Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89973
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 薛熙于 | zh_TW |
dc.contributor.advisor | Hsi-Yu Schive | en |
dc.contributor.author | 黃立鈞 | zh_TW |
dc.contributor.author | Li-Chun Huang | en |
dc.date.accessioned | 2023-09-22T16:53:46Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-22 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-10 | - |
dc.identifier.citation | E. Armengaud, N. Palanque-Delabrouille, C. Yèche, D. J. E. Marsh, and J. Baur. Constraining the mass of light bosonic dark matter using SDSS Lyman-α forest. ,471(4):4606–4614, Nov. 2017.
M. Boylan-Kolchin, J. S. Bullock, and M. Kaplinghat. Too big to fail? The puzzling darkness of massive Milky Way subhaloes. , 415(1):L40–L44, July 2011. S.-R. Chen, H.-Y. Schive, and T. Chiueh. Jeans analysis for dwarf spheroidal galaxies in wave dark matter. , 468(2):1338–1348, June 2017. B. T. Chiang, H.-Y. Schive, and T. Chiueh. Soliton oscillations and revised constraints from Eridanus II of fuzzy dark matter. , 103(10):103019, May 2021. T. Chiueh and Y.-H. Hsu. Theory and phenomenology of stressed wave-dark-matter soliton. , 107(6):063011, Mar. 2023. X. Du, C. Behrens, and J. C. Niemeyer. Substructure of fuzzy dark matter haloes. , 465(1):941–951, Feb. 2017. X. Du, B. Schwabe, J. C. Niemeyer, and D. Bürger. Tidal disruption of fuzzy dark matter subhalo cores. , 97(6):063507, Mar. 2018. J. Dubinski and R. G. Carlberg. The Structure of Cold Dark Matter Halos. , 378:496, Sept. 1991. W. Hu, R. Barkana, and A. Gruzinov. Fuzzy Cold Dark Matter: The Wave Properties of Ultralight Particles. , 85(6):1158–1161, Aug. 2000. L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten. Ultralight scalars as cosmological dark matter. , 95(4):043541, Feb. 2017. S. U. Ji and S. J. Sin. Late-time phase transition and the galactic halo as a Bose liquid. II. The effect of visible matter. , 50(6):3655–3659, Sept. 1994. A. Klypin, A. V. Kravtsov, O. Valenzuela, and F. Prada. Where Are the Missing Galactic Satellites? , 522(1):82–92, Sept. 1999. T. Kobayashi, R. Murgia, A. De Simone, V. Iršič, and M. Viel. Lyman-α constraints on ultralight scalar dark matter: Implications for the early and late universe. , 96(12):123514, Dec. 2017. D. J. E. Marsh and J. C. Niemeyer. Strong Constraints on Fuzzy Dark Matter from Ultrafaint Dwarf Galaxy Eridanus II. , 123(5):051103, Aug. 2019. B. Moore. Evidence against dissipation-less dark matter from observations of galaxy haloes. , 370(6491):629–631, Aug. 1994. B. Moore, S. Ghigna, F. Governato, G. Lake, T. Quinn, J. Stadel, and P. Tozzi. Dark Matter Substructure within Galactic Halos. , 524(1):L19–L22, Oct. 1999. J. F. Navarro, C. S. Frenk, and S. D. M. White. A Universal Density Profile from Hierarchical Clustering. , 490(2):493–508, Dec. 1997. J. I. Read, M. I. Wilkinson, N. W. Evans, G. Gilmore, and J. T. Kleyna. The importance of tides for the Local Group dwarf spheroidals. , 367(1):387–399, Mar. 2006. V. Sahni and L. Wang. New cosmological model of quintessence and dark matter. , 62(10):103517, Nov. 2000. H.-Y. Schive, T. Chiueh, and T. Broadhurst. Cosmic structure as the quantum interference of a coherent dark wave. Nature Physics, 10(7):496–499, July 2014. H.-Y. Schive, T. Chiueh, and T. Broadhurst. Soliton Random Walk and the Cluster-Stripping Problem in Ultralight Dark Matter. , 124(20):201301, May 2020. H.-Y. Schive, M.-H. Liao, T.-P. Woo, S.-K. Wong, T. Chiueh, T. Broadhurst, and W. Y. P. Hwang. Understanding the Core-Halo Relation of Quantum Wave Dark Matter from 3D Simulations. , 113(26):261302, Dec. 2014. H.-Y. Schive, J. A. ZuHone, N. J. Goldbaum, M. J. Turk, M. Gaspari, and C.-Y. Cheng. GAMER-2: a GPU-accelerated adaptive mesh refinement code - accuracy, performance, and scalability. , 481(4):4815–4840, Dec. 2018. B. Schwabe, J. C. Niemeyer, and J. F. Engels. Simulations of solitonic core mergers in ultralight axion dark matter cosmologies. , 94(4):043513, Aug. 2016. E. Seidel and W.-M. Suen. Dynamical evolution of boson stars: Perturbing the ground state. , 42(2):384–403, July 1990. P. Svrcek and E. Witten. Axions in string theory. Journal of High Energy Physics, 2006(6):051, June 2006. J. Veltmaat and J. C. Niemeyer. Cosmological particle-in-cell simulations with ultralight axion dark matter. , 94(12):123523, Dec. 2016. A. Wasserman, P. van Dokkum, A. J. Romanowsky, J. Brodie, S. Danieli, D. A. Forbes, R. Abraham, C. Martin, M. Matuszewski, A. Villaume, J. Tamanas, and S. Profumo. Spatially Resolved Stellar Kinematics of the Ultra-diffuse Galaxy Dragonfly 44. II. Constraints on Fuzzy Dark Matter. , 885(2):155, Nov. 2019. L. M. Widrow and N. Kaiser. Using the Schroedinger Equation to Simulate Collisionless Matter. , 416:L71, Oct. 1993. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89973 | - |
dc.description.abstract | 波暗物質(Fuzzy Datter Matter,FDM)是一個有競爭力的暗物質候選理論,其在中心會有一個巨大的孤立子且有著大幅度密度震盪。先前的研究中指出即使周圍的暈被潮汐力給破壞掉,孤立子震盪依然存在。在本研究中我們經由自適應網格細化的三維波暗物質模擬展示了潮汐剝離是可以藉由移除孤立子的激發態去減緩震盪。減緩效率取決於軌道內主暈的平均密度和孤立子波峰密度的比率。此外當潮汐半徑相當於孤立子半徑時,孤立子就會被完全的被破壞。這些發現對於理論分析中心恆星物體因孤立子振盪所引起的加熱現象是重要的。 | zh_TW |
dc.description.abstract | Fuzzy dark matter (FDM) is a strong dark matter candidate, featuring a massive central soliton with large-amplitude density oscillations. Previous studies suggested that the soliton oscillations persist even after the tidal disruption of a surrounding halo. Here, via three-dimensional FDM simulations with adaptive mesh refinement (AMR), we demonstrate that tidal stripping can damp soliton oscillations by removing the soliton excited states. The damping efficiency depends on the ratio between the average enclosed density of a host halo and the soliton peak density. Furthermore, a soliton can be completely disrupted if the tidal radius is comparable to the soliton radius. These findings are important for theoretical analyses of the heating of central stellar objects owing to soliton oscillations. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:53:46Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-22T16:53:46Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 中文摘要 v Abstract vii Contents ix List of Figures xi Chapter 1 Introduction 1 Chapter 2 Theoretical basis 3 2.1 Soliton property 3 2.2 Tidal potential 4 Chapter 3 Numerical method 7 3.1 Construction of perturbed soliton 8 3.2 Moving non-rotating frame system 8 3.3 Simulation setup 13 Chapter 4 Simulation result 15 4.1 Different regime 15 4.2 Result comparison 17 4.3 Amplitude calculation 19 4.4 Future work 21 Chapter 5 Conclusion 23 References 25 Appendix A — tidal potential derivation and μ in different frames 29 Appendix B — calculate the amplitude 33 | - |
dc.language.iso | en | - |
dc.title | 波暗物質中的潮汐剝離和孤立子震盪 | zh_TW |
dc.title | Tidal stripping and soliton oscillations in fuzzy dark matter | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 闕志鴻;林俐暉 | zh_TW |
dc.contributor.oralexamcommittee | Tzihong Chiueh;Li-Hwai Lin | en |
dc.subject.keyword | 波暗物質,孤立子,震盪,潮汐力,潮汐剝離, | zh_TW |
dc.subject.keyword | fuzzy dark matter,soliton,oscillation,tidal force,tidal stripping, | en |
dc.relation.page | 34 | - |
dc.identifier.doi | 10.6342/NTU202303334 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-11 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 天文物理研究所 | - |
Appears in Collections: | 天文物理研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-111-2.pdf | 1.13 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.