請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89954
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉雅瑄 | zh_TW |
dc.contributor.advisor | Sofia Ya-Hsuan Liou | en |
dc.contributor.author | 陳平晏 | zh_TW |
dc.contributor.author | Ping-Yen Chen | en |
dc.date.accessioned | 2023-09-22T16:49:16Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-22 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-09 | - |
dc.identifier.citation | Adams, S., Titus, R., Pietersen, K., Tredoux, G., & Harris, C. (2001). Hydrochemical characteristics of aquifers near Sutherland in the Western Karoo, South Africa. Journal of Hydrology, 241(1), 91-103.
Ahmed, M. A., Abdel Samie, S. G., & Badawy, H. A. (2013). Factors controlling mechanisms of groundwater salinization and hydrogeochemical processes in the Quaternary aquifer of the Eastern Nile Delta, Egypt. Environmental Earth Sciences, 68(2), 369-394. Anderson, T. W. (2003). An introduction to multivariate statistical analysis. John Wiley. Hoboken, New Jersey. Appelo, C. A. J., & Postma, D. (2004). Geochemistry, groundwater and pollution. CRC press, U.S.A. Bear, J., Cheng, A. H. D., Sorek, S., Ouazar, D., & Herrera, I. (Eds.). (1999). Seawater intrusion in coastal aquifers: concepts, methods and practices (Vol. 14). Springer Science & Business Media. Berry, F. A. (1973). High fluid potentials in California Coast Ranges and their tectonic significance. AAPG Bulletin, 57(7), 1219-1249. Chen, C. S. (1999). TEM Investigations of Aquifers in the Southwest Coast of Taiwan. Groundwater, 37(6), 890-896. Clark, I. D. (2015), Groundwater Geochemistry and Isotopes, CRC Press, Boca Raton, FL, USA. Duce, R. A., & Hoffman, E. J. (1976). Chemical fractionation at the air/sea interface. Annual review of earth and planetary sciences, 4(1), 187-228. Edmunds, W., Guendouz, A., Mamou, A., Moulla, A., Shand, P., Zouari, K. (2003). Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators. Applied Geochemistry 18, 805-822. Eriksson, E. (1952). Composition of atmospheric precipitation II. Sulfur, chloride, iodine compounds, Bibliography. Tellus, 4, 280-303. Esri (2023). How inverse distance weighted interpolation works. Resources for ArcMap. Retrieved from: https://desktop.arcgis.com/en/arcmap/10.6/extensions/geostatistical-analyst/how-inverse-distance-weighted-interpolation-works.htm (Aug. 7, 2023) Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Prentice-Hall. Inc. Englewood Cliffs, New Jersey. Giménez-Forcada, E. (2010). Dynamic of Sea Water Interface using Hydrochemical Facies Evolution Diagram. Groundwater, 48(2), 212–216. Goldberg, E. D., Broecker, W. S., Gross, M. G., and Turekian, K. K. (1971). Marine chemistry, in Radioactivity in the marine environment. National Academy of Sciences, Washington, D.C., 137-146. Hanshaw, B. B., & Hill, G. A. (1969). Geochemistry and hydrodynamics of the Paradox basin region, Utah, Colorado and New Mexico. Chemical Geology, 4(1-2), 263-294. Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water, 3rd ed. U.S. Geol. Survey Water Supply Paper 2254. Jakeman, A. J., Barreteau, O., Hunt, R. J., Rinaudo, J. D., & Ross, A. (2016). Integrated Groundwater Management: Concepts, Approaches and Challenges. Springer International Publishing. Switzerland. Kaushal, S. S., Groffman, P. M., Likens, G. E., Belt, K. T., Stack, W. P., Kelly, V. R., Band, L. E., & Fisher, G. T. (2005). Increased salinization of fresh water in the northeastern United States. Proceedings of the National Academy of Sciences, 102(38), 13517-13520. Kim, J. H., Kim, K. H., Thao, N. T., Batsaikhan, B., & Yun, S. T. (2017). Hydrochemical assessment of freshening saline groundwater using multiple end-members mixing modeling: A study of Red River delta aquifer, Vietnam. Journal of Hydrology, 549, 703-714. Kharaka, Y. K., & Berry, F. A. (1973). Simultaneous flow of water and solutes through geological membranes—I. Experimental investigation. Geochimica et Cosmochimica Acta, 37(12), 2577-2603. Lee, J. Y., & Song, S. H. (2007). Evaluation of groundwater quality in coastal areas: Implications for sustainable agriculture. Environmental Geology, 52(7), 1231–1242. Liu, C. W., Lin, K. H., Chen, S. Z., & Jang, C. S. (2003a). Aquifer Salinization in the Yun‐Lin Coastal Area, Taiwan. Journal of the American Water Resources Association, 39(4), 817-827. Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003b). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of the Total Environment, 313(1-3), 77-89. Marconi, V., Antonellini, M., Balugani, E., & Dinelli, E. (2011). Hydrogeochemical characterization of small coastal wetlands and forests in the Southern Po plain (Northern Italy). Ecohydrology, 4(4), 597–607. Mastrocicco, M., Gervasio, M. P., Busico, G., & Colombani, N. (2021). Natural and anthropogenic factors driving groundwater resources salinization for agriculture use in the Campania plains (Southern Italy). Science of the Total Environment, 758, 144033. McCleskey, R. B., Nordstrom, D. K., Ryan, J. N., & Ball, J. W. (2012). A new method of calculating electrical conductivity with applications to natural waters. Geochimica et Cosmochimica Acta, 77, 369-382. McKelvey, J. G., & Milne, I. H. (1962). The flow of salt solutions through compacted clay. Clays and clay minerals, 9, 248-259. Mirzavand, M., Ghasemieh, H., Sadatinejad, S.J., Bagheri, R. (2020). An overview on source, mechanism and investigation approaches in groundwater salinization studies. International Journal of Environmental Science and Technology, 17, 2463-2476. Mollema, P. N., Antonellini, M., Dinelli, E., Gabbianelli, G., Greggio, N., & Stuyfzand, P. J. (2013). Hydrochemical and physical processes influencing salinization and freshening in Mediterranean low-lying coastal environments. Applied Geochemistry, 34, 207-221. Pai, S. C., Su, Y. T., Lu, M. C., Chou, Y., & Ho, T. Y. (2021). Determination of nitrate in natural waters by vanadium reduction and the griess assay: reassessment and optimization. ACS ES&T Water, 1(6), 1524-1532. Pai, S. C., Tsau, Y. J., & Yang, T. I. (2001). pH and buffering capacity problems involved in the determination of ammonia in saline water using the indophenol blue spectrophotometric method. Analytica Chimica Acta, 434(2), 209-216. Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water‐analyses. Eos, Transactions American Geophysical Union, 25(6), 914-928. Richter, B. C., Kreitler, C. W. (1993). Geochemical techniques for identifying sources of ground-water salinization. CRC Press, Boca Raton. Riley, J.P. & G. Skirrow (Eds) 1975. Chemical oceanography. Acad. Press, London & New York. Rivera-Hernández, J. R., Green-Ruiz, C., Pelling-Salazar, L., & Trejo-Alduenda, A. (2017). Hydrochemistry of the Mocorito river coastal aquifer, Sinaloa, Mexico: water quality assessment for human consumption and agriculture suitability. Hidrobiológica, 27(1), 103-113. Sarker, Md. M. R., Van Camp, M., Islam, M., Ahmed, N., & Walraevens, K. (2018). Hydrochemistry in coastal aquifer of southwest Bangladesh: Origin of salinity. Environmental Earth Sciences, 77(2), 39. Sathish, S., & Elango, L. (2016). An integrated study on the characterization of freshwater lens in a coastal aquifer of Southern India. Arabian Journal of Geosciences, 9(14), 643. Shiklomanov, I. A. (1993). World freshwater resources. In Gleick P. H. (Edt.) Water in crisis: A guide to the world’s freshwater resources. Oxford University Press, New York. 13-24. Stumm, W & Morgan, J. J. (1996). Aquatic Chemistry 3rd ed. John Wiley & Sons, New York. Stuyfzand, P. J. (1986, May). A new hydrochemical classification of water types: principles and application to the coastal dunes aquifer system of the Netherlands. Paper presented at the 9th Salt Water Intrusion Meeting, Delft. 12-16. Stuyfzand, P. J. (2008, June). Base Exchange Indices as Indicators of Salinization or Freshening of (Coastal) Aquifers. Paper presented at the 20th Salt Water Intrusion Meeting, Naples, Florida, USA. 262-265. Thurman, E. M., Barber Jr, L. B., & LeBlanc, D. (1986). Movement and fate of detergents in groundwater: a field study. Journal of contaminant hydrology, 1(1-2), 143-161. Todd, D. K. (1959). Groundwater hydrology. Wiley and Sons, New York. Vandenbohede, A., & Lebbe, L. (2012). Groundwater chemistry patterns in the phreatic aquifer of the central Belgian coastal plain. Applied Geochemistry, 27(1), 22–36. Vengosh, A., Heumann, K. G., Juraske, S., & Kasher, R. (1994). Boron isotope application for tracing sources of contamination in groundwater. Environmental Science & Technology, 28(11), 1968-1974. Vengosh, A., & Keren, R. (1996). Chemical modifications of groundwater contaminated by recharge of treated sewage effluent. Journal of Contaminant Hydrology, 23(4), 347-360. Van Weert, F., Van der Gun, J., & Reckman, J. (2009). Global overview of saline groundwater occurrence and genesis. International Groundwater Resources Assessment Centre. Vengosh, A., Gill, J., Lee Davisson, M., Bryant Hudson, G. (2002). A multi‐isotope (B, Sr, O, H, and C) and age dating (3H–3He and 14C) study of groundwater from Salinas Valley, California: Hydrochemistry, dynamics, and contamination processes. Water Resources Research, 38, 9-1-9-17. Wang, C. H., Kuo, C. H., Peng, T. R., Chen, W. F., Liu, T. K., & Chiang, C. J. (2003). Isotope characteristics of groundwaters in the Pingtung Plain, southern Taiwan. Western Pacific Earth Sciences, 3, 1-8. Wen, Y., Qiu, J., Cheng, S., Xu, C., & Gao, X. (2020). Hydrochemical evolution mechanisms of shallow groundwater and its quality assessment in the estuarine coastal zone: A case study of Qidong, China. International Journal of Environmental Research and Public Health, 17(10), 3382. Yechieli, Y., & Wood, W. W. (2002). Hydrogeologic processes in saline systems playas, sabkhas, and saline lakes. Earth-Science Reviews, 58(3-4), 343-365. 中央氣象局 (2023)。宜梧氣象站逐日降水量。觀測資料查詢CODiS。檢自:https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp (Jan. 14, 2023) 內政部國土測繪中心 (2022a)。109-110年國土利用現況調查成果縣市統計資料(108年版土地利用分級分類系統表,1級分類)。檢自https://data.gov.tw/dataset/158975 (Apr. 24, 2023) 內政部國土測繪中心 (2022b)。109-110年國土利用現況調查成果鄉鎮市區統計資料(108年版土地利用分級分類系統表,3級分類)。檢自https://data.gov.tw/dataset/158973 (Apr. 24, 2023) 行政院主計總處 (2017a)。104年農林漁牧業普查報告:彰化縣報告。 行政院主計總處 (2017b)。104年農林漁牧業普查報告:南投縣報告。 行政院主計總處 (2017c)。104年農林漁牧業普查報告:雲林縣報告。 行政院環境保護署環境檢驗所 (1999)。水溫檢測方法 (NIEA W217.51A)。環署檢字第44692號公告。 行政院環境保護署環境檢驗所 (2000)。水中導電度測定方法-導電度計法 (NIEA W203.51B)。環署檢字第70017號公告。 行政院環境保護署環境檢驗所 (2003)。水中鹼度檢測方法-滴定法 (NIEA W449.00B)。環署檢字第0920085112號公告。 行政院環境保護署環境檢驗所 (2012)。水中溶氧檢測方法-電極法 (NIEA W455.52C)。環署檢字第1010000416號公告。 行政院環境保護署環境檢驗所 (2013)。感應耦合電漿原子發射光譜法 (NIEA M104.02C)。環署檢字第1020104884號公告。 行政院環境保護署環境檢驗所 (2018)。水中陰離子檢測方法-離子層析法 (NIEA W415.54B)。環署授檢字第1070006755號公告。 行政院環境保護署環境檢驗所 (2019)。水之氫離子濃度指數 (pH 值) 測定方法-電極法 (NIEA W424.53A)。環署授檢字第1080000393號公告。 行政院環境保護署環境檢驗所 (2021)。監測井地下水採樣方法 (NIEA W103.56B)。環署授檢字第1091007293號公告。 行政院環境保護署 (2023)。區域性地下水水質監測資料。環保署環境資訊開放平台。檢自:https://data.epa.gov.tw/dataset/detail/WQX_P_02 (Apr. 12, 2023) 江崇榮 (2000)。屏東平原地下水之海水入侵。經濟部中央地質調查所彙刊,第13號,第25-50頁。 江崇榮、賴典章、賴慈華、黃智昭、費立沅、侯進雄、陳瑞娥、陳利貞、呂學諭、周素卿、鄂忠信、黃明昌、陸挽中、張閔翔、劉幸樺與李耀文 (1999)。濁水溪沖積扇水文地質調查研究總報告。新北市:經濟部中央地質調查所。 何麗如 (1989)。北港地區地下水之地球化學初探。碩士論文,國立中山大學海洋地質研究所。 吳雪蘋 (2000)。濁水溪沖積扇地區地下水位變化之研究。碩士論文,國立臺灣大學地質學研究所。 吳銘志、宋長虹、張致碩 (2006)。臺灣地區地下水文圖圖集繪製工作 (4/4)。臺北市:經濟部。 李俊儀 (2021)。投資雲林:雲林縣產業發展現況與展望。檢自https://www.seftb.org/cp-1019-1425-23012-1.html (Apr. 24, 2023) 投資臺灣事務所 (2022)。彰化縣投資環境。檢自https://investtaiwan.nat.gov.tw/showInvestInfoPage?lang=cht&IIFCity=7# (Apr. 24, 2023) 林君怡、葉明生、張良正、田巧玲與江崇榮 (1996)。濁水溪沖積扇地下水觀測站網評估。濁水溪沖積扇地下水及水文地質研討會,第223-226頁。 林朝棨 (1957)。台灣地形。台灣省文獻會,共423頁。 林鼎竣、張竝瑜、嚴精明、韓怡娜、尤納坦、林格瑞、曾俊儒與謝孟勳 (2021)。電與電磁地球物理調查方法協助地下水資源調查之應用。土木水利,第48卷,第6期,第75-83頁。 姚建功 (1984)。雲林地區地下水海水入侵及水質擴散數學模式之研究。碩士論文,國立臺灣大學農業工程學研究所。 張介翰 (2006)。應用多變量統計方法探討區域地下水之水質特徵。碩士論文,國立臺灣大學生物環境系統工程學研究所。 陸挽中、陳瑞娥、賴慈華與王詠絢 (2021)。嘉南平原水文地質架構分析。經濟部中央地質調查所特刊,第36號,第157-195頁。 陳文福 (2005)。台灣的地下水。臺北縣:遠足文化事業股份有限公司。 陳文福、郭繁元、秦啟文 (2001)。雲林沿海地下水主要含水層鹽化之監測。經濟部中央地調所彙刊,第14號,第103-121頁。 陳可恭 (2002)。二維地電阻率影像剖面法在地下水測勘上之應用與分析-以海岸沙丘下淡/鹹水界面測繪為例。宜蘭技術學報,第9期,第147-158頁。 陳利貞、江崇榮 (1999)。濁水溪沖積扇之總溶解固體值分布圖。經濟部中央地質調查所年報,第86-87頁。 陳京台 (1981)。雲林地區地下水數學模式之模擬與應用。碩士論文,國立臺灣大學農業工程學研究所。 陳享宗、劉振宇 (1998)。雲林沿海地區地下水鹽化問題之探討。農業工程學報,第44卷,第1期。第25-33頁。 雲林縣政府 (2022)。5A++ 2030新農業 雲林縣政府農業政策白皮書。雲林縣政府。 雲林縣環境保護局 (2021)。109年雲林縣畜牧糞尿資源化利用推動暨評估計畫。雲林縣:環境保護局。 黃智昭、陸挽中與張敏翔 (2015)。濁水溪沖積扇地下水補注地質敏感區之劃定。經濟部中央地質調查所彙刊,第28號,第55-91頁。 經濟部中央地質調查所 (1986)。臺灣地質圖,比例尺五十萬之一。新北市:經濟部中央地質調查所。 經濟部中央地質調查所 (2014a)。地下水補注地質敏感區劃定計畫書 G0001 濁水溪沖積扇。臺北市:經濟部。 經濟部水利署 (2007)。96年度台灣地區地下水質檢測分析與評估計畫期末報告。臺北市:經濟部。 經濟部水利署 (2009)。97年度台灣地區地下水質檢測分析與評估。臺北市:經濟部。 經濟部水利署 (2010)。99年度地下水水質檢測分析與評估。臺北市:經濟部。 經濟部水利署 (2019)。108年度地下水水質檢測分析與評估。臺北市:經濟部。 經濟部水利署 (2020)。109年度地下水水質檢測分析與評估。臺北市:經濟部。 經濟部水利署 (2023)。金湖站地下水位歷線。經濟部水利署水利資訊網整合服務系統。檢自:https://gweb.wra.gov.tw/Hydroinfo/?id=Index (Jul. 10, 2023) 劉乃綺 (1988)。北港地區地下水水質變化之研究。師大地理研究報告,第14期,第235-278頁。 劉聰桂、譚嘉忠、田巧玲、蘇瑞榮、張炎銘與盧瑞興 (1999)。台灣屏東平原沿海地區地下鹹水楔成因探討。第三屆地下水資源及水質保護研討會論文集,第121-131頁。 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89954 | - |
dc.description.abstract | 濁水溪沖積扇是臺灣地下水資源最豐沛的地區,然而,隨著產業發展,地下水超抽情況逐年惡化,也導致後續出現地層下陷、海水倒灌、地下水鹽化等自然災害。其中地下水鹽化因範圍廣大、整治不易,更容易導致長期的用水問題。目前對於此區的鹽化程度及範圍已有諸多研究成果,但關於未來鹽化趨勢卻少有討論。此外,過去多以單次或一年一次之採樣結果進行分析,容易忽略季節對地下水鹽化的影響。因此本研究統整歷史地下水數據,採樣分析豐枯水期之水質,試圖以水化學的角度,了解濁水溪沖積扇的地下水鹽化分布、來源、機制、季節性變化與未來趨勢。
研究成果顯示地下水鹽化集中在沿海第一與第二含水層,其鹽化特徵包括高導電度、高氯鹽鹼度當量濃度比值以及Na-Cl型之水化學相。主要離子與氯鹽之關係圖中,多數資料點落在淡海水理論混合線附近,代表鹽化來源自海水,且由海水的比例決定其鹽化程度。鹽化機制方面,鹽化程度與井位離海距離關係不大,加上沿海表層缺乏泥層覆蓋,推測地表鹽分入滲是造成第一含水層鹽化最主要的機制,而第二含水層的鹽化則可能是鹽分沿深井井管入滲所造成。 現地採樣分析結果顯示,雖然鹽化程度並無季節上的差異,但BEX指示部分地區豐枯水期間有鹽化/淡化傾向反轉的現象。各井BEX的長期趨勢顯示出三種型態:持續為正、持續為負、由正轉負,其中BEX持續為負的井位鹽化加劇的可能性最高,BEX持續為正則最低。且鹽化加劇可能性較高的井位多位於含水層具鹽化傾向之區域,代表可先找出具鹽化傾向的區域,再依據各井BEX趨勢判斷各井未來鹽化趨勢,以擬定更完善且彈性的管理政策。 | zh_TW |
dc.description.abstract | Choushui River Alluvial Fan is the area with the most abundant groundwater resources in Taiwan. However, due to industrial development, excessive groundwater extraction has led to the deterioration of groundwater levels and subsequent natural disasters such as land subsidence, seawater intrusion, and groundwater salinization. Among them, groundwater salinization poses long-term water supply issues owing to its extensive scope and challenging remediation. Currently, the extent and distribution of salinization in this area have been well known, but there is limited discussion on future trends. Additionally, previous studies have often focused on single or yearly sampling results, neglecting the seasonal impact on groundwater salinization. Therefore, this study integrates historical groundwater data and samples the water quality during wet and dry periods. The objective is to understand the distribution, sources, mechanisms, seasonal variations, and future trends of groundwater salinization in the Choushui River Alluvial Fan from a hydrochemical perspective.
The results indicate that groundwater salinization in the Choushui River Alluvial Fan is concentrated in the first and second aquifer (F1&F2) near the coast. Salinization characteristics include high electrical conductivity, a high chloride/alkalinity equivalent concentration ratio, and a Na-Cl type hydrochemical face. In the major ions and chloride bivariate diagrams, most data points fall near the theoretical mixing line of freshwater and seawater, indicating that salinization originates from seawater, with the degree of salinization determined by the proportion of seawater. Regarding the salinization mechanisms, the degree of salinization does not show a significant correlation with the distance of wells from the sea. Additionally, the lack of surface clay coverage in the coastal area suggests that salt leaching from the surface is the primary mechanism causing salinization in F1, while salinization in F2 may result from salt infiltration through deep wells. Results from the sampling analyses show that although there is no seasonal difference in the degree of salinization, there is a phenomenon of salinization/freshening reversal in certain areas between the wet and dry seasons, indicating by the Base Exchange Index (BEX) values. Long-term trends in BEX for each well indicate three patterns: consistently positive, consistently negative, and a transition from positive to negative. Wells with consistently negative BEX values have the highest likelihood of intensifying salinization, while those with consistently positive BEX values have the lowest likelihood. Wells with a higher likelihood of salinization intensification are often located in areas where the aquifer tends to be saline. This suggests that it is possible to identify regions with salinization tendencies and then formulate more comprehensive and flexible management policies based on the BEX trends of individual wells. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:49:16Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-22T16:49:16Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 謝誌 I
摘要 II Abstract III 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 第二章 文獻回顧 3 2-1 地下水鹽化 3 2-1-1 鹽化來源 3 2-1-2 鹽化指標 7 2-2 濁水溪沖積扇背景 17 2-2-1 地理位置與地形 17 2-2-2 地質背景 18 2-2-3 水文地質架構 18 2-2-4 土地利用情形 19 2-3 濁水溪沖積扇地下水鹽化研究 21 2-3-1 地球化學研究 21 2-3-2 地球物理研究 22 2-3-3 多變量統計分析研究 23 2-3-4 地下水數學模擬研究 24 第三章 材料與方法 25 3-1 研究架構 25 3-2 歷史數據概要 26 3-2-1 水利署歷史數據概要 26 3-2-2 環保署歷史數據概要 28 3-3 現地採樣方法 30 3-4 水質分析方法 37 3-5 水質分佈內插法 41 第四章 結果與討論 44 4-1 歷史水質數據分析 44 4-1-1 歷史數據篩選 44 4-1-2 歷史數據統計 46 4-1-3 歷史鹽化分布 52 4-2 現地採樣數據分析 62 4-2-1 採樣數據統計 62 4-2-2 鹽化來源分析 70 4-2-3 鹽化機制分析 76 4-3 未來地下水鹽化趨勢評估 80 4-3-1 鹽化分布的季節性變化 80 4-3-2 鹼基交換指數 (Base Exchange Index, BEX) 趨勢評估 85 第五章 結論與建議 95 5-1 結論 95 5-2 建議 96 參考文獻 97 附錄 107 | - |
dc.language.iso | zh_TW | - |
dc.title | 濁水溪沖積扇地下水鹽化機制與未來趨勢探討 | zh_TW |
dc.title | Evaluating the Mechanism and Trend of Groundwater Salinization in Choushui River Alluvial Fan | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 闕蓓德;胡景堯;林進榮 | zh_TW |
dc.contributor.oralexamcommittee | Pei-Te Chiueh;Ching-Yao Hu;Chin-Jung Lin | en |
dc.subject.keyword | 濁水溪沖積扇,地下水鹽化,季節性差異,鹼基交換指數, | zh_TW |
dc.subject.keyword | Choushui River Alluvial Fan,Groundwater salinization,Seasonal variations,Base Exchange Index (BEX), | en |
dc.relation.page | 114 | - |
dc.identifier.doi | 10.6342/NTU202303953 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-08-11 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地質科學系 | - |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 9.54 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。