, K. Aditya, T. Satyendra, K. Sudeep, K. Roopali, and G. Pravin Kumar, “Comparison of different cardiovascular risk score calculators for cardiovascular risk prediction and guideline recommended statin uses”, Circular, vol. 145, no. 8, pp. 453–458, 2022.
G. Naveen, M. Subrat, K. Aditya, T. Satyendra, K. Sudeep, K. Roopali, and G. Pravin Kumar, “Comparison of different cardiovascular risk score calculators for cardiovascular risk prediction and guideline recommended statin uses”, Biomedical Signal Processing and Control, vol. 69, no. 4, pp. 453–458, 2017. C.El-Hajj, “A review of machine learning techniques in photoplethysmography for the non-invasive cuff-less measurement of blood pressure”, Biomedical Signal Processing and Control, vol. 58, no. 101870, pp. 1746–8094, 2020. M. Thiriet, Cardiovascular Disease: An Introduction. Vasculopathies, 2018. Y. An, N. Huang, X. Chen, F. Wu, and J. Wang, “High-risk prediction of cardiovascular diseases via attention-based deep neural networks”, IEEE/ ACM Transactions on Computational Biology and Bioinformatics, vol. 18, no. 3, pp. 1093–1105, 2021. K. Tsarapatsani, A. I. Sakellarios, V. C. Pezoulas, V. D. Tsakanikas, M. E. Kleber, W. März, L. K. Michalis, and D. I. Fotiadis, “Machine learning models for cardiovascular disease events prediction” in 2022 44th Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC), pp. 1066–1069, 2022. Z. Huang, W. Dong, H. Duan, and J. Liu, “A regularized deep learning approach for clinical risk prediction of acute coronary syndrome using electronic health records”, IEEE Transactions on Biomedical Engineering, vol. 65, no. 5, pp. 956–968, 2018. E. O’Brien, R. Asmar, L. Beilin, and et al., “European Society of Hypertension recommendations for conventional, ambulatory and home blood pressure measurement,” Hypertension, vol. 21, no. 5, pp. 821–848, 2003. H. Koshimizu, R. Kojima, and Y. Okuno, “Future possibilities for artificial intelligence in the practical management of hypertension”, Hypertension Research, vol. 43, no. 12, pp. 1327–1337, 2020. Y. Li and J.-G. Wang, “Isolated Nocturnal Hypertension A Disease Masked In Dark,” Hypertension, vol. 61, no. 2, p. 278–283, 2012. S. JA, R. Fagard, L. Thijs, and A. Amery, “A consensus view on the technique of ambulatory blood pressure monitoring”, Hypertension, vol. 26, no. 6 Pt 1, pp. 912–918, 1995. M.-C. Cho, “Clinical Significance and Therapeutic Implication of Nocturnal Hypertension: Relationship between Nighttime Blood Pressure and Quality of Sleep”, Korean Circular Journal, vol. 49, no. 9, pp. 818–828, 2019. H. F. Golino, L. S. de Brito Amaral, S. F. P. Duarte, C. M. A. Gomes, T. de Jesus Soares, L. A. dos Reis, and J. Santos, “Diagnostic accuracy of clinical tools for assessment of acute stroke: a systematic review”, Journal of Obesity, vol. 2014, 2014. D. LaFreniere, F. Zulkernine, D. Barber, and K. Martin, “Using machine learning to predict hypertension from a clinical dataset”, 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–7, 2016. Y. Luo, Y. Li, Y. Lu, S. Lin, and X. Liu, “The prediction of hypertension based on convolution neural network”, 2018 IEEE 4th International Conference on Computer and Communications (ICCC), pp. 2122–2127, 2018. F. López-Martínez, E. R. Núñez-Valdez, R. G. Crespo, et al., “An artificial neural network approach for predicting hypertension using nhanes data”, Scientific Reports, vol. 10, p. 10620, 2020. E. W.-Y. Kwong, W. Hao, and G. K.-H. Pang, “A prediction model of blood pressure for telemedicine”, Health Informatics Journal, vol. 24, no. 3, pp. 227–244, 2018. H. Koshimizu, R. Kojima, K. Kario, and Y. Okuno, “Prediction of blood pressure variability using deep neural networks”, International Journal of Medical Informatics, vol. 136, p. 104067, 2020. A. Sundus, C. K. Loo, N. Kubota, and G. A. Tahir, “A personalised blood pressure prediction system using gaussian mixture regression and online recurrent extreme learning machine”, International Symposium on Community-centric Systems (CcS), 2020. Y.-Y. Shi, X.-J. Wang, and Q. Zhang, “The constrained optimization extreme learning machine based on the hybrid loss function for regression ”, 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI), pp. 336–342, 2018. G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: Theory and applications”, Neurocomputing, vol. 70, no. 1, pp. 489–501, 2006. Neural Networks. B. Remeseiro and V. Bolon-Canedo, “A review of feature selection methods in medical applications”, Computers in Biology and Medicine, vol. 112, p. 103375, 2019. A. M. Qadri, A. Raza, K. Munir, and M. S. Almutairi, “Effective feature engineering technique for heart disease prediction with machine learning,” IEEE Access, vol. 11, pp. 56214–56224, 2023. P. Ghosh, S. Azam, M. Jonkman, A. Karim, F. M. J. M. Shamrat, E. Ignatious, S. Shultana, A. R. Beeravolu, and F. De Boer, “Efficient prediction of cardiovascular disease using machine learning algorithms with relief and lasso feature selection techniques”, IEEE Access, vol. 9, pp. 19304–19326, 2021. J. Heaton, “An empirical analysis of feature engineering for predictive modeling”, SoutheastCon 2016, pp. 1–6, 2016. R. Rajendran and A. Karthi, “Heart disease prediction using entropy based feature engineering and ensembling of machine learning classifiers”, Expert Systems with Applications, vol. 207, p. 117882, 2022. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89976 | - |
| dc.description.abstract | 本研究著重於建構心血管疾病直接與間接因子預測模型之模型與流程之建構。心血管疾病在世界是造成傷殘與死亡的重大因素,若可以及早預測罹患風險,即可提供患者相關預先治療措施以降低傷亡率。本研究分成兩大部分,第一部分提出心血管疾病長短期風險預測模型,第二部分提出心血管疾病風險因子- 夜間動態血壓值之預測模型,並建構特徵工程與特徵選擇之處理流程。
在心血管疾病的研究中,展示了心血管疾病預測模型的良好性能,尤其是在長期預測方面。其中XGBoost模型表現出最佳預測性能。在夜間動態血壓的研究方面,三個不同地區與種族的資料集一致地建議早上6點和晚上9點為家庭血壓測量的最佳時間,這是有別於過往居家血壓量測的時間組合,可以在未來提供臨床相關建議。研究顯示使用特徵工程策略2搭配順序性特徵選擇方法組合所產生的人工特徵有助於提升預測效能,而在模型方面,MLP神經網絡相較於傳統機器學習與迴歸模型表現最佳。此外,本研究發現損失函數的調整有助於預測表現的提升。相較於過往研究,本研究廣泛的納入地域性、種族性的比較,並發現在地域性的比較上,兩資料集皆強調了數值特徵與人工特徵的重要性,並證明其有助於提升預測表現;在種族性比較上,研究與TCHC資料集的比較凸顯了性別在預測夜間動態血壓方面的重要性。本研究在夜間動態血壓的預測主題上無論是模型、特徵工程、特徵選擇、損失函數調整皆有有別於過往研究的嘗試與突破,並廣泛的進行比較與闡述,可以對未來夜間動態血壓領域的研究提供研究幫助。 | zh_TW |
| dc.description.abstract | This study focuses on constructing models and workflows for the prediction of both direct and indirect factors associated with cardiovascular disease (CVD). CVD is a major cause of disability and mortality worldwide. Early prediction of the risk of developing CVD can provide patients with relevant preventive measures to reduce morbidity and mortality.
The study is divided into two main parts. The first part proposes a model for the prediction of long-term and short-term CVD risk. The second part presents a predictive model for cardiovascular risk factors, specifically nighttime ambulatory blood pressure values. Feature engineering and feature selection processes are implemented in the construction of these models. The CVD research demonstrates the favorable performance of the cardiovascular disease prediction models, particularly in long-term predictions. Among the models assessed, XGBoost emerges as the optimal predictive model. Concerning the investigation of nocturnal ambulatory blood pressure, three distinct datasets representing different regions and ethnicities consistently suggest that 6 AM and 9 PM are the optimal times for home blood pressure measurements, this finding contrasts with previous combinations of home blood pressure measurement times and could offer valuable clinical recommendations in the future. The study reveals that the utilization of artificial features generated through Feature Engineering Strategy 2, combined with sequential feature selection, contributes to enhanced predictive performance. Among the model architectures explored, the MLP neural network outperforms traditional machine learning and regression models. Furthermore, adjustments to the loss function are shown to improve prediction performance. In comparison to prior research, this study extensively incorporates regional and ethnic comparisons and demonstrates the importance of numerical and artificial features in both datasets, contributing to enhanced predictive performance. In terms of ethnic comparisons, the study highlights the significance of gender in predicting nocturnal ambulatory blood pressure, particularly concerning the TCHC dataset. The research offers novel approaches and breakthroughs in model construction, feature engineering, and feature selection, providing valuable insights for future studies on nighttime ambulatory blood pressure prediction. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:54:30Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T16:54:30Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 iii Abstract v Contents vii List of Figures xi List of Tables xv Chapter 1 Introduction 1 1.1 Research Background and Motivation 1 1.1.1 Importance of CVD Prediction 1 1.1.2 Importance of ABPM Prediction 2 1.2 Research Objectives 3 1.3 Research Contribution 4 Chapter 2 Literature Review 6 2.1 CVD Research 6 2.1.1 Definition of Cardiovascular Disease (CVD) 6 2.1.2 Modeling Reviews of CVD 7 2.2 ABPM Research 8 2.2.1 Definitions of Ambulatory Blood Pressure Measurement (ABPM) and Key Cardiovascular Disease (CVD) Risk Indicators 8 2.2.2 Modeling 11 2.2.3 Loss Function Design 17 2.2.4 Feature Selection 17 2.2.5 Feature Engineering 19 2.2.6 Differences Between Previous Works and Our Study 20 Chapter 3 Methods 22 3.1 CVD research 22 3.2 ABPM research 24 3.2.1 Dataset Introduction 24 3.2.1.1 IDACO dataset 24 3.2.1.2 TCHC dataset 25 3.2.2 Experiment Introduction 26 3.2.2.1 First Part: Finding the optimal home BP timing 26 3.2.2.2 Second Part: Finding the optimal deep learning based prediction method 30 3.2.3 Dataset Preprocessing 36 3.2.3.1 IDACO dataset 36 3.2.3.2 TCHC dataset 38 3.2.4 Data Characteristics 39 3.2.4.1 IDACO-asia dataset 39 3.2.4.2 IDACO-euro dataset 41 3.2.4.3 TCHC dataset 44 3.3 Definitions of Methods & Metrics 46 3.3.1 Feature Selection Methods 46 3.3.2 Model Parameters 49 3.3.3 Models For Comparison 51 3.3.4 Feature Importance 53 Chapter 4 Results & Discussion 55 4.1 CVD Research 55 4.2 ABPM Research 58 4.2.1 First Part of the Experiment: Finding The Optimal Timing of Home BP 58 4.2.2 Second Part of the Experiment: Finding The Optimal Deep Learning Based Prediction Method 63 4.2.2.1 1st Phase of Feature Selection 63 4.2.2.2 2nd Phase of Feature Engineering & Feature Selection 65 4.2.2.3 Feature Importance 72 4.2.2.4 Model Performance Comparison 73 4.2.3 Comparison with IDACO-euro Dataset Experiment Results 74 4.2.3.1 Result of the first part of the experiment 74 4.2.3.2 Result of the second part of the experiment 78 4.2.4 Comparison with IDACO-amercia Dataset Experiment Results 80 4.2.4.1 Result of the first part of the experiment 81 4.2.4.2 Result of the second part of the experiment 82 4.2.5 Comparison with TCHC Dataset Experiment Results 84 4.2.5.1 Result of the first part of the experiment 84 4.2.5.2 Result of the second part of the experiment 88 4.2.6 Refinement of IDACO-asia Workflow 91 4.2.7 Analyzing Refined Results: Unraveling the Efficacy of Feature Engineering, Feature Selection, and Loss Function Optimization 92 4.2.7.1 The Possible Interpretations of The Effectiveness of Artificial Features 92 4.2.7.2 The Possible Interpretations of The Effectiveness of Huber Loss 93 Chapter 5 Conclusion & Future Work 95 References 98 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 特徵選擇 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 心血管疾病 | zh_TW |
| dc.subject | 夜間動態血壓 | zh_TW |
| dc.subject | 特徵工程 | zh_TW |
| dc.subject | 損失函數 | zh_TW |
| dc.subject | Ambulatory Nighttime Blood Pressure | en |
| dc.subject | Feature Selection | en |
| dc.subject | Feature Engineering | en |
| dc.subject | Loss Function | en |
| dc.subject | Cardiovascular Disease | en |
| dc.subject | Machine Learning | en |
| dc.title | 運用機器學習方法進行心血管疾病的直接與間接預測 | zh_TW |
| dc.title | Direct and Indirect Predictions of Cardiovascular Disease by Utilizing Machine Learning Related Methods | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 鄭浩民 | zh_TW |
| dc.contributor.coadvisor | Hao-Min Cheng | en |
| dc.contributor.oralexamcommittee | 呂俊賢;黃彥男;廖辰中 | zh_TW |
| dc.contributor.oralexamcommittee | Chun-Hsien Lu;Yennun Huang;Chen-Chung Liao | en |
| dc.subject.keyword | 機器學習,心血管疾病,夜間動態血壓,特徵工程,特徵選擇,損失函數, | zh_TW |
| dc.subject.keyword | Machine Learning,Cardiovascular Disease,Ambulatory Nighttime Blood Pressure,Feature Engineering,Feature Selection,Loss Function, | en |
| dc.relation.page | 101 | - |
| dc.identifier.doi | 10.6342/NTU202303154 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-12 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 資訊管理學系 | - |
| dc.date.embargo-lift | 2028-02-12 | - |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 7.48 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
