Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89968
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪挺軒zh_TW
dc.contributor.advisorTing-Hsuan Hungen
dc.contributor.author姚舜閔zh_TW
dc.contributor.authorShun-Min Yaoen
dc.date.accessioned2023-09-22T16:52:36Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-11-
dc.identifier.citation田幸茹。2009。柑橘黃龍病在柑橘寄主與媒介昆蟲木蝨體內的定性與定量偵測。臺灣大學植物病理與微生物學系研究所碩士論文。55頁。
林之昫。2010。研發柑桔鱗砧類病毒整合性診斷偵測技術與探討類病毒與寄主間交互作用。臺灣大學植物病理與微生物學系研究所碩士論文。52頁。
林育萱。2004。柑桔破葉病毒系統之鑑別與快速偵測法之研發。臺灣大學植物病理與微生物學系研究所碩士論文。75頁。
林樸。1969。臺灣柑橘毒素病問題與生產改進。中國園藝15:80–82。
洪士程。2006。柑桔木蝨傳播黃龍病之生態研究。臺灣大學昆蟲學研究所博士論文。164頁。
洪挺軒、張雅君、趙治平。2014。具外銷潛力的果樹種苗病害診斷、健康管理與繁苗技術鏈之建立與強化。農業生技產業季刊 37:56–62。
徐孟豪、陳保良。2011。臺灣植物健康種苗驗證體系推動之歷程與展望。農業生技產業季刊 25:13–15。
張立。2012。柑橘破葉病毒感染性選殖株之構築及偵測方法之改良。臺灣大學植物病理與微生物學系研究所碩士論文。77頁。
陳映樺。2012。不同的臺灣柑橘萎縮病毒系統之病理性鑑別與基因體分析。臺灣大學植物病理與微生物學研究所碩士論文。115頁。
馮雅智。2014。柑橘黃龍病之病菌系統演化、發病生態與植物菌質體相關性之探討。臺灣大學植物病理與微生物學研究所博士論文。130頁。
黃安利。1987。柑桔立枯病病原菌之形態與消長動態之電顯研究。臺灣大學昆蟲學研究所博士論文。148頁。
黃秋雄。1972。柑桔毒素病之研究-外觀健全與罹病柑桔植株在墨西哥雷木及檸檬反應之異同。中華農業研究21:62–70.
黃秋雄。1975。臺灣柑橘鱗砧病分布之調查。中華農業研究24:44–49。
楊秀修。1997。柑橘萎縮病毒之感染生態。臺灣大學植物病蟲害學硏究所碩士論文。188頁。
蔡佳欣。2007。柑橘黃龍病菌之病菌系統、發病生態與化學治療。臺灣大學植物病理與微生物學系研究所博士論文。150頁。
賴巧娟。2014。台灣重要柑橘品種複合感染柑橘黃龍病菌及柑橘萎縮病毒之研究。臺灣大學植物病理與微生物學系研究所碩士論文。53頁。
盧懷力。2013。台灣柑橘類病毒之診斷以及分子病理特性。臺灣大學植物病理與微生物學系研究所碩士論文。61頁。
蘇鴻基。1989。柑桔毒素病、似毒素病與快速檢法之研究。臺灣農試所特刊27:165–168。
蘇鴻基。2001。柑橘無病種苗之生產與體系。pp.13–20。健康種苗在植物病害防治上之應用研討會。中華民國植物病理學會出版。
Achachi, A., Jijakli, M. H., Fahime, E. E., Soulaymani, A., and Ibriz, M. 2015. Detection of Citrus psorosis virus using an improved one-step RT-PCR. Arab. J. Sci. Eng. 40:7–13.
Albrecht, U., and Bowman, K. D. 2009. Candidatus Liberibacter asiaticus and huanglongbing effects on citrus seeds and seedlings. HortScience. 44:1967–1973.
Balasuriya, U. B. R., Lee, P. Y., Tiwari, A., Skillman, A., Nam, B., Chambers, T. M., Tsai, Y. L., Ma, L. J., Yang, P. C., Chang, H. F. G., and Wang, H. T. T. 2014. Rapid detection of equine influenza virus H3N8 subtype by insulated isothermal RT‐PCR (iiRT‐PCR) assay using the POCKIT Nucleic Acid Analyzer. J. Virol. Methods. 207:66–72.
Barbarossa, L., and Savino, V. 2006. Sensitive and specific digoxigenin‐labelled RNA probes for routine detection of Citrus tristeza virus by dot‐blot hybridization. J. Phytopathol. 154:329–35.
Bar-Joseph, M. 1982. A review on tristeza, an ongoing threat to citriculture. Pages 419–423. In Proceedings of the International Society of Citriculture.
Bar-Joseph, M., Marcus, R., and Lee, R. F. 1989. The continuous challenge of citrus tristeza virus control. Annu. Rev. Phytopathol. 27:291–316.
Bar-Joseph, M., and Martelli, G. P. 1991. Capilloviruses: Classification and nomenclature of viruses: 5th Report of the International Committee on Taxonomy of Viruses. Arch. Virol. Suppl. 2:339–340.
Bassanezi, R. B., Montesino, L. H., and Stuchi, E. S. 2009. Effects of huanglongbing on fruit quality of sweet orange cultivars in Brazil. Euro. J. Plant Pathol. 125:565–572.
Beattie, G. A. C., Holford, P., Mabberley, D. J., Haigh, A. M., Bayer, R., and Broadbent, P. 2006. Aspects and insights of Australia-Asia collaborative research on Huanglongbing. Pages 47–67. In Proceedings of the International Workshop for the Prevention of Citrus Greening Disease in Severely Infected Areas.
Benton, R. J., Bowman, F. T., Fraser, L., and Kebby, R. G. 1950. Stunnting and scaly butt of citrus associated with Poncirus trifoliate rootstock. NSW Dept. Agric. Sci. Bull. 70:2099.
Blaustein, R. A., Lorca, G. L., and Teplitski, M. 2018. Challenges for managing Candidatus Liberibacter spp. (Huanglongbing disease pathogen): current control measures and future directions. Phytopathology. 108:424–435.
Bové, J. M. 2006. Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 88:7–37.
Bové, J. M., Calavan, E., Capoor, S., Cortez, R. E. and Schwarz, R. E. 1974. Influence of temperature on symptoms of California stubborn, South Africa greening, India citrus decline and Philippines leaf mottling diseases. Pages 12–15. In Proceedings of the 6th Conference of the International Organization of Citrus Virologists.
Canning, E. S., Penrose, M. J., Barker, I., and Coates, D. 1996. Improved detection of Barley yellow dwarf virus in single aphids using RT-PCR. J. Virol. Methods 56:191–197.
Calavan, E. C. 1968. Exocortis. Pages 28–34. In Indexing Procedures for 15 Virus Diseases of Citrus Tree. USDA Agriculture Handbook. 333 pp.
Calavan, E. C., Christiansen, D. W., and Roistacher, C. N. 1963. Symptoms associated with tatter-leaf virus infection of Troyer citrange rootstock. Plant Dis. Rep. 47:971–975.
Cambra, M., Camarasa, E., Gorris, M., Garnsey, S. M., and Carbonell, E. 1991. Comparison of different immunosorbent assays for Citrus tristeza virus (CTV) using CTV-specific monoclonal and polyclonal antibodies. Pages 38–45. In Proceedings of the 11th Conference of the International Organization of Citrus Virologists.
Capoor, S. P. 1963. Decline of citrus trees in India. Bull. Natl. Inst. Sci. India 24:48–64.
Capoor, S. P., Rao, D. G., and Viswanath, S. M. 1967. Diaphorina citri Kuwayama, a vector of the greening disease of citrus in India. Indian J. Agric. Sci. 37:572–576.
Carossino, M., Li, Y., Lee, P. A., Tsai, C. F., Chou, P. H., Williams, D., Skillman, A., Cook, R. F., Brown, G., Chang, H. F., Wang, H. T. T., and Balasuriya, U. B. R. 2017. Evaluation of a field‐deployable reverse transcription‐insulated isothermal PCR for rapid and sensitive on‐site detection of Zika virus. BMC Infect. Dis. 17:778.
Chaffai, M., Serra, P., Gandía, M., Hernández, C., and Duran-Vila, N. 2007. Molecular characterization of CEVd strains that induce different phenotypes in Gynura aurantiaca: structure-pathogenicity relationships. Arch. Virol. 152:1283–1294.
Chang, H. F., Tsai, Y. L., Tsai, C. F., Lin, C. K., Lee, P. Y., Teng, P. H., Su, C., and Jeng, C. C. 2012. A thermally baffled device for highly stabilized convective PCR. Biotechnol. J. 7:662–666.
Chen, J., Pu, X., Liu, S., Li, H., and Civerolo, E. 2009. A phytoplasma related to “Candidatus Phytoplasma asteris” detected in citrus showing huanglongbing (yellow shoot disease) symptoms in Guangdong, PR China. Phytopathology 99:236–242.
Cheng, C. P. 1943. Studies on Huanglongbing of Chaukan tangor. J. New Agr. 3:142–172.
Chiu, R. J., Tsai, M. Y., and Huang, C. H. 1979. Distribution and retention of tetracyclines in healthy and likubin infected citrus following trunk transfusion. Plant Protect. Bull. 21:143–152 pp.
Chou, W. P., Chen, P. H., Miao, M. Jr., Kuo, L. S., Yeh, S. H., and Chen, P. J. 2011. Rapid DNA amplification in a capillary tube by natural convection with a single isothermal heater. Biotechniques. 50:52–57.
Christensen, N. M., Nicolaisen, M., Hansen, M., and Schulz, A. 2004. Distribution of phytoplasmas in infected plants as revealed by real-time PCR and bioimaging. Mol. Plant Microbe Interact. 17:1175–1184.
Coletta-Filho, H. D., Targon, M. L. P. N., Takita, M. A., De Negri, J. D., Pompeu, J., Machado, M. A., and Muller, G. W. 2004. First report of the causal agent of Huanglongbing (“Candidatus Liberibacter asiaticus”) in Brazil. Plant Dis. 88:1382.
da Graça, J. V. 1977. Citrus tatter leaf virus in South African Meyer lemon. Citrus Subtrop. Fruit J. 529:18.
da Graça, J. V. 1991. Citrus greening disease. Annu. Rev. Phytopathol. 29:109–136.
da Graça, J. V., Kunta, M., Setamou, M., Rascoe, J., Li, W., Nakhla, M. K., Salas, B., and Bartels, D. W. 2015. Huanglonging in Texas: Report on the first detections in commercial citrus. J. Citrus Pathol. 2:1.
Dagulo, L., Danyluk, M. D., and Spann, T. M. 2010. Chemical characterization of orange juice from trees infected with citrus greening (huanglongbing). J. Food Sci. 75:199–207.
Dai, J., Cheng, J., Huang, T., Zheng, X., and Wu, Y. 2012. A multiplex reverse transcription PCR assay for simultaneous detection of five tobacco viruses in tobacco plants. J. Virol. Methods. 183:57–62.
Darvas, J. M., Torien, J. C., and Milne, D. L. 1983. Injection of established avocado trees for the effective control of phytophthora root rot. Calif. Avocado Soc. 67:76–77.
Davino, S., Davino, M., Sambade, A., Guardo, M., and Caruso, A. 2003. The first Citrus tristeza virus outbreak found in a relevant citrus producing area of Sicily, Italy. Plant Dis. 87:314.
Digiaro, M., Elbeaino, T., and Martelli, G. P. 2007. Development of degenerate and species-specific primers for the differential and simultaneous RT-PCR detection of grapevine-infecting nepoviruses of subgroup A, B and C. J. Virol. Methods. 141:34–40.
Ding, F., Paul, C., Brlansky, R. H., Hartung, J. S. 2017. Immune tissue print and immune capture-PCR for diagnosis and detection of Candidatus Liberibacter asiaticus. Sci. Rep. 7:46467.
Duran-Vila, N., Flores, R., and Semancik, J. S. 1986. Characterization of viroid-like RNAs associated with the citrus exocortis syndrome. Virology. 150:75–84.
Elnifro, E. M., Ashshi, A. M., Cooper, R. J., and Klapper, P. E. 2000. Multiplex PCR: optimization and application in diagnostic virology. Clin. Microbiol. Rev. 13:559–570.
Fadda, Z., Daròs, J., Flores, R., and Duran-Vila, N. 2003. Identification in eggplant of a variant of citrus exocortis viroid (CEVd) with a 96 nucleotide duplication in the right terminal region of the rod-like secondary structure. Virus Res. 97:145–149.
Fagoaga, C., and Duran-Vila, N. 1996. Naturally occurring variants of citrus exocortis viroid in vegetable crops. Plant Pathol. 45:45–53.
Fagoaga, C., Semancik, J. S., and Duran-Vila, N. 1995. A citrus exocortis viroid variant from broad bean (Vicia faba L.): infectivity and pathogenesis. J. Gen. Virol. 76:2271–2277.
Fagoaga, C., Pina, J., and Duran-Vila, N. 1994. Occurrence of small RNAs in severely diseased vegetable crops. Plant Dis. 78:749–753.
Faghihi, M. M., Salehi, M., Bagheri, A., and Izadpaanah, K. 2009. First report of citrus huanglongbing disease on orange in Iran. Plant Pathol. 58:793.
Fawcett, H., and Wallace, J. 1946. Evidence of virus nature of citrus quick decline. Calif. Citrograph 32:50.
Feng, Y. C., Hung, T. H., and Su, H. J. 2015a. Detection and inoculation of peanut witches' broom phytoplasma (16SrII-A) and periwinkle leaf yellowing phytoplasma (16SrI-B) in citrus cultivars in Taiwan. J. Phytopathol. 163:364–375.
Feng, Y. C., Tsai, C. H., Vung, S., Hung, T. H., and Su, H. J. 2015b. Cochin China atalantia (Atalantia citroides) as a new alternative host of the bacterium causing citrus Huanglongbing. Australas. Plant Pathol. 44:71–80.
Fernandez-Escobar, R., Gallego, F. J., Benlloch, M., Membrillo, J., Infante, J., and Perez De Algaba, 1999. A treatment of oak decline using pressurized injection capsules of antifungal materials. Eur. J. For. Pathol. 29:29–38.
Folimonova, S. Y. 2020. Citrus tristeza virus: a large RNA virus with complex biology turned into a valuable tool for crop protection. PLoS Pathog. 16:e1008416.
Food and Agriculture Organization of the United Nations. Citrus. Available online: https://www.fao.org/markets-and-trade/commodities/citrus/en/ (accessed on 28 December 2022).
Food and Agriculture Organization of the United Nations. Citrus Fruit Statistical Compendium 2020. Available online: https://www.fao.org/markets-and-trade/publications/detail/en/c/1438250/ (accessed on 28 December 2022).
Ford, C. R., Vose, J. M., Daley, M., and Phillips, N. 2007. Use of water by eastern hemlock: Implications for systemic insecticide application. Arboric. Urban For. 33:421–427.
Fraser, L. R., and Broadbent, P. 1979. Virus and related diseases of citrus in New South Wales. Dept. Agric. NSW. 52.
Fu, S., Shao, J., Paul, C., Zhou, C., and Hartung, J. S. 2017. Transcriptional analysis of sweet orange trees co-infected with ‘Candidatus Liberibacter asiaticus’ and mild or severe strains of Citrus tristeza virus. BMC Genom. 18:837.
García-Arenal, F., Pallás, V., and Flores, R. 1987. The sequence of a viroid from grapevine closely related to severe isolates of Citrus exocortis viroid. Nucleic Acids Res. 15:4203–4210.
Gardan, L., and Manceau, C. 1984. Persistence of streptomycin in pear and apple tissue. Acta Hortic. 151:179–186.
Garnier, M., Jagoueix-Eveillard, S., Cronje, P. R., Roux, H. F., and Bové, J. M. 2000. Genomic characterization of a liberobacter present in an ornamental rutaceous tree, Calodendrum capense, in the Western Cape Province of South Africa. Proposal of ‘Candidatus Liberibacter africanus subsp. capensis’. Int. J. Syst. Evol. Microbiol. 50:2119–2125.
Garnsey, S. M. 1964. Detection of tatter leaf virus in Florida. Proc. Fla. State Hortic. Soc. 77:106–109.
Garnsey, S. M. 1974. Mechanical transmission of a virus that produces tatter leaf symptoms in Citrus excelsa. In Proceedings of the 6th Conference of the International Organization of Citrus Virologists. L. G. Weathers, M. Cohen. eds.; IOCV: Riverside. California. USA.
Garnsey, S. M., and Cambra, M. 1991. Enzyme-linked immunosorbent assay (ELISA) for citrus pathogens. Pages 193–216. In Graft Transmissible Diseases of Citrus. Handbook for Detection and Diagnosis. C. N. Roistacher, eds. FAO. Rome. Italy.
Garnsey, S. M., Gottwald, T., Hilf, M., Matos, L., and Borbón, J. 2000. Emergence and spread of severe strains of Citrus tristeza virus in the Dominican Republic. Pages 57–68. In Proceedings of the 14th Conference of International Organization of Citrus Virologists.
Garnsey, S. M., and Jones, J. W. 1968. Relationship of symptoms to the presence of tatter-leaf virus in several citrus hosts. Pages 206–215. In Proceedings of the 4th Conference of the International Organization of Citrus Virologists.
Garnsey, S. M., Permar, T., Cambra, M., and Henderson, C. 1993. Direct tissue blot immunoassay (DTBIA) for detection of Citrus tristeza virus (CTV). Pages 39–50. In Proceedings of the 12th Conference of the International Organization of Citrus Virologists.
Garnsey, S. M., and Weathers, L. G. 1972. Factors affecting mechanical spread of exocortis. Pages 105–111. In Proceedings of the 5th Conference of International Organization of Citrus Virologists.
Gottwald, T. R. 2010. Current epidemiological understanding of citrus Huanglongbing. Annu. Rev. Phytopathol. 48:119–139.
Gottwald, T., Garnsey, S. M., and Borbón, J. 1998. Increase and patterns of spread of Citrus tristeza virus infections in Costa Rica and the Dominican Republic in the presence of the brown citrus aphid, Toxoptera citricida. Phytopathology 88:621-36.
Gottwald, T., Polek, M., and Riley, K. 2002. History, present incidence, and spatial distribution of Citrus tristeza virus in the California Central Valley. Pages 83–94. In Proceedings of the 14th Conference of the International Organization of Citrus Virologists.
Graca, J. D. 1991. Citrus greening disease. Annu. Rev. Phytopathol. 29:109–136.
Gross, H. J., Krupp, G., Domdey, H., Raba, M., Jank, P., Lossow, C., Alberty, H., Ramm, K., and SaÈnger, H. L. 1982. Nucleotide sequence and secondary structure of citrus exocortis and chrysanthemum stunt viroid. Eur. J. Biochem. 121:249–257.
Halbert, S. E. 2005. The discovery of Huanglongbing in Florida. In Proceedings of the 2nd International Citrus Canker and Huanglongbing Research Workshop.
Halbert, S. E., and Manjunath, K. L. 2004. Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: a literature review and assessment of risk in Florida. Fla. Entomol. 87:330–353.
Halma, F., Smoyer, K., and Schwalm, H. 1944. Quick decline associated with sour rootstocks. Calif. Citrograph. 29:245.
Haugen, B. L., and Stennes, M. 1999. Fungicide injection to control dutch elm disease: Understanding the options. Plant Dis. Q. 20:29–38.
Hilf, M. E. 2011. Colonization of citrus seed coats by 'Candidatus Liberibacter asiaticus': Implications for seed transmission of the bacterium. Phytopathology. 101:1242–1250.
Hughes, W., and Lister, C. 1949. Lime disease in the Gold Coast. Nature. 164:880.
Hu, J., and Wang, N. 2016. Evaluation of the spatiotemporal dynamics of oxytetracycline and its control effect against citrus huanglongbing via trunk injection. Phytopathology. 106:1495–1503.
Hu, J., Jiang, J., and Wang, N. 2018. Control of citrus Huanglongbing via trunk injection of plant defense activators and antibiotics. Phytopathology. 108:186–195.
Huang, C. H. 1979. Distribution of likubin pathogen in likubin-affected citrus plant. J. Agric. Res. China. 28:29–33.
Hung, T. H., Wu, M. L., and Su, H. J. 1999a. Detection of fastidious bacteria causing citrus greening disease by nonradioactive DNA probes. Ann. Phytopathol. Soc. Jpn. 65:140–146.
Hung, T. H., Wu, M. L., and Su, H. J. 1999b. Development of a rapid method for the diagnosis of citrus greening disease using the polymerase chain reaction. J. Phytopathol. 147:599–604.
Hung, T. H., Wu, M. L., and Su, H.J. 2000a. Identification of alternative hosts of the fastidious bacterium causing citrus greening disease. J. Phytopathol. 148:321–326.
Hung, T. H., Wu, M. L., and Su, H. J. 2000b. A rapid method based on the one-step reverse transcriptase-polymerase chain reaction (RT-PCR) technique for detection of different strains of citrus tristeza virus. J. Phytopathol. 148:469–475.
Hyun, J. W., Hwang, R. Y., and Jung, K. E. 2017. Development of multiplex PCR for simultaneous detection of citrus viruses and incidence of citrus viral diseases in late-maturity citrus trees in Jeju Island. Plant Pathol. J. 33:307–317.
Ito, T., Ieki, H., and Ozaki, K. 2002. Simultaneous detection of six citrus viroids and apple stem grooving virus from citrus plants by multiplex reverse transcription polymerase chain reaction. J. Virol. Methods 106:235–239.
Jagoueix, S., Bové, J. M., and Garnier, M. 1996. PCR detection of the two ‘Candidatus’ Liberobacter species associated with greening disease of citrus. Mol. Cell Probes. 10:43–50.
Jagoueix, S., Bové, J. M., and Garnier, M. 1997. Comparison of the 16S/23S ribosomal intergenic regions of ‘Candidatus Liberobacter asiatium’ and ‘Candidatus Liberobacter africanum’, the two species associated with citrus huanglongbing (greening) disease. Int. J. Syst. Bacteriol. 147:224–227.
Karasev, A. V., Boyko, V. P., Gowda, S., Nikolaeva, O. V., Hilf, M. E., Koonin, E. V., Niblett, C. L., Cline, K., Gumpf, D. J., Lee, R. F., Garnsey, S. M., Lewandowski, D. J., and Dawson, W. O. 1995. Complete sequence of the citrus tristeza virus RNA genome. Virology 208:511–520.
Kumagai, L. B., LeVesque, C. S., Blomquist, C. L., Madishetty, K., Guo, Y., Woods, P. W., Rooney-Latham, S., Rascoe, J., Gallindo, T., Schnabel, D., and Polek, M. 2013. First report of Candidatus Liberibacter asiaticus associated with citrus Huanglongbing in California. Phytopathology 104:257–268.
Kusano, N., Iwanami, T., Narahara, K., and Tanaka, M. 2014. Production of monoclonal antibodies specific for the recombinant viral coat protein of Apple stem grooving virus-citrus isolate and their application for a simple, rapid diagnosis by an immunochromatographic assay. J. Virol. Methods. 195:86–91.
Lee, J. A., Halbert, S. E., Dawson, W. O., Robertson, C. J., Keesling, J. E., and Singer, B. H. 2015. Asymptomatic spread of huanglongbing and implications for disease control. Proc. Natl. Acad. Sci. U S A. 112:7605–7610.
Lin, C. Y., Chang, L., Lin, Y. H., Cheng, H. L., Wu, M. L., and Hung, T. H. 2018. Biological and molecular characterization of citrus tatter leaf virus in Taiwan. Plant Pathol. 67:995–1008.
Lin, C. Y., Tsai, C. H., Tien, H. J., Wu, M. L., Su, H. J., and Hung, T. H. 2017. Quantification and ecological study of ‘Candidatus Liberibacter asiaticus’ in citrus hosts, rootstocks and the Asian citrus psyllid. Plant Pathol. 66:1555–1568.
Lin, C. Y., Wu, M. L., Shen, T. L., Yeh, H. H., and Hung, T. H. 2015. Multiplex detection, distribution, and genetic diversity of Hop stunt viroid and Citrus exocortis viroid infecting citrus in Taiwan. Virol. J. 12:11.
Ling, P. 1972. A report on exocortis in Taiwan. Pages 102–104. In Proceedings of 5th Conference of International Organization of Citrus Virologists. W. C. Price, eds. Gainseville. Florida.
Lin, Y. H., Lin, Y. J., Chang, T. D., Hong, L. L., Chen, T. Y., and Chang, P. F. 2016. Development of a TaqMan probe-based insulated isothermal polymerase chain reaction (iiPCR) assay for detection of Fusarium oxysporum f. sp. cubense race 4. PLoS One. 11:e0159681.
Li, S. F., Onodera, S., Sano, T., Yoshida, K., Wang, G. P., and Shikata, E. 1995. Gene diagnosis of viroids: comparisons of return-PAGE and hybridization using DIG-labeled DNA and RNA probes for practical diagnosis of Hop stunt, Citrus exocortis and Apple scar skin viroids in their natural host plants. Ann. Phytopathol. Soc. Jpn. 61:381–390.
Li, W. B., Levy, L., and Hartung, J. S. 2009. Quantitative distribution of ‘Candidatus Liberibacter asiaticus’ in citrus plants with citrus huanglongbing. Phytopathology 99:139–144.
Li, W., Hartung, J. S., and Levy, L. E. 2006. Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. J. Microbiol. Methods. 66:104–115.
Lou, B. H., Bai, X. J., Bai, Y., Deng, C. L., RoyChowdhury, M., Chen, C. W., and Song, Y. Q. 2014. Detection and molecular characterization of a 16SrII‐A* phytoplasma in grapefruit (Citrus paradisi) with huanglongbing‐like symptoms in China. J. Phytopathol. 162:387–395.
Maheshwari, Y., Selvaraj, V., Godfrey, K., Hajeri, S., and Yokomi, R. 2021. Multiplex detection of “Candidatus Liberibacter asiaticus” and Spiroplasma citri by qPCR and droplet digital PCR. PLoS One 16:e0242392.
Mahmoud, S. A., Ganesan, S., Ibrahim, E., Thakre, B., Teddy, J. G., Raheja, P., and Zaher, W. A. 2021. Evaluation of six different rapid methods for nucleic acid detection of SARS‐COV‐2 virus. J. Med. Virol. 93:1–6.
Manjunath, K., Ramadagu, C., Majil, V., Williams, S., Irey, M., and Lee, R. 2010. First report of the citrus Haunglongbing associated bacterium “Candidatus Liberibacter asiaticus” from sweet orange, Mexican lime, and Asian psyllid in Belize. Plant Dis. 94:781.
Mann, R. S., Pelz-Stelinski, K., Hermann, S. L., Tiwari, S., and Stelinski, L. L. 2011. Sexual transmission of a plant pathogenic bacterium, Candidatus Liberibacter asiaticus, between conspecific insect vectors during mating. PLoS One. 6:e29197.
Marais, L. J., and Lee, R. F. 1986. Citrange stunt virus associated with decline of Shamouti on Swingle citrumelo rootstock in South Africa. Plant Dis. 70:892.
Martelli, G. P., Abou Ghanem-Sabanadzovic, N., Agranovsky, A. A., Al Rwahnih, M., Dolja, V. V., Dovas, C. I., Fuchs, M., Gugerli, P., Hu, J. S., Jelkmann, W., Katis, N. I., Maliogka, V. I., Melzer, M. J., Menzel, W., Minafra, A., Rott, M. E., Rowhani, A., Sabanadzovic, S., and Saldarelli, P. 2012. Taxonomic revision of the family Closteroviridae with special reference to the grapevine leafroll-associated members of the genus Ampelovirus and the putative species unassigned to the family. J. Plant Pathol. 94:7–19.
Martelli, G. P., Adams, M. J., Kreuze, J. F., and Dolja, V. V. 2007. Family Flexiviridae: a case study in virion and genome plasticity. Annu. Rev. Phytopathol. 45:73–100.
Martin, R. R., James, D., and Lévesque, C. A. 2000. Impacts of molecular diagnostic technologies on plant disease management. Annu. Rev. Phytopathol. 38:207–239.
Martinez, A., and Wallace, J. 1967. Citrus leaf mottle-yellows disease in the Philippines and transmission of the causal virus by a psyllid, Diaphorina citri. Plant Dis. Rep. 51:692–695.
Martinez, Y., Llauger, R., Batista, L., Luis, M., Iglesia, A., Collazo, C., Pena, I., Casin, J. C., Cueto, J., and Tablada, L. M. 2009. First repot of “Candidatus Liberibacter asiaticus” associated with Huanglongbing in Cuba. Plant Pathol. 58:389.
Matsumoto, T., Wang, M., and Su, H. J. 1961. Studies on likubin. Pages 121–125. In Proceedings of the 2nd Conference of the International Organization of Citrus Virologists.
McClean, A. P. D., and Oberholzer, P. C. J. 1965. Citrus psylla, a vector of the greening disease of sweet orange. S. Afr. J. Agric. Sci. 18:297–298.
McClean, A. P. D., and Schwarz, R. 1970. Greening or blotchy-mottle disease of citrus. Phytophylactica. 2:177–194.
Meena, R. P., and Baranwal, V. K. 2016. Development of multiplex polymerase chain reaction assay for simultaneous detection of clostero-, badna- and mandari-viruses along with huanglongbing bacterium in citrus trees. J. Virol. Methods 235:58–64.
Meneghini, M. 1946. The nature and transmission of the tristeza disease of citrus. Biologico. 12:285–287.
Mishra, M. D., Hammond, R. W., Owens, R. A., Smith, D. R., and Diener, T. O. 1991. Indian bunchy top disease of tomato plants is caused by a distinct strain of Citrus exocortis viroid. J. Gen. Virol. 72:1781–1785.
Miyakawa, T. 1980. Experimentally-induced symptoms and host range of citrus likubin (greening disease) in Taiwan, mycoplasma-like organisms, transmitted by Diaphorina citri. Ann. Phytopathol. Soc. Japan. 46:224–230.
Miyakawa, T. 1980. Occurrence and varietal distribution of tatter leaf-citrange stunt virus and its effects on Japanese citrus. Pages 220–224. In Proceedings of the 8th Conference of the International Organization Citrus Virologists.
Miyakawa, T., and Tsuno, K. 1989. Occurrence of citrus greening disease in the southern islands of Japan. Ann. Phytopathol. Soc. Jpn. 55:667–670.
Miyakawa, T., and Matsui, C. 1976. A bud-union abnormality of Satsuma mandarin on Poncirus trifoliate rootstock in Japan. Pages 125–131. In Proceedings of the 7th Conference of the International Organization Citrus Virologists.
Montecchio, L. 2013. A venturi effect can help cure our trees. J. Vis. Exp. 80:e51199.
Monzo, C., and Stansly, P. A. 2017. Economic injury levels for Asian citrus psyllid control in process oranges from mature trees with high incidence of huanglongbing. PLoS One. 12:e0175333.
Nageswara-Rao, M., Miyata, S. I., Ghosh, D., Irey, M., Garnsey, S. M., and Gowda, S. 2013. Development of rapid, sensitive and non-radioactive tissue-blot diagnostic method for the detection of citrus greening. Mol. Cell Probes. 27:176–183.
Niblett, C., Dickson, E., Horst, R., and Romaine, C. 1980. Additional hosts and an efficient purification procedure for four viroids. Phytopathology 70:610–615.
Nikolaeva, O. V., Karasev, A. V., Garnsey, S. M., and Lee, R. F. 1998. Serological differentiation of the Citrus tristeza virus isolates causing stem pitting in sweet orange. Plant Dis. 82:1276–1280.
Nolasco, G., De Blas, C., Torres, V., and Ponz, F. 1993. A method combining immunocapture and PCR amplification in a microtiter plate for the detection of plant viruses and subviral pathogens. J. Virol. Methods. 45:201–218.
Oberholzer, P. C. J., von Staden, D. F. A., and Basson, W. J. 1963. Greening disease of sweet orange in South Africa. Pages 213–219. In Proceedings of the 3rd Conference of the International Organization Citrus Virologists.
Okuda, M., Matsumoto, M., Tanaka, Y., Subandiyah, S., and Iwanami, T. 2005. Characterization of the tufB-secE-nusG-rplKAJL-rpoB gene cluster of the citrus greening organism and detection by loop-mediated isothermal amplification. Plant Dis. 89:705–711.
Okuda. M., Kawano, S., Murayama, Y., Iwanami, T. 2008. Conditions for loop-mediated isothermal amplification (LAMP) and a nonmacerating DNA extraction method to assay for huanglongbing (citrus greening) disease. Jpn. J. Phytopathol. 74:316–320.
Osman, F., Dang, T., Bodaghi, S., and Vidalakis, G. 2017. One-step multiplex RT-qPCR detects three citrus viroids from different genera in a wide range of hosts. J. Virol. Methods 245:40–52.
Osman, F., Hodzic, E., Kwon, S. J., Wang, J., and Vidalakis, G. 2015. Development and validation of a multiplex reverse transcription quantitative PCR (RT-qPCR) assay for the rapid detection of Citrus tristeza virus, Citrus psorosis virus, and Citrus leaf blotch virus. J. Virol. Methods 220:64–75.
Osterbauer, N. K., and French, D. W. 1992. Propiconazole as a treatment for oak wilt in Quercus rubra and Q. ellipsoidalis. J. Agric. Sci. Technol. A. 18:221–226.
Owens, R., and Hammond, R. 2009. Viroid pathogenicity: one process, many faces. Viruses 1:298–316.
Pallás, V., Sánchez-Navarro, J. A., and James, D. Recent advances on the multiplex molecular detection of plant viruses and viroids. Front. Microbiol. 9:2087.
Papayiannis, L. C. 2014. Diagnostic real-time RT-PCR for the simultaneous detection of Citrus exocortis viroid and Hop stunt viroid. J. Virol. Methods 196:93–99.
Pelz-Stelinski, K. S., Brlansky, R. H., Ebert, T. A., and Rogers, M. E. 2010. Transmission parameters for Candidatus Liberibacter asiaticus by Asian Citrus Psyllid (Hemiptera: Psyllidae). J. Econ. Entomol. 103:1531–1541.
Perry, T., Santamour, F., Stipes, R., Shear, T., and Shigo, A. 1991. Exploring alternatives to tree injection. J. Arboric. 17:217–226.
Reuther, W., Calavan, E. C., and Carman, G. E. 1978. The citrus industry. Exocortis Div. Agric. Sci. Div. 4:109–115.
Roach, W. A. 1939. Plant injection as a physiological method. Ann. Bot. 3:155–277.
Roistacher, C. N. 1988. Citrus tatter leaf virus: Further evidence for a single virus complex. Pages 353–359. In Proceedings of the 10th Conference of the International Organization Citrus Virologists.
Roistacher, C. N. 1991. Graft-transmissible diseases of citrus: handbook for detection and diagnosis. FAO. 286 pp.
Roistacher, C. N., and Calavan, E. C. 1974. Survival of exocortis virus on contaminated blades. Citrograph 59:250–252.
Roistacher, C. N., Calavan, E. C., and Blue, R. L. 1969. Citrus exocortis virus--chemical inactivation on tools, tolerance to heat and separation of isolates. Plant Dis. Rep. 53:333–336.
Roistacher, C. N., Calavan, E., Blue, R., Navarro, L., and Gonzales, R. 1977. New more sensitive citron indicator for detection of mild isolates of Citrus exocortis viroid (CEV). Plant Dis. Rep. 61:135–139.
Roy, A., Fayad, A., Barthe, G., and Brlansky, R. H. 2005. A multiplex polymerase chain reaction method for reliable, sensitive and simultaneous detection of multiple viruses in citrus trees. J. Virol. Methods 129:47–55.
Ruiz-Ruiz, S., Moreno, P., Guerri, J., and Ambrós, S. 2007. A real-time RT-PCR assay for detection and absolute quantitation of Citrus tristeza virus in different plant tissues. J. Virol. Methods 145:96–105.
Sánchez Zamora, M. A., and Fernández Escobar, R. 2000. Injector-Size and the Time of Application Affects Uptake of Tree Trunk-Injected Solutions. Sci. Hortic. 84:163–177.
Sano, T., Candresse, T., Hammond, R. W., Diener, T. O., and Owens, R. A. 1992. Identification of multiple structural domains regulating viroid pathogenicity. Proc. Natl. Acad. Sci. USA. 89:10104–10108.
Saponari, M., Loconsole, G., Liao, H. H., Jiang, B., Savino, V., and Yokomi, R. K. 2013. Validation of high-throughput real time polymerase chain reaction assays for simultaneous detection of invasive citrus pathogens. J. Virol. Methods 193:478–486.
Saponari, M., Manjunath, K., and Yokomi, R. K. 2008. Quantitative detection of Citrus tristeza virus in citrus and aphids by real-time reverse transcription-PCR (TaqMan®). J. Virol. Methods 147:43–53.
Schwarz, R. E., Knorr, L. C., and Prommintara, M. 1973. Presence of citrus greening and its psylla vector in Thailand. FAO Plant Prot. Bull. 21:132–138.
Schwarz, R. E., Moll, J. N. and van Vuuren, S. P. 1974. Control of citrus greening and its psylla vector by trunk injections of tetracycline and insecticides. Pages 26–29. In Proceedings of the 6th Conference of the International Organization of Citrus Virologists.
Schwarz, R. E., and van Vuuren, S. P. 1971. Decrease in fruit greening of sweet orange by trunk injection of tetracycline. Plant Dis. Rep. 55:747–750.
Semancik, J. S., and Weathers, L. G. 1965. Partial purification of mechanically transmissible virus associated with tatter leaf of citrus. Phytopathology 55:1354–1358.
Semancik, J. S., and Weathers, L. G. 1968. Exocortis virus of citrus: association of infectivity with nucleic acid preparation. Virology. 36:326–328.
Serra, P., Hashemian, S. M. B., Fagoaga, C., Romero, J., Ruiz-Ruiz, S., Gorris, M. T., Bertolini. E., and Duran-Vila, N. 2014. Virus-viroid interactions: Citrus tristeza virus enhances the accumulation of Citrus dwarfing viroid in Mexican lime via virus-encoded silencing suppressors. J. Virol. 88:1394–1397.
Shaffer, W. H., and Goodman, R. N. 1969. Effectiveness of an extended agri-mycin-17 spray schedule against fire blight. Plant Dis. Rep. 53:669–672
Škorić, D., Conerly, M., Szychowski, J. A., and Semancik, J. S. 2001. CEVd-induced symptom modification as a response to a host-specific temperature-sensitive reaction. Virology. 280:115–123.
Stennes, M. A., and French, D. W. 1987. Distribution and retention of thiabendazole hypophosphite and carbendazim phosphate injected into mature American elms. Phytopathology 77:707–712.
Stockwell, V. O., and Duffy, B. 2012. Use of antibiotics in plant agriculture. Rev. Sci. Tech. Off. Int. Epiz. 31:199–210.
Stockwell, V. O., Temple, T. N., Johnson, K. B., and Loper, J. E. 2008. Integrated control of fire blight with antagonists and oxytetracycline. Acta Hortic. 793:383–390.
Su, H. J. 2008a. Production and Cultivation of Virus-free Citrus Saplings for Citrus Rehabilitation in Taiwan; Asia-Pacific Consortium on Agricultural Biotechnology and Asia-Pacific Association of Agricultural Research Institutions: Bangkok, Thailand.
Su, H. J. 2008b. Research and health management of citrus Huanglongbing in Taiwan. In Proceedings of the International Research Conference on Huanglongbing, Orlando, Florida.
Su, H. J., and Chang, S. C. 1976. The responses of the likubin pathogen to antibiotics and heat therapy. Pages 22–26. In Proceedings of the 7th Conference of the International Organization of Citrus Virologists.
Su, H. J., and Cheon, J. U. 1984. Occurrence and distribution of tatter leaf-citrange stunt complex a Taiwanese citrus. Bull. Phytopathol. Entomol. 11:42–48.
Su, H. J., and Huang, A. L. 1990. The nature of likubin organism, life cycle, morphology and possible strains. Pages 106–110. In Proceedings of the Rehabilitation of Citrus Industry in the Asia Pacific Region.
Su, H. J., and Leu, S. C. 1972. Study on the pathogen complex causing likubin of citrus in Taiwan. I. Nature of mycoplasma-like organism associated with the disease. Proc. National Science Council No. 5 pp 109–126.
Su, H. J., and Tsai, M. C. 1990. Distribution and detection of Citrus tatter leaf virus by ELISA test with monoclonal antibodies. Pages 171–174. In Proceedings of the Asian Pacific International Conference on Citrus Rehabilitation.
Swingle, W. T. 1909. The Limitation of the Satsuma Orange to Trifoliate-orange Stock, by Walter T. Swingle. US Government Printing Office. 10 pp.
Tatineni, S., Afunian, M. R., Hilf, M. E., Gowda, S., Dawson, W. O., and Garnsey, S. M. 2009. Molecular characterization of Citrus tatter leaf virus historically associated with Meyer lemon tree: complete genome sequence and development of biologically active in vitro transcripts. Phytopathology. 99:423–431.
Tattar, T., and Tattar, S. 1999. Evidence for the downward movement of materials injected into trees. Arboric. Urban For. 25:325–332.
Teixeria, D. C., Saillard, C., Eveillard, S., Danet, L., Costa, P. I., Ayres, J., Bové, J. M. 2005. ‘Candidatus Liberibacter americanus’ associated with citrus huanglongbing (greening disease) in São Paulo State, Brazil. Int. J. Syst. Evol. Microbiol. 55:1857–1862.
Timmer, L. W., Garnsey, S. M., and Graham, J. H. 2000. Compendium of citrus diseases. APS. 92 pp.
Tirtawidjaja, S., Hadewidajaja, T., and Lasheen, A. 1965. Citrus vein phloem degeneration virus, a possible cause of citrus chlorosis in Java. Pages 235–243. In Proceedings of the American Society for Horticultural Science.
Tomimura, K., Miyata, S., Furuya, N., Kubota, K., Okuda, M., Subandiyah, S., Hung, T. H., Su, H. J., and Iwanami T. 2009. Evaluation of genetic diversity of ‘Candidatus Liberibacter asiaticus’ isolates collected in Southeast Asia. Phytopathology. 99:1062–1069.
Tsai, C. H., Hung. T. H., and Su, H. J. 2008. Strain identification and distribution of citrus Huanglongbing bacteria in Taiwan. Bot. Stud. 49:49–56.
Tsai, J. J., Liu, W. L., Lin, P. C., Huang, B. Y., Tsai, C. Y., Chou, P. H., Lee, F. C., Ping, C. F., Lee, P. Y. A., Liu, L. T., and Chen, C. H. 2019. An RT-PCR panel for rapid serotyping of dengue virus serotypes 1 to 4 in human serum and mosquito on a field-deployable PCR system. PLoS One. 14:e0214328.
Tsai, M. C., and Su, H. J. 1991. Development and characterization of monoclonal antibodies to citrus tristeza virus (CTV) strains in Taiwan. Pages 46–50. In Proceedings of the 11th Conference of the International Organization of Citrus Virologists.
Tsai, Y. L., Lin, Y. C., Chou, P. H., Teng, P. H., and Lee, P. Y. 2012a. Detection of white spot syndrome virus by polymerase chain reaction performed under insulated isothermal conditions. J. Virol. Methods. 181:134–137.
Tsai, Y. L., Wang, H. T., Chang, H. F., Tsai, C. F., Lin, C. K., Teng, P. H., Su, C., Jeng, C. C., and Lee, P. Y. 2012b. Development of TaqMan probe-based insulated isothermal PCR (iiPCR) for sensitive and specific on-site pathogen detection. PLoS One. 7:e45278.
Tuo, D., Shen, W., Yang, Y., Yan, P., Li, X., and Zhou, P. 2014. Development and validation of a multiplex reverse transcription PCR assay for simultaneous detection of three papaya virus. Viruses. 6:3893–3906.
Ukuda-Hosokawa, R., Sadoyama, Y., Kishaba, M., Kuriwada, T., Anbutsu, H., and Fukatsu, T. 2015. Infection density dynamics of the citrus greening bacterium “Candidatus Liberibacter asiaticus” in field populations of the psyllid Diaphorina citri and its relevance to the efficiency of pathogen transmission to citrus plants. Appl. Environ. Microbiol. 81:3728–3736.
van Vuuren, S. P. 1977. The determination of optimal concentration and pH of tetracycline hydrochloride for trunk injection of greening-infected citrus trees. Phytophylactica 9:77–81.
Vernière, C., Perrier, X., Dubois, C., Dubois, A., Botella, L., Chabrier, C., Bové, J. M., and Duran-Vila, N. 2004. Citrus viroids: symptom expression and effect on vegetative growth and yield of clementine trees grafted on trifoliate orange. Plant Dis. 88:1189–1197.
Vernière, C., Perrier, X., Dubois, C., Dubois, A., Botella, L., Chabrier, C., Bové, J. M., and Duran-Vila, N. 2006. Interactions between citrus viroids affect symptom expression and field performance of clementine trees grafted on trifoliate orange. Phytopathology. 96:356–368.
Wallace, J. M., and Drake, R. J. 1962. Tatter-leaf, a previously undescribed virus effect on citrus. Plant Dis. Rept. 46:211–212.
Wei, T., Lu, G., and Clover, G. 2008. Novel approaches to mitigate primer interaction and eliminate inhibitors in multiplex PCR, demonstrated using an assay for detection of three strawberry viruses. J. Virol. Methods 151:132–139.
Wintermantel, W. M., Gilbertson R. L., McCreight, J. D., and Natwick, E. T. 2016. Host-specific relationship between virus titer and whitefly transmission of Cucurbit yellow stunting disorder virus. Plant Dis. 100:92–98.
Wise, J. C., VanWoerkom, A. H., Acimovic, S. G., Sundin, G. W., Cregg, B. M., and Vandervoort, C. V. 2014. Trunk injection: A discriminating delivering system for horticulture crop IPM. Entomol. Ornithol. Herpetol. Curr. Res. 3:1.
Yarwood, C. E. 1963. Mechanical transmission of a latent lemon virus. Phytopathology. 53:1145.
Yoshida, T. 1996. Graft compatibility of Citrus with plants in the Aurantioideae and their susceptibility to Citrus tristeza virus. Plant Dis. 80:414–417.
Yuan, Q., Jordan, R., Brlansky, R. H., Minenkova, O., and Hartung, J. 2016. Development of single chain variable fragment (scFv) antibodies against surface proteins of ‘Ca. Liberibacter asiaticus’. J. Microbiol. Methods. 122:1–7.
Zhang, T. M., Liang, X. Y., and Roistacher, C. N. Occurrence and detection of citrus tatter leaf virus (CTLV) in Huangyan, Zhejiang Province, China. Plant Dis. 72:543–545.
Zhao, X. Y. 1982. Citrus yellow shoot disease (Huanglongbing) in China-a review. Pages 466–469. In Proceedings of the International Society of Citriculture. Tokyo, Japan.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89968-
dc.description.abstract柑橘是台灣最重要的果樹之一,不僅種植面積廣,栽種品種亦繁多,但栽種柑橘時所伴隨的病害也是相當複雜,其中以柑橘黃龍病之危害最為嚴重,植株受感染後會影響其樹勢、生育,導致植株壽命減短、產量下降。目前柑橘黃龍病並無有效的防治方法,僅能透過健康種苗制度、拔除田間病株及防治媒介昆蟲來杜絕病害的擴散。台灣柑橘產業受柑橘黃龍病危害已超過70年,在前人的努力下已建立起相關的病害管理方法,但在執行時仍會遭遇部分問題,使得防治效果有所打折。有鑑於此,本論文將主要由目前防治黃龍病所面臨的三項困難出發,針對柑橘黃龍病的檢測與治療技術改進。柑橘系統性病害包含柑橘黃龍病 (Candidatus Liberibacter asiaticus=CLas造成)、柑橘萎縮病 (citrus tristeza virus=CTV造成)、柑橘破葉病 (citrus tatter leaf virus=CTLV造成) 與柑橘鱗砧病 (citrus exocortis viroid=CEVd造成) 是台灣柑橘產業的重要威脅。可靠的診斷方法對於系統性病害之病害管理十分重要。本論文開發出可同時偵測此四種病原之多合一反轉錄聚合酶連鎖反應 (multiplex reverse transcription-polymerase chain reaction,multiplex RT-PCR),經最佳化反應條件後,可順利產生對各病原之專一增幅產物 (對CLas之295-bp,對CTV之468-bp,對CTLV之120-bp與對CEVd之196-bp)。靈敏度評估顯示此multiplex RT-PCR可偵測到相當低之病原量。與先前發表之單一 (反轉錄) 聚合酶連鎖反應相比,本次開發之multiplex RT-PCR對於田間樣品展示出更佳的檢測表現,田間調查顯示此四種系統性病原普遍存在於田間,且其中有約三成之田間樣品受到複合感染。本論文是台灣首次調查此四種重要柑橘系統性病害之發生情形,調查結果有助於改善目前柑橘病害管理。因此,此multiplex RT-PCR可應用於定期之病害調查與生產柑橘健康種苗。由於柑橘黃龍病菌在寄主體內具有菌量少且分布不均之特性,因此常靠實驗室操作之方法進行檢測,並無可於田間執行的精準檢測方法,使得開始啟動防治措施的時機不夠即時。因此,本研究旨在開發出一利用TaqMan探針之隔絕式恆溫聚合酶連鎖反應 (insulated isothermal polymerase chain reaction,iiPCR) 之快速且對使用者友善的柑橘黃龍病現地檢測系統 (on-site detection system)。透過簡單DNA萃取方法搭配可攜式POCKIT裝置,此現地檢測系統可於一小時內完成檢測。POCKIT裝置可執行PCR反應並且根據螢光訊號自動生成出定性結果。此TaqMan探針之iiPCR可偵測到單一copy之柑橘黃龍病菌,其靈敏度相當於即時定量PCR (real-time PCR)。後續之田間樣品測試顯示兩者之檢測結果完全一致,且該現地檢測系統在檢測柑橘黃龍病菌上也有良好表現。總結來說,本次開發出之現地檢測系統具有高專一性和靈敏度,將成為簡易、快速且有力之柑橘黃龍病田間診斷工具。自1976年在台灣嘗試以抗生素 (achromycin) 注射治療柑橘黃龍病以來,此方法雖有降低柑橘黃龍病嚴重度之效果,但抑制效果維持不長,因此需每年注射,使得農民因考量經濟成本而望之卻步。本研究按照蔡 (2007) 建立之操作方法,嘗試使用市面上農民可購得之抗生素—保美黴素 (鏈土黴素) 灌注於田間之柳橙與30年以上之雜柚植株,灌注鏈土黴素後之受感染柳橙與雜柚植株,其柑橘黃龍病發病狀況相比於對照組 (只有灌注水) 均有明顯下降。本研究進一步使用real-time PCR追蹤植株體內的CLas菌量,結果顯示植株內的CLas在灌注處理後也呈現大幅度減少 (在雜柚上CLas菌量最多下降1000倍,在柳橙上的CLas菌量下降可達10000倍),可呼應上述病徵嚴重度下降之情況。此外,藉由分析收穫之雜柚果實可發現灌注處理後可減輕柑橘黃龍病對於果實之影響,增加果實品質。綜合而言,高壓灌注鏈土黴素對柑橘黃龍病有著良好之治療效果。zh_TW
dc.description.abstractCitrus is one of the most important crops in Taiwan with the widest planting areas and the most production. After first found citrus Huanglongbing (HLB) in 1951, this disease severely affected the citrus industry in Taiwan. Some strategies including healthy citrus seedling certification, controlling insect vectors, and removing diseased plants are established for HLB management. However, the control effect isn’t identical to expectation. Therefore, the major goal of this study was to increase the control effectiveness (or extend the control effective period). The citrus systemic diseases including citrus Huanglongbing (caused by Candidatus Liberibacter asiaticus, CLas), citrus tristeza (caused by citrus tristeza virus, CTV), citrus tatter leaf (caused by citrus tatter leaf virus, CTLV) and citrus exocortis (caused by citrus exocortis viroid, CEVd) are the threats to citrus production in Taiwan. Reliable diagnostic methods are important for the management of these systemic diseases. In this study, we developed a multiplex reverse transcription-polymerase chain reaction (RT-PCR) assay to detect four pathogens simultaneously. Herein, the specific amplicons from each pathogen (295-bp for CLas, 468-bp for CTV, 120-bp for CTLV, and 196-bp for CEVd) were successfully produced by the optimized multiplex RT-PCR described here. The sensitivities evaluation showed that low titers of pathogens could be detected by this multiplex RT-PCR. Compared with published simplex (RT-) PCR, the detection of field samples by the multiplex RT-PCR developed in this study showed a better performance. The detections by multiplex RT-PCR revealed that these 4 citrus systemic pathogens were commonly found in fields and about 30% of field samples were mix-infected. To our knowledge, this is the first study of a survey of the 4 important citrus systemic diseases in Taiwan and it gives information for improving the disease management. Therefore, the multiplex RT-PCR assay provides a useful method for the routine diseases survey and the production of pathogen-free citrus plants. Due to the low amount of CLas and uneven distribution in plant hosts, the detection of CLas is mainly by PCR-based methods. There is no reliable method for HLB diagnosis in the field. This study was aimed to develop a rapid and user-friendly on-site detection system for CLas using the TaqMan probe-based insulated isothermal polymerase chain reaction (iiPCR) assay. The CLas-specific on-site detection system could be completed within one hour by simple DNA extraction coupled with a portable POCKIT device, which can perform PCR amplification and automatically provide qualitative results derived from fluorescence signals. The sensitivity of the TaqMan probe-iiPCR assay could be as low as single copy of CLas, comparable to a real-time PCR method. Further testing of the field citrus samples showed 100% agreement between the TaqMan probe-iiPCR assay and the real-time PCR method, and the on-site detection system also demonstrated a great performance of CLas detection. With high specificity and sensitivity, the on-site detection system developed in this study becomes a simple, rapid and powerful tool for detecting CLas in fields. The antibiotic (achromycin) injection for curing the HLB was first conducted in Taiwan in 1976. The severity of HLB could be reduced by this method; however, the inhibition period was short (only for 1 year). Therefore, for maintaining the curing efficacy, continuous injections of antibiotics were needed. In this study, the curing efficacy of a commercial antibiotic (streptomycin + oxytetracycline) was tested in Liucheng sweet orange and hybrid pomelo trees in fields. After pressure transfusion, the HLB severities of treated trees (both in Liucheng sweet orange and hybrid pomelo) were reduced. The CLas titers in tested trees were also monitored by real-time PCR. The quantification results showed that the amount of CLas was 1000-fold decreased in treated hybrid pomelo and 10000-fold decreased in treated Liucheng sweet orange. In addition, the quality analysis of tested hybrid pomelo fruits demonstrated that the fruit quality (including fruit weight and brix) of treated trees was increased. In summary, the pressure transfusion of streptomycin + oxytetracycline shows a great therapy effect on HLB-affected trees.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:52:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T16:52:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 ii
誌謝 iii
中文摘要 iv
Abstract vi
目錄 ix
表目錄 xiii
圖目錄 xiv
第一章 研究背景 1
一、前言 2
二、柑橘黃龍病 3
三、柑橘萎縮病 5
四、柑橘破葉病 6
五、柑橘鱗砧病 7
六、柑橘系統性病害之診斷檢測方法 8
七、柑橘系統性病害之防治 9
八、柑橘健康種苗制度 9
九、研究目的 10
第二章 柑橘系統性病害之多合一檢測方法開發 12
一、前言 13
二、材料與方法 15
2.1. 試驗植物材料與病原來源 15
2.2. 總核酸萃取 16
2.3. 引子設計 16
2.4. 反轉錄聚合酶連鎖反應 17
2.5. 增幅產物之選殖 17
三、結果 18
3.1. 開發與優化多合一RT-PCR反應 18
3.2 靈敏度測試 18
3.3 田間樣品檢測 19
3.4 柑橘種苗檢測 19
四、討論 20
第三章 柑橘黃龍病之田間檢測方法開發 41
一、前言 42
二、材料與方法 43
2.1. 實驗植物材料之準備 43
2.2. 傳統DNA萃取 44
2.3. 簡易DNA萃取 44
2.4. 柑橘黃龍病菌之TaqMan probe-iiPCR檢測 45
2.5. 柑橘黃龍病之Real-time PCR檢測 45
2.6. 分析專一性 (analytical specificity) 測試 46
2.7. 分析靈敏度 (analytical sensitivity) 測試 46
2.8. 田間樣品偵測 46
三、結果 47
3.1 優化柑橘黃龍病菌之TaqMan probe-iiPCR檢測 47
3.2 分析專一性 (analytical specificity) 之評估 47
3.3 分析靈敏度 (analytical sensitivity) 之評估 47
3.4 簡易DNA萃取法之優化 48
3.5 柑橘黃龍病田間偵測系統之田間樣品檢測 48
四、討論 49
第四章 柑橘黃龍病之化學治療方法改良 61
一、前言 62
二、材料與方法 63
2.1 試驗植物 63
2.2 病徵分級 64
2.3 總核酸萃取 64
2.4 即時定量PCR (real-time PCR) 測定 65
2.5 試驗方法 65
2.5.1 抗生素配方 65
2.5.2 枝條浸泡法 66
2.5.3 壓力灌注法 66
三、結果 67
3.1 溫室試驗 67
3.2 田間試驗 67
3.2.1 灌注鏈土黴素之抑制效果 67
3.2.2 果實品質分析 68
3.2.3 藥害調查 69
四、討論 69
第五章 結語 83
參考文獻 86
-
dc.language.isozh_TW-
dc.title柑橘黃龍病之診斷、防治技術改進與新技術開發zh_TW
dc.titleDevelopment and Improvement of the Detection and Control of Citrus Huanglongbingen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee陳煜焜;林乃君;張立;蔡佳欣zh_TW
dc.contributor.oralexamcommitteeYuh-Kun Chen;Nai-Chun Lin;Li Chang;Chia-Hsin Tsaien
dc.subject.keyword柑橘,柑橘黃龍病,多合一反轉錄聚合酶連鎖反應,隔絕式恆溫聚合酶連鎖反應,抗生素灌注,zh_TW
dc.subject.keywordCitrus,citrus Huanglongbing,multiplex RT-PCR,insulated isothermal PCR,antibiotic transfusion,en
dc.relation.page117-
dc.identifier.doi10.6342/NTU202304141-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-13-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept植物病理與微生物學系-
dc.date.embargo-lift2028-08-11-
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
3.76 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved